購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
本科畢業(yè)設(shè)計(jì)任務(wù)書(shū)
信息與機(jī)電工程系 填寫(xiě)時(shí)間:2015年 1 月 12 日
課題名稱
立式切碎機(jī)
學(xué)生姓名
專業(yè)、學(xué)號(hào)
11機(jī)械116707011
畢業(yè)設(shè)計(jì)
基本要求、重點(diǎn)需要
研究的問(wèn)題
基本要求:工作原理正確,能用于主要塊根莖物料,如馬鈴薯/地瓜/蘿卜/瓜果的切碎加工
完成總裝圖及零件圖(可運(yùn)用CAXA電子圖板或AutoCAD2004繪圖)
完成畢業(yè)設(shè)計(jì)說(shuō)明書(shū)一份
計(jì)劃
進(jìn)度
安排
第1設(shè)計(jì)周:收集資料、知識(shí)準(zhǔn)備;
第2~3設(shè)計(jì)周:方案設(shè)計(jì);
第4設(shè)計(jì)周:總體結(jié)構(gòu)草圖;
第5~10設(shè)計(jì)周:結(jié)構(gòu)設(shè)計(jì)、設(shè)計(jì)計(jì)算、總體裝配圖、
零件圖設(shè)計(jì);
第11~13設(shè)計(jì)周:設(shè)計(jì)說(shuō)明書(shū)(論文)編寫(xiě)。
應(yīng)收集
的資料
及主要
參考文獻(xiàn)
指導(dǎo)教師(簽名): 職稱:
系(教研室)主任(簽名):
分管院長(zhǎng)(簽章):
本科畢業(yè)設(shè)計(jì)開(kāi)題報(bào)告
設(shè)計(jì)題目: 立式切碎機(jī)
專業(yè)年級(jí): 機(jī)械專業(yè)2011級(jí)
學(xué) 號(hào): 116707011
姓 名:
指導(dǎo)教師、職稱:
2015年 1 月 23 日
1、 本設(shè)計(jì)課題的目的意義,主要及擬解決的關(guān)鍵性問(wèn)題(附參考文獻(xiàn))
中國(guó)是農(nóng)業(yè)大國(guó),因此農(nóng)作物是中國(guó)重要的一部分。自古以來(lái),中國(guó)的糧食總類很多,其中包括塊根莖物料,如馬鈴薯、地瓜、蘿卜、瓜果。中國(guó)人飯桌上或多或少都會(huì)出現(xiàn)以上塊根莖物料所制作而成的一道菜。所以如何更合理更簡(jiǎn)單方便的處理塊根莖物料成為人們需要研究的一個(gè)課題。后來(lái)就出現(xiàn)了切碎機(jī)。切碎機(jī)是將大尺寸的固體原料切碎至要求尺寸或形狀的加工機(jī)械,它在農(nóng)品加工、中草藥加工、飼料加工等行業(yè)領(lǐng)域都有廣泛的應(yīng)用。切碎機(jī)按所切物料的形態(tài)不同可分為:莖稈類物料切碎機(jī)、塊狀類物料切碎機(jī)。依照要求,本課題針對(duì)塊狀類物料切碎機(jī)進(jìn)行研究。
塊狀類物料切碎機(jī)按盤(pán)刀的方式不同可分為立式盤(pán)刀式切碎機(jī)、水平盤(pán)刀式切碎機(jī)和刀式切碎機(jī)。當(dāng)前的滾刀式切碎機(jī)其最主要的形式就是圓錐形滾刀式切碎機(jī),其主要用來(lái)切碎青綠物料和塊狀莖,其動(dòng)刀片一般安裝在圓錐形滾筒上。當(dāng)滾筒旋轉(zhuǎn)時(shí),料斗內(nèi)的物料就被切碎,成品通過(guò)動(dòng)刀和滾筒之間的空隙進(jìn)入圓錐滾筒內(nèi),并沿著圓錐斜面從滾筒的大端排出。由于圓錐僅部分表面和喂料斗接觸,所以生產(chǎn)效率較低,但工作較可靠。根據(jù)簡(jiǎn)易程度我們研究立式盤(pán)刀式切碎機(jī)(簡(jiǎn)易式切碎機(jī))。
立式簡(jiǎn)易切碎機(jī)由喂入斗和裝有4把刀片的圓盤(pán)組成.圓盤(pán)與地面垂直.工作時(shí),塊根裝在圓盤(pán)左的喂入斗內(nèi).當(dāng)圓盤(pán)旋轉(zhuǎn)時(shí),盤(pán)上的刀片就將塊根切成薄片,由圓盤(pán)下方排出口(出料口)排出.這種型式的切碎機(jī),構(gòu)造簡(jiǎn)單,使用方便,易于保養(yǎng)修理.
