購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
長春理工大學(xué)光電信息學(xué)院畢業(yè)設(shè)計
機器人
文章出處:《機械制造專業(yè)英語》 主編:章躍 節(jié)選自第21課機器人
工業(yè)機器人是在生產(chǎn)環(huán)境中用以提高生產(chǎn)效率的工具,它能做常規(guī)乏味的裝配線工作,或能做那些對于工人來說是危險的工作,例如:第一代工業(yè)機器人是用來在核電站中更換核燃料棒,如果人去做這項工作,將會遭受有害射線的輻射。工業(yè)機器人亦能工作在裝配線上將小元件裝配到一起,如將電子元件安放在電路印刷板,這樣,工人就能從這項乏味的常規(guī)工作中解放出來。機器人也能按程序要求用來拆除炸彈,輔助殘疾人,在社會的很多應(yīng)用場合下履行職能。
機器人可以認為是將手臂末端的工具、傳感器和手爪移動到程序指定位置的一種機器。當(dāng)機器人到達位置后,它將執(zhí)行某種任務(wù)。這些任務(wù)可以是焊接、密封、機器裝料、拆裝以及裝配工作。除了編程以及系統(tǒng)的開停之外,一般來說這些工作可以在無人干預(yù)下完成。
如下敘述的是機器人系統(tǒng)基本術(shù)語:
1.機器人是一個可編程、多功能的機械手,通過給要完成的不同任務(wù)編制各種動作,它可以運動零件、材料、工具以及特殊裝置。這個基本定義引導(dǎo)出后續(xù)段落的其他定義,從而描繪出一個完整的機器人系統(tǒng)。
2.預(yù)編程位置點是機器人為完成工作而必須跟蹤的軌跡。在某些位置點上機器人將停下來做某些操作,如裝配零件、噴涂油漆或者焊接。這些預(yù)編程點貯存在機器人的貯存器中,并為后續(xù)的連續(xù)操作所調(diào)用,而且這些預(yù)編程點像其他程序數(shù)據(jù)一樣,可在日后隨工作需要而變化。因且,正是這種可編程的特征,一個工業(yè)機器人很像一臺計算機,數(shù)據(jù)可以在這里儲存、后續(xù)調(diào)用與編輯。
3.機械手是機器人的手臂,它使機器人能彎屈、延伸和旋轉(zhuǎn),提供這些運動的是機械手的軸,亦是所謂的機械手的自由度。一個機械人能有3-16軸,自由度一詞總是與機器人軸數(shù)相關(guān)。
4.工具和手爪不是機器人自身組成部分,但它們是安裝在機器人手臂末端的附件。這些連在機器人手臂末端的附件可使機器人抬起工件、點焊、刷漆、電焊弧、鉆孔、打毛刺以及根據(jù)機器人的要求去做各種各樣的工作。
5.機器人系統(tǒng)還可以控制機器人的工作單元,工作單元是機器人執(zhí)行任務(wù)所處的整體環(huán)境,該單元包括控制器、機械手、工作平臺、安全保護裝置或者傳輸裝置。所有這些為保證機器人完成自己任務(wù)而必需的裝置都包括在這一工作單元中。另外,來自外設(shè)的信號與機器人何時裝配工作、取工件或放工件到傳輸裝置上。
機器人系統(tǒng)有三個基本不見:機械手、控制器和動力源。
A.機械手
機械手做機器人系統(tǒng)中粗重工作,它包括兩個部分:機構(gòu)和附件,機械手也有聯(lián)接附件基座,如下圖所示一機器人基座與附件之間的聯(lián)接情況。
機械手基座通常固定在工作區(qū)域的地基上,有時基座也可以移動,在這種情況下基座安裝在導(dǎo)軌或者軌道上,允許機械手從一個位置移動到另外一個位置。