1. 產(chǎn)品加工機(jī)械與設(shè)備,沈再春主編,中國(guó)農(nóng)業(yè)出版社。
2.機(jī)械設(shè)計(jì)手冊(cè)。
3.其它相關(guān)參考資料。
二、本設(shè)計(jì)課題的主要設(shè)計(jì)、預(yù)期設(shè)計(jì)結(jié)果
主要設(shè)計(jì)內(nèi)容:
按給定的物料和轉(zhuǎn)軸轉(zhuǎn)速,設(shè)計(jì)一套切碎系統(tǒng),切碎機(jī)工作完畢后查其切碎的情況。
預(yù)期設(shè)計(jì)結(jié)果:
切割系統(tǒng)的設(shè)計(jì)要符合手動(dòng)立式簡(jiǎn)易切碎機(jī)(設(shè)計(jì))規(guī)范要求,基本滿足使用上的功能要求,兼顧節(jié)能環(huán)保要求,實(shí)現(xiàn)經(jīng)濟(jì)和功能的統(tǒng)一。
擬解決的關(guān)鍵問(wèn)題:
1、主動(dòng)軸和從動(dòng)軸的協(xié)調(diào)性及剛度要求;
2、滿足給定的切割要求;
3、切割效果分析;
三、設(shè)計(jì)方法和步驟
1、收集切碎機(jī)的資料,調(diào)查研究,通過(guò)分析比較、確定設(shè)計(jì)方案;
2、根據(jù)給定要求,進(jìn)行設(shè)計(jì)參數(shù)的計(jì)算;
3、運(yùn)用AutoCAD和Photoshop繪圖等工具進(jìn)行設(shè)計(jì)。
4、進(jìn)行切碎效果試驗(yàn);
5、撰寫(xiě)設(shè)計(jì)說(shuō)明書(shū)
4、 設(shè)計(jì)工作的總體安排及進(jìn)度
第1設(shè)計(jì)周:收集資料、知識(shí)準(zhǔn)備;
第2~3設(shè)計(jì)周:方案設(shè)計(jì);
第4設(shè)計(jì)周:總體結(jié)構(gòu)草圖;
第5~10設(shè)計(jì)周:結(jié)構(gòu)設(shè)計(jì)、設(shè)計(jì)計(jì)算、總體裝配圖、
零件圖設(shè)計(jì);
第11~13設(shè)計(jì)周:設(shè)計(jì)說(shuō)明書(shū)(論文)編寫(xiě)。
五、指導(dǎo)教師審查意見(jiàn):
簽字:
年 月 日
六、系(教研室)審查意見(jiàn):
簽字:
年 月 日
七、學(xué)院審查意見(jiàn):
分管院長(zhǎng)簽章:
年 月 日
目 錄
摘要 - 2 -
Abstract - 3 -
第一章 前言 - 4 -
1.1 引言 - 4 -
第二章 選擇方案 - 5 -
2.1總體設(shè)計(jì) - 5 -
2.2結(jié)構(gòu)及實(shí)現(xiàn)原理 - 5 -
2.3方案選擇 - 6 -
第三章 設(shè)計(jì)與計(jì)算 - 7 -
3.1電機(jī)選擇 - 7 -
3.2 傳動(dòng)比選擇 - 8 -
3.3 軸的強(qiáng)度條件計(jì)算 - 9 -
3.4 精確校核軸的疲勞強(qiáng)度 - 10 -
3.5 軸承的校核 - 13 -
結(jié)束語(yǔ) - 15 -
參考文獻(xiàn) - 16 -
致謝 - 17 -
摘要
本研究以馬鈴薯等根莖物料為研究對(duì)象,通過(guò)對(duì)根莖物料特性的分析,確定切碎原理和方法,設(shè)計(jì)出動(dòng)力消耗低、力度大小滿足切碎成型要求的根莖切碎機(jī)。推動(dòng)我國(guó)目前綜合開(kāi)發(fā)利用農(nóng)作物根莖物料資源的技術(shù)創(chuàng)新和實(shí)際應(yīng)用。
通過(guò)對(duì)原始數(shù)據(jù)的分析、方案的論證比較和有關(guān)數(shù)據(jù)的分析計(jì)算,主要完成了切碎機(jī)的總體設(shè)計(jì),電動(dòng)機(jī)的選擇以及傳動(dòng)方案的分析、比較與選擇等內(nèi)容。在此基礎(chǔ)上對(duì)切碎機(jī)機(jī)體的結(jié)構(gòu)尺寸、驅(qū)動(dòng)轉(zhuǎn)軸的結(jié)構(gòu)尺寸、V帶傳動(dòng)等設(shè)計(jì)應(yīng)用價(jià)值進(jìn)行了詳細(xì)的計(jì)算和說(shuō)明。
該機(jī)主要是由切碎機(jī)和喂入機(jī)構(gòu)、喂入槽、甩拋裝置、帶傳動(dòng)、電動(dòng)機(jī)組成。其原理是根莖物料由喂入槽喂入,在喂入機(jī)構(gòu)作用下將其壓實(shí)并卷入機(jī)構(gòu)。被動(dòng)刀片組成的切碎器切碎,最后由拋送裝置拋出機(jī)外。
關(guān)鍵詞:盤(pán)刀,切碎機(jī),根莖物料,喂入槽,拋送機(jī)
Abstract
In this study, potato and other root material for the study, by the material properties of the roots of analysis to determine the principles and methods of shredding designed low power consumption, efforts to meet the size requirements for compression molding roots shredder. Promote the comprehensive development and utilization of China's current crop roots material resources of technological innovation and practical application.
?? Through the analysis of raw data, analysis and calculation demonstrate Comparison Programme and the relevant data, mainly to complete the overall design of the shredder, the analysis of the motor and drive program selection, comparison and selection and so on. On this basis, the structure of the shredder body size, the drive shaft structure size, V belt drive, such as design value calculation and detailed description.
?? This machine is mainly composed of a shredder and feeding mechanism, feeding trough, throwing throwing unit, belt drive, motor. The principle is that the material from the feeding trough feeding roots, in effect compacting the feed mechanism and the involvement of institutions. Passive fixed chopper blades consisting of chopped, and finally by throwing device thrown outside.
Keywords: disc cutter, shredder, roots materials, feed trough, throwing machine
第一章 前言
1.1 引言
近年來(lái),發(fā)達(dá)國(guó)家中的農(nóng)業(yè)生產(chǎn)已經(jīng)高度機(jī)械化,通過(guò)先進(jìn)的技術(shù)形成了一些列配套的生產(chǎn)體系和配套機(jī)具。但中國(guó)是從解放后才開(kāi)始發(fā)展自己的農(nóng)機(jī)化事業(yè)的,經(jīng)過(guò)這些年的發(fā)展,雖取得了進(jìn)步,但是由于中國(guó)領(lǐng)土疆域大,經(jīng)濟(jì)發(fā)展不平衡,農(nóng)機(jī)化水平差別較大,整體數(shù)據(jù)相當(dāng)于美國(guó)上世紀(jì)五十年代后期水平,處于現(xiàn)代農(nóng)業(yè)的初級(jí)階段,農(nóng)機(jī)化事業(yè)任重二道院。而中國(guó)是農(nóng)業(yè)大國(guó),因此農(nóng)作物是中國(guó)重要的一部分。自古以來(lái),中國(guó)的糧食總類很多,其中包括塊根莖物料,如馬鈴薯、地瓜、蘿卜、瓜果。中國(guó)人飯桌上或多或少都會(huì)出現(xiàn)以上塊根莖物料所制作而成的一道菜。所以如何更合理更簡(jiǎn)單方便的處理塊根莖物料成為人們需要研究的一個(gè)課題。后來(lái)就出現(xiàn)了切碎機(jī)。切碎機(jī)是將大尺寸的固體原料切碎至要求尺寸或形狀的加工機(jī)械,它在農(nóng)品加工、中草藥加工、飼料加工等行業(yè)領(lǐng)域都有廣泛的應(yīng)用。切碎機(jī)按所切物料的形態(tài)不同可分為:莖稈類物料切碎機(jī)、塊狀類物料切碎機(jī)。依照要求,本課題針對(duì)塊狀類物料切碎機(jī)進(jìn)行研究。
塊狀類物料切碎機(jī)按盤(pán)刀的方式不同可分為立式盤(pán)刀式切碎機(jī)、水平盤(pán)刀式切碎機(jī)和刀式切碎機(jī)。當(dāng)前的滾刀式切碎機(jī)其最主要的形式就是圓錐形滾刀式切碎機(jī),其主要用來(lái)切碎青綠物料和塊狀莖,其動(dòng)刀片一般安裝在圓錐形滾筒上。當(dāng)滾筒旋轉(zhuǎn)時(shí),料斗內(nèi)的物料就被切碎,成品通過(guò)動(dòng)刀和滾筒之間的空隙進(jìn)入圓錐滾筒內(nèi),并沿著圓錐斜面從滾筒的大端排出。由于圓錐僅部分表面和喂料斗接觸,所以生產(chǎn)效率較低,但工作較可靠。
立式簡(jiǎn)易切碎機(jī)由喂入斗和裝有4把刀片的圓盤(pán)組成.圓盤(pán)與地面垂直.工作時(shí),塊根裝在圓盤(pán)左的喂入斗內(nèi).當(dāng)圓盤(pán)旋轉(zhuǎn)時(shí),盤(pán)上的刀片就將塊根切成薄片,由圓盤(pán)下方排出口(出料口)排出.這種型式的切碎機(jī),構(gòu)造簡(jiǎn)單,使用方便,易于保養(yǎng)修理. 按給定的物料和轉(zhuǎn)軸轉(zhuǎn)速,設(shè)計(jì)一套切碎系統(tǒng),切碎機(jī)工作完畢后查其切碎的情況。
第二章 選擇方案
2.1總體設(shè)計(jì)
原始參數(shù):(1)容重1.2噸/m3;
(2)作業(yè)形式:連續(xù);
(3)物料名稱:塊莖類物料;
(4)生產(chǎn)能力:2t/h。
2.2結(jié)構(gòu)及實(shí)現(xiàn)原理
該機(jī)主要有傳動(dòng)軸I和裝在其一端的傳動(dòng)系統(tǒng),裝在其中部的切碎刀盤(pán),裝在其一端的變速錐齒輪和傳動(dòng)軸II上的變速錐齒輪和直齒輪及進(jìn)給軸III、IV,裝在支撐固定他們的機(jī)架下部的電動(dòng)機(jī)。主傳動(dòng)輪及傳動(dòng)皮帶,加之安裝在機(jī)架上的喂料臺(tái),進(jìn)料斗,機(jī)殼等構(gòu)成,切碎機(jī)構(gòu)由安裝在傳動(dòng)軸一端的切碎刀盤(pán)及上的動(dòng)刀片,加之固定在機(jī)架相應(yīng)位置上,能在刀盤(pán)轉(zhuǎn)動(dòng)過(guò)程中,與動(dòng)片構(gòu)成剪切動(dòng)作的定刀片構(gòu)成。傳動(dòng)軸安裝在機(jī)架上,動(dòng)力由機(jī)架下部的電動(dòng)機(jī)及其主動(dòng)輪。