正如前面所提到的那樣,附件從機器人基座上延伸出來,附件就是
機器人的手臂,它可以是直線型,也可以是軸節(jié)型手臂,軸節(jié)型手臂也是大家所知的關(guān)節(jié)型手臂。
機械臂使機械手產(chǎn)生各軸的運動。這些軸連在一個安裝基座上,然后再練到托架上,托架確保機械手停留在某一位置。
在手臂的末端上,連接著手腕,手腕由輔助軸和手腕凸緣組成,手腕是讓機器人用戶在手腕凸緣上安裝不同工具來做不同種工作。
機器手的軸使機械手在某一區(qū)域內(nèi)執(zhí)行任務(wù),我們將這個區(qū)域為機器人的工作單元,該區(qū)域的大小與機械手的尺寸相對應(yīng),一個典型裝配機器人的工作單元。隨著機器人機械結(jié)構(gòu)尺寸的增加,工作單元的范圍也必須相應(yīng)增加。
機械手的運動由執(zhí)行元件或驅(qū)動系統(tǒng)來控制。執(zhí)行元件或驅(qū)動系統(tǒng)允許各軸在工作單元內(nèi)運動。驅(qū)動系統(tǒng)可用電氣液壓和氣壓動力,驅(qū)動系統(tǒng)所產(chǎn)生的動力經(jīng)機構(gòu)轉(zhuǎn)變?yōu)闄C械能,驅(qū)動系統(tǒng)與機械傳動鏈相匹配。由鏈、齒輪和滾珠絲杠組成的機械傳動鏈驅(qū)動著機器人的各軸。
B.控制器
機器人控制器是工作單元的核心??刂破鲀Υ嬷A(yù)編程序供后續(xù)條用、控制外設(shè),及與廠內(nèi)計算機進行通訊以滿足產(chǎn)品經(jīng)常更新的需要。
控制器用于控制機械手運動和在工作單元內(nèi)控制機器人外設(shè)。用戶可通過手持的示教盒將機械手運動的程序編入控制器。這些信息儲存在控制器的存儲器中以備后續(xù)調(diào)用,控制器存儲了機器人系統(tǒng)的所有編程數(shù)據(jù),它能存儲幾個不同的程序,并且所有這些程序均能編輯。
控制器要求能夠在工作單元內(nèi)與外設(shè)進行通信。例如控制器有一個輸入端,它能標識某個機加工操作何時完成。當(dāng)該加工循環(huán)完成后,輸入端接通,告訴控制器定位機械手以便能抓取以加工工件,隨后機械手抓取一未加工工件,將其放置在機床上。接著,控制器給機床開始加工的信號。
控制器可以由根據(jù)時間順序而步進的機械式輪轂組成,這種類型的控制器可用在非常簡單的機械系統(tǒng)中。用于大多數(shù)機器人系統(tǒng)中的控制器代表現(xiàn)代電子學(xué)的水平,是更復(fù)雜的裝置,即它們是由微處理器操縱的。這些微處理器可以是8位,16位或32位處理器。它們可以使得控制器在操作工程中顯得非常柔性。
控制器能通過通信線發(fā)送電信號,使它能與機器手各軸交流信息,在機器人的機械手和控制器之間的雙向交流信息可以保持系統(tǒng)操作和位置經(jīng)常更新,控制器亦能控制安裝在機器人手腕上的任何工具。
控制器也有與廠內(nèi)各計算機進行通信的任務(wù),這種通信聯(lián)系使機器人成為計算機輔助制造(CAM)系統(tǒng)的一個組成部分。
存儲器?;谖⑻幚砥鞯南到y(tǒng)運行時要與固態(tài)的存儲裝置相連,這些存儲裝置可以是磁泡,隨機存儲器、軟盤、磁帶等。每種記憶存儲裝置均能貯存、編輯信息以備后續(xù)調(diào)用和編輯。
C.動力源