驅(qū)動(dòng)傳動(dòng)軸運(yùn)轉(zhuǎn)使安裝在中部的切刀盤(pán)工作。機(jī)架上靠切碎刀盤(pán)一側(cè),制作了切碎機(jī)構(gòu)喂料臺(tái)、自動(dòng)進(jìn)給輥壓輪及刀盤(pán)罩;位于傳動(dòng)軸中部裝有機(jī)殼和進(jìn)料斗,二者用小螺桿連為一體;主動(dòng)輪與從動(dòng)輪間套有皮帶防護(hù)罩;機(jī)架下部制作了切碎,破碎物料的出料斗。其中,喂料臺(tái),刀盤(pán)罩、機(jī)殼、進(jìn)料斗、皮帶防護(hù)罩、除掉都均連接在固定在機(jī)架上。這樣,就構(gòu)成一個(gè)圓盤(pán)刀式切碎機(jī)。使用時(shí),將馬鈴薯等塊根莖物料放入偏置的料斗中,動(dòng)刀片隨刀盤(pán)的旋轉(zhuǎn)和固定在機(jī)架上的定刀片配合,將物料切碎。
2.3方案選擇
莖稈類物料的切割主要利用動(dòng),定刀之間的對(duì)切運(yùn)動(dòng),宛如剪刀一樣,是根據(jù)剪切原理工作的。而塊狀類物料的切割是利用刀片的楔切作用,宛如加工金屬的車刀一樣,是根據(jù)切割原理工作的,這是因?yàn)榍懈顣r(shí),動(dòng)刀刃對(duì)物料通常不產(chǎn)生滑移,只是按照看砍切進(jìn)行切割。馬鈴薯與動(dòng)刀刃之間的摩擦角為35°~40°,遠(yuǎn)比莖稈類物料與動(dòng)刀刃之間的摩擦角(18°~24°)要大得多。
塊狀類物料切碎機(jī)按盤(pán)刀的方式不同可分為立式盤(pán)刀式切碎機(jī)、水平盤(pán)刀式切碎機(jī)和刀式切碎機(jī)。當(dāng)前的滾刀式切碎機(jī)其最主要的形式就是圓錐形滾刀式切碎機(jī),其主要用來(lái)切碎青綠物料和塊狀莖,其動(dòng)刀片一般安裝在圓錐形滾筒上。當(dāng)滾筒旋轉(zhuǎn)時(shí),料斗內(nèi)的物料就被切碎,成品通過(guò)動(dòng)刀和滾筒之間的空隙進(jìn)入圓錐滾筒內(nèi),并沿著圓錐斜面從滾筒的大端排出。由于圓錐僅部分表面和喂料斗接觸,所以生產(chǎn)效率較低,但工作較可靠。
立式簡(jiǎn)易切碎機(jī)由喂入斗和裝有4把刀片的圓盤(pán)組成.圓盤(pán)與地面垂直.工作時(shí),塊根裝在圓盤(pán)左的喂入斗內(nèi).當(dāng)圓盤(pán)旋轉(zhuǎn)時(shí),盤(pán)上的刀片就將塊根切成薄片,由圓盤(pán)下方排出口(出料口)排出.這種型式的切碎機(jī),構(gòu)造簡(jiǎn)單,使用方便,易于保養(yǎng)修理. 按給定的物料和轉(zhuǎn)軸轉(zhuǎn)速,設(shè)計(jì)一套切碎系統(tǒng),切碎機(jī)工作完畢后查其切碎的情況。
根據(jù)課題我們選擇立式盤(pán)刀式切碎機(jī)。
簡(jiǎn)易式切碎機(jī) 見(jiàn)圖2-1 圓盤(pán)上安裝4把動(dòng)刀,通過(guò)電機(jī)帶動(dòng)帶輪和帶使圓盤(pán)回轉(zhuǎn),物料從偏置的料斗進(jìn)入,切碎后,從卸料槽排出,這種切碎機(jī)結(jié)構(gòu)簡(jiǎn)單,使用方便,造價(jià)低廉。
2-1
1-進(jìn)料斗 2-六角螺栓 3-端蓋 4-固定臺(tái) 5-六角螺栓 6-彈簧墊圈
7-滾動(dòng)軸承座 8-彈簧墊圈 9-六角螺栓 10-六角螺栓 11-出料口
12-支架 13-固定板
第三章 設(shè)計(jì)與計(jì)算
3.1電機(jī)選擇
由于立式盤(pán)刀式切碎機(jī)要求功率較低,所以選擇小功率電動(dòng)機(jī)。
小功率電動(dòng)機(jī)也稱為分馬力電動(dòng)機(jī),指連續(xù)工作定額不超過(guò)1.1KW的電動(dòng)機(jī),小功率交流異步電動(dòng)機(jī)分為三相異步電動(dòng)機(jī)和單相異步電動(dòng)機(jī)。其中,YS(JB/T 1009-2007)系列為取代AO2系列的三相異步電動(dòng)機(jī),具有優(yōu)良的起動(dòng)和運(yùn)行性能,結(jié)構(gòu)簡(jiǎn)單,使用、維修方便,適合于使用三相電源的小型機(jī)械;YU(JB/T 1010-2007)系列為取代BO2系列的單相電阻起動(dòng)異步電動(dòng)機(jī),具有中等起動(dòng)和過(guò)載能力,結(jié)構(gòu)簡(jiǎn)單,使用、維修方便,適合于使用單相電源的小型機(jī)械;YC(JB/T1 1011-2007)系列為取代CO2系列的單相電容起動(dòng)異步電動(dòng)機(jī),起動(dòng)力矩大,起動(dòng)電流小,適用于滿載起動(dòng)的機(jī)械,如空壓機(jī)、磨粉機(jī)等;YY(JB/T 1012-2007)系列為取代DO2系列的單相電容運(yùn)轉(zhuǎn)異步電動(dòng)機(jī),具有較高的功率因數(shù)、效率和過(guò)載能力,但是起動(dòng)力矩小,空載電流大,適用于空載或輕載起動(dòng)的小型機(jī)械,如電影放映機(jī)、電扇等;
YL(JB/T 7588-2010)系列為單相雙值電容異步電動(dòng)機(jī),具有高轉(zhuǎn)矩、高效率、高功率因數(shù)的優(yōu)點(diǎn),適用于要求起動(dòng)力矩大的空氣壓縮機(jī)、木工機(jī)械、粉碎機(jī)及其他小型機(jī)械。
假設(shè)切割力F為100N n=1400r/min
則T1=F*r=100*0.14=14N·m
因?yàn)閭鲃?dòng)比為3 所以T2=T1/3=4.7N·m
P=(T*n)/9550=(4.7*1400)/9550=0.689KW
本課題研究的立式盤(pán)刀式切碎機(jī)為滿載起動(dòng)的機(jī)械,所以考慮功率轉(zhuǎn)矩等選擇 YC90L4電機(jī)。 功率750W,轉(zhuǎn)速1400(r/min)。
3.2 傳動(dòng)比選擇
傳動(dòng)比為帶輪1直徑比去帶輪2直徑=60mm/180mm=1:3
3.3 軸的強(qiáng)度條件計(jì)算
通過(guò)軸的結(jié)構(gòu)設(shè)計(jì),軸的主要結(jié)構(gòu)尺寸,軸上零件的位置,以及外載荷和支反力的作位置均已確定,軸上的載荷(變矩和扭矩)已可以求得,因而可按彎矩合成強(qiáng)度條件對(duì)軸進(jìn)行強(qiáng)度校核計(jì)算.其作圖分析和計(jì)算步驟如下:
已知 h=68mm L1=130.6mm L2=67mm
計(jì)算:
Fr1+Fr2=G
Fr1*L1-G(L1+L2)+Fa*h=0
Fa2=Fa1=1/2Fa=2.7N
Mc=Fr2*L1
由以上式子得 Fa2=Fa1=2.7N Fa=5.4N Fr1=107.64N Fr2=-34.64N Mc=-34.64*130.6=-4523.98N*mm
=0.6
ca=
前面已選項(xiàng)定軸為45鋼/正火,〔-1〕=60MPa/55MPa ca<(-1)
故安全
3.4 精確校核軸的疲勞強(qiáng)度
1. 截面IA只受扭矩作用,雖然鍵槽,軸肩及過(guò)渡配合所引起的應(yīng)力集中均將削弱軸的疲勞強(qiáng)度,但由于軸的最小直徑是按扭轉(zhuǎn)強(qiáng)度為寬裕地確定的,所以截面IA無(wú)需校核.
從應(yīng)力集中對(duì)軸的疲勞強(qiáng)度的影響來(lái)看,截面V處應(yīng)力最集中;從受載的情況來(lái)看,截面上的應(yīng)力最大.最需要校核這個(gè)面.
2. 截面V左側(cè)
抗彎截面系數(shù) W=0.1d=0.1*30
抗扭截面系數(shù)
截面IV左側(cè)的彎矩M為 M=-4523.98*17/67=-1147.88N*mm
截面IV上的扭矩T為 T=187180N*mm
截面上的彎曲應(yīng)力 MPa
截面上的扭轉(zhuǎn)應(yīng)力
軸上的材料為45鋼,調(diào)質(zhì)處理.由表15-1查得=640MPa =275MPa
截面上由于軸肩而形成的理論應(yīng)力集中系數(shù)及按表3-2查表取得
因r/d=2.0/30=0.067D/d=45/30=1.5 經(jīng)插值后可查得 =2.1 =1.80
又由附圖3-1可得軸的材料的敏性系數(shù)為
故有效應(yīng)力集中系數(shù)按式(附3-4)為
由附圖3-2得尺寸系數(shù) ;由附圖3-2得扭轉(zhuǎn)尺寸系數(shù) .
軸按磨削加工,由附圖3-4得表面質(zhì)量系數(shù)為
.軸未經(jīng)表面強(qiáng)化處理,即,則按式(3-12)及(3-12a)得綜合系數(shù)值為
又由§3-1及§3-2得碳鋼的特性系數(shù)
, 取
= 0.05~0.1, 取= 0.05
于是,計(jì)算安全系數(shù)Sca值,按式(15-6)~(15-8)則得
3.截面V右側(cè)
T=187180N*mm
過(guò)盈配合處值,由附表3-8用插入法, 0.8于是得
0.8*2.56=2.05
軸按磨削加工,由附圖3-4得表面質(zhì)量系數(shù)為
故得綜合系數(shù)為
所以軸在V右側(cè)的安全系數(shù)為
繪制軸的工作圖, 見(jiàn)圖3-1:
3-1
3.5 軸承的校核
設(shè)根據(jù)工作條件決定在軸的兩端正裝兩個(gè)圓錐滾子軸承,如圖下所示. 已知n=55r/min
設(shè)初選兩個(gè)軸承的型號(hào)為30208.
受力分析如下:
1. 求兩軸承受到的徑向載荷Fr1和Fr2
Fr1=107.64N Fr2=-34.64N Fa=5.4N
查設(shè)計(jì)手冊(cè)可知30208 Cr=43.2KN Cor=50.5KN
2. 求兩軸承的計(jì)算軸向力Fa1和Fa2
對(duì)于30208型軸承,按表13-7,軸承派生軸向力 Fd=Fr/2d
Fd1=Fr1/(2*1.6)=107.64/3.2=33.64
Fd2=Fr2/(2Y)=34.64/3.2=10.825N
Fa1=Fd1-Fae=33.64-5.4=28.24N
Fa2=Fd1=33.64N
Fa1/C0=28.24/50500=0.00056
Fa2/C0=33.64/50500=0.00067
e=0.37 X=0.4 Y=1.6
3. 求軸承當(dāng)量動(dòng)載荷P1和P2
因軸承有中等沖擊載荷,按表13-6,fp=1.2~1.8 fp=1.5
P1=fp(XFr+YFa1)=1.5*(0.4*107.64+1.6*28.24)=132.36N
P2=fp(XFr2+YFa2)=1.5*(0.4*34.64+1.6*33.64)=101.52N
4. 因?yàn)镻1>P2, 所以按軸承1的受力大小驗(yàn)算
年
結(jié)束語(yǔ)
經(jīng)過(guò)一學(xué)期的準(zhǔn)備,從到圖書(shū)館搜集資料,整理資料我的畢業(yè)設(shè)計(jì)生活就要結(jié)束了?;厥走@段期間的設(shè)計(jì)過(guò)程,有很多感受很多收獲,這是對(duì)我大學(xué)知識(shí)的一個(gè)整體的檢驗(yàn),很嚴(yán)格,但是對(duì)我今后走向社會(huì)有很大的幫助,這這使我非常清楚的認(rèn)識(shí)到一項(xiàng)設(shè)計(jì)從開(kāi)始到結(jié)束所經(jīng)歷的過(guò)程,也對(duì)這個(gè)過(guò)程有了很深刻的了解。這對(duì)我們今后的各類設(shè)計(jì)提供了一個(gè)最基本的設(shè)計(jì)基礎(chǔ),也使我認(rèn)識(shí)到到做一件事應(yīng)該堅(jiān)持不懈,遇到困難應(yīng)該用于面對(duì),并且認(rèn)真尋找解決的方法。這就是一個(gè)成長(zhǎng)的過(guò)程,培養(yǎng)一種人生的態(tài)度。
通過(guò)對(duì)盤(pán)刀式立體切碎機(jī)的設(shè)計(jì),我了解到切碎機(jī)的種類、工作原理以及工作過(guò)程,還了解到了各種切碎機(jī)的區(qū)別。在設(shè)計(jì)過(guò)程中,對(duì)以前學(xué)過(guò)的知識(shí)有了更深刻的理解,也罷學(xué)的不扎實(shí)的知識(shí)重新鞏固了一邊,發(fā)現(xiàn)以前不曾注意過(guò)的知識(shí)都十分有用,令我感受很深。
結(jié)束了這段畢業(yè)設(shè)計(jì)后,我覺(jué)得自己方面的能力都有所提高。。通過(guò)本課題的設(shè)計(jì),使自己學(xué)會(huì)綜合運(yùn)用所學(xué)的機(jī)械設(shè)計(jì)、機(jī)械制圖等基礎(chǔ)知識(shí)解決實(shí)際問(wèn)題。在課題進(jìn)行過(guò)程中,學(xué)會(huì)了掌握資料收集及整理的方法。獨(dú)立完成系統(tǒng)方案改造與設(shè)計(jì)工作,提高了綜合運(yùn)用所學(xué)過(guò)的各科知識(shí)和培養(yǎng)分析問(wèn)題的能力。使自己具有了一定的理論聯(lián)系實(shí)際的正確設(shè)計(jì)思想。更熟悉運(yùn)用和查閱各種設(shè)計(jì)資料。掌握從事設(shè)計(jì)工作的具體步驟和方法。
參考文獻(xiàn)
[1] 高志,李威主編,機(jī)械設(shè)計(jì)課程設(shè)計(jì)手冊(cè) 第4版 高等教育出版社,2012
[2] 毛謙德,李振清主編,袖珍機(jī)械設(shè)計(jì)師手冊(cè).第二版.北京:機(jī)械工業(yè)出版社,2000
[3] 成大先主編,機(jī)械設(shè)計(jì)手冊(cè).第三版.第二冊(cè).北京:化學(xué)工業(yè)出版社,1999
[4] 唐增寶,何永然,劉安俊主編,機(jī)械設(shè)計(jì)課程設(shè)計(jì).第二版.武漢:華中理中大學(xué)出版社,1999
[5] 西北工業(yè)大學(xué)機(jī)械原理及機(jī)械零件教研組編.孫桓,陳作模主編,機(jī)械原理.第六版.北京:高等教育出版社,2001
[6] 羅迎社主編,材料力學(xué).武漢:武漢理工大學(xué)出版社,2001
[7] 肖旭霖主編,食品機(jī)械與設(shè)備.北京:科學(xué)出版社,2006
[8] 石一兵主編,食品機(jī)械與設(shè)備.北京:中國(guó)商業(yè)出版社,1990
[9] 周良德,朱泗芳主編,現(xiàn)代工程圖學(xué).長(zhǎng)沙: 湖南科學(xué)技術(shù)出版社,2000
致謝
畢業(yè)設(shè)計(jì)是對(duì)我們知識(shí)運(yùn)用能力的一次全面的考核,也是對(duì)我們進(jìn)行科學(xué)研究基本功的訓(xùn)練,培養(yǎng)我們綜合運(yùn)用所學(xué)知識(shí)獨(dú)立地分析問(wèn)題和解決問(wèn)題的能力,為以后撰寫(xiě)專業(yè)學(xué)
論文和工作打下良好的基礎(chǔ)。
本次設(shè)計(jì)能夠順利完成,首先我要感謝我的母校——農(nóng)林大學(xué)金山許愿,是她為我們提供了學(xué)習(xí)知識(shí)的土壤,使我們?cè)谶@里茁壯成長(zhǎng);其次我要感謝機(jī)械專業(yè)的老師們,他們不僅教會(huì)我們專業(yè)方面的知識(shí),而且教會(huì)我們做人做事的道理;尤其要感謝在本次設(shè)計(jì)中給與我大力支持和幫助的朱亨銀老師,每有問(wèn)題,老師總是耐心的解答,使我能夠充滿熱情的投入到畢業(yè)設(shè)計(jì)中去;還要感謝我的同學(xué)們,他們熱心的幫助,使我感到了來(lái)自兄弟姐妹的情誼;最后還要感謝相關(guān)資料的編著者和給予我們支持的社會(huì)各界人士,感謝您們?yōu)槲覀兲峁┮粋€(gè)良好的環(huán)境,使本次設(shè)計(jì)圓滿完成。
- 17 -
南華大學(xué)機(jī)械工程學(xué)院畢業(yè)設(shè)計(jì)(論文)
Study and Improvement for Slice Smoothness in Slicing Machine of Lotus Root
De-yong YANG ,Jian-ping HU , En-zhu WEI , Heng-qun LEI ,and Xiang-ci KONG
Key Laboratory of Modern Agricultural Equipment and Technology
Ministry of Education Jiangsu Province Jiangsu University . Zhenjiang .
Jiangsu Province .P.R.China212013
Tel.: +86-511-8;Fax:+86-511-8
yangdy@163.com
Jinhu Agricultural Mechanization Technology Extension Station . Jinhu county
Jiangsu Province .P.R.China 211600
Abstract: Concerning the problem of the low cutting quality and the bevel edge in the piece of lotus root, the reason was analyzed and the method of improvement was to reduce the force in the vertical direction of link to knife. 3D parts and assemblies of cutting mechanism in slicing machine of lotus were created under PRO/E circumstance. Based on virtual prototype technology, the kinematics and dynamics analysis of cutting mechanism was simulated with ADAMS software, the best slice of time that is 0.2s~0.3s was obtained,and the curve of the force in the vertical direction of link to knife was obtained. The vertical force of knife was changed according with the change of the offset distance of crank. Optimization results of the offest distance of crank showed the vertical force in slice time almost is zero when the offset distance of crank is -80mm. Tests show that relative error of thickness of slicing is less than 10% after improved design, which is able to fully meet the technical requirements.
Keywords: lotus root; cutting mechanism; smoothness; optimization
1 Introduction
China is a country of producing lotus toot, lotus root system of semi-finished products of domestic consumption and external demand for exports is relatively large. In order to improve efficiency, reduce labor intensity, the group work, drawing on the principle of the artificial slice based on the design and development of a new type of lotus root slice (Bi Wei and Hu Jianping, 2006). This new type of slice solved easily broken cutting, stick knives, hard to clean up and other issues, but the process appears less smooth cutting, and some have a problem of hypotenuse piece of root. In this paper, analyzing cutting through the course of slice knife, the reasons causing hypotenuse was found, and the corresponding improvement of methods was proposed and was verified by the experiments.
2 Structure of Cutting Mechanism of Slicing Machine
Cutting mechanism of the quality of slice lotus root is the core of the machine, the performance of its direct impact on the quality of slice. Virtual prototyping of cutting mechanism of slice lotus root (Fig.1) was built by using PRO/E, and mechanism diagram of the body is shown in Fig.2. Cutting principle of lotus slicer adopted in the cardiac type of slider-crank mechanism was to add materials inside, which can be stacked several lotus root, lotus root to rely on the upper part of the self and the lower part of the lotus press down, so that it arrives in the material under the surface of the baffle. While slider-crank mechanism was driven by motor, the knife installed on the slider cut lotus root. In the slice-cutting process it was found that parallelism of the surface at both ends of part of piece lotus was not enough, which can not meet the technical requirements for processing.
Fig.1 Virtual prototyping of cutting mechanism
Fig.2 Diagram of cutting mechanism
Study and improvement for slice smoothness in slicing machine of lotus root.
3 The Cause of the Bevel Edge
Uneven thickness and bevel edge of cutting were related with forces on the slice knife in the process of cutting. In accordance with cutting mechanism (Fig.2), without taking into account the friction and weight, the direction of force F of point C was along the link. Force F may be decomposed with a horizontal direction force component and a vertical direction force component. The horizontal force component pushed the knife moving for cutting, but the vertical force component caused the knife moving along the vertical direction. Because of the gap between the slider and the rail, the vertical force component made the blade deforming during the movement, and knife could not move along the horizontal direction to cut lotus root, which caused the emergence of bevel edge. Thus, to reduce or eliminate the vertical force component in the cutting-chip was key to solve the problem of bevel edge and improve the quality of cutting.
When crank speed was 69~90r/min, the horizontal and vertical direction of the force curve of point C connecting link and the blade hinge are shown in Fig.3 and Fig.4 respectively. As can be seen from the chart, with the crank speed improvement the horizontal and vertical direction of the force in point C also increased. The horizontal force changed relatively stable during 0s~0.2s, which was conducive to cutting lotus, but the vertical force increased gradually. The more the vertical force was, the more detrimental to the quality cutting.
Fig.3 Horizontal force of C
Fig.4 Vertical force of C
4 Simulation and Optimization
If improving flatness of the slicer, the structure was optimized to reduce the vertical force component, so as far as possible the level of cutting blade.
When crank speed was 60~90r/min the velocity curve and acceleration curve of the knife center of mass are shown in Fig.5 and Fig.6 respectively. According to the speed curve, the speed of the knife center of mass was relatively large in a period of 0.2s~0.3s. In accordance with the requirements that the knife should have a higher speed during cutting lotus, so this period time was more advantageous to cutting than other terms. According to acceleration curve. When calculates by one cycle, the acceleration value was relatively quite small in the period of time, 0.15s~0.3s compared with other time section. Which indicated that the change of velocity was relatively small, simultaneously the force of inertia was small, and the influence of vibration caused by the force was small to the slicer. Therefore,this period of time, 0.2s~0.3s, to cut root piece was advantageous in enhances the cutting quality of lotus root piece.
Fig.5 Velocity curve of center of mass of knife
Fig.6 Acceleration curve of center of mass of knife
Based on the above analysis, the vertical force component between link and the knife was the main reason for bevel edge. According to the characteristics of slider-crank mechanism, reducing the vertical force on the knife in the period of cutting time by altering crank offest was tried to enhance the quality of the cutting. When crank speed was 60r/min, the crank eccentricity was optimized. When the offest of the crank was 40mm, 20mm, 0mm, -20mm, -40mm, -80mm, -120mm respectively, the mechanism was simulated and the vertical force curves under different crank eccentricity were obtained, as shown in Fig.7.
Fig.7 vertical force curves in different offest
Fig.7 indicates that: When the eccentricity was positive, the vertical force on point C increased gradually in 0.2s~0.3s with the increase of crank oddest: When the eccentricity was negative, the force decreased gradually first and then begun to increase along with -80mm. So when the offest was -80mm, the numerical of the force in 0.2s~0.3s achieved the minimum and the quality of cutting was the best.
When the crank rotated in the other speed, there were the same optimization results. Fig.8 show the curve of vertical force in the offest of 0mm and -80mm when the speed of crank was 80r/min. From the Fig.8 it is obvious that vertical direction of the force of point C in 0.2s~0.3s reduced a lot when the eccentricity is -80mm. Therefore, the vertical force could be reduced by optimizing the slider-crank mechanism of eccentricity.
Fig.8 Vertical force of C
5 Experimental Analysis
The relative error of thickness of lotus root piece reflects the quality of cutting. Which is generally controlled of 10%. There always existed bevel edge phenomenon and the relative error of thickness was about 15% before structural optimization and improvement, which was difficult to meet the technical requirements. The offset in the slider-crank mechanism was optimized, and its structure was improved according to the results of optimization. After improvement cutting test were done in the conditions of crank speed for 80~110r/min and statistical data about the relative error of thickness was shown in Table.1. Four levels were separated in the experiment, three times for each level.
Table 1 Relative error of thickness of slicing
NO
Crank speed (r/min)
80
90
100
110
1
6.6%
6.4%
8.2%
9.5%
2
5.3%
6.1%
8.5%
9.2%
2
6.4%
7.9%
7.9%
9.4%
Average
6.1%
6.8%
8.2%
9.4%
It is derived from Table.1 that the relative error of the thickness of slices could meet the technical indicators when the crank speed was 80~110r/min, especially in the crank rotation speed 80r/min, 90r/min the relative error of thickness was less than 7%,and high quality was achieved.
6 Conclusion
The vertical force component acted on the knife in the process of cutting was the main reason for surface formation and bevel edge, so the key of improving the quality was to reduce the vertical force. Through slice knife and velocity acceleration simulation analysis the best time for slicing, 0.2s~0.3s, was obtained. By optimizing the offset of the crank the vertical force during cutting time was greatly reduced when the offset was -80mm. Experiments were made after improving the design of lotus root slicer, which results showed that by changing the offset of the crank, the relative error of the thickness could fully meet the requirements of less than 10%. So the problem was basically solved that the flatness was not ideal and was the issue of bevel edge.1
References
[1] Wei,B . jianping,H.: Study of lotus root slicing techniques and design of new model,Journal of agricultural mechanization research (12),112-114(2006)(in Chinese)
[2] Enzhu, w.:the simulation and optimization on the new slicing machine of lotus root based on virtual prototype technology .jiangsu university [2008)[in Chinese)
[3] Ce ,Z .:mechanical dynamics .higher education press[1999)
[4]Xiuning ,C.:optimal design of machinery .zhejiang university press[1999)
[5]Liping,C.,yunqing,Z.,weiqun,R.: dynamic analysis of mechanical systems and application Guide ADAMS . Tsinghua university press ,Beijing(2005)
Page 8 of 8