動力源是給機器人和機器手提供動力的單元。傳給機器人系統(tǒng)的動力源有兩種,一種是用于控制器的交流電,另一種是用于驅(qū)動機械手各軸的動力源,例如,如果機器人的機械手是由液壓和氣壓驅(qū)動的,控制信號便傳送到這些裝置中,驅(qū)動機器人運動。
對于每一個機器人系統(tǒng),動力是用來操縱機械手的。這些動力可來源于液壓動力源、氣壓動力源或電源,這些能源是機器人工作單元整體的一部分。
不同功能的機器人也相繼出現(xiàn)并且活躍在不同的領(lǐng)域,從天上到地下,從工業(yè)拓廣到 農(nóng)業(yè)、林、牧、漁,甚至進入尋常百姓家。機器人的種類之多,應(yīng)用之廣,影響之深,是我們始料未及的。從機器人的用途來分,可以分為兩大類:
軍用機器人:
? ◆ 地面軍用機器人
地面機器人主要是指智能或遙控的輪式和履帶式車輛.地面軍用機器人又可分為自主車輛和半自主車輛。自主車輛依靠自身的智能自主導(dǎo)航,躲避障礙物,獨立完成各種戰(zhàn)斗任務(wù);半自主車輛可在人的監(jiān)視下自主行使,在遇到困難時操作人員可以進行遙控干預(yù)。
◆無人機
被稱為空中機器人的無人機是軍用機器人中發(fā)展最快的家族,從1913年第一臺自動駕駛儀問世以來,無人機的基本類型已達到300多種,目前在世界市場上銷售的無人機有40多種。美國幾乎參加了世界上所有重要的戰(zhàn)爭。由于它的科學(xué)技術(shù)先進,國力較強,因而80多年來,世界無人機的發(fā)展基本上是以美國為主線向前推進的。美國是研究無人機最早的國家之一,今天無論從技術(shù)水平還是無人機的種類和數(shù)量來看,美國均居世界首位。
綜觀無人機發(fā)展的歷史,可以說現(xiàn)代戰(zhàn)爭是無人機發(fā)展的動力,高新技術(shù)的發(fā)展是它不斷進步的基礎(chǔ)。
? ◆水下機器人
水下機器人分為有人機器人和無人機器人兩大類:
有人潛水器機動靈活,便于處理復(fù)雜的問題,擔(dān)任的生命可能會有危險,而且價格昂貴。
無人潛水器就是人們所說的水下機器人,“科夫”就是其中的一種。它適于長時間、大范圍的考察任務(wù),近20年來,水下機器人有了很大的發(fā)展,它們既可軍用又可民用。隨著人對海洋進一步地開發(fā),21世紀它們必將會有更廣泛的應(yīng)用。按照無人潛水器與水面支持設(shè)備(母船或平臺)間聯(lián)系方式的不同,水下機器人可以分為兩大類:一種是有纜水下機器人,習(xí)慣上把它稱做遙控潛水器,簡稱ROV;另一種是無纜水下機器人,潛水器習(xí)慣上把它稱做自治潛水器,簡稱AUV。有纜機器人都是遙控式的,按其運動方式分為拖曳式、(海底)移動式和浮游(自航)式三種。無纜水下機器人只能是自治式的,目前還只有觀測型浮游式一種運動方式,但它的前景是光明的。
? ◆空間機器人
空間機器人是一種低價位的輕型遙控機器人,可在行星的大氣環(huán)境中導(dǎo)航及飛行。為此,它必須克服許多困難,例如它要能在一個不斷變化的三維環(huán)境中運動并自主導(dǎo)航;幾乎不能夠停留;必須能實時確定它在空間的位置及狀態(tài);要能對它的垂直運動進行控制;要為它的星際飛行預(yù)測及規(guī)劃路徑。
? 民用機器人:
? ◆工業(yè)機器人
工業(yè)機器人是指在工業(yè)中應(yīng)用的一種能進行自動控制的、可重復(fù)編程的、多功能的、多自由度的、多用途的操作機,能搬運材料、工件或操持工具,用以完成各種作業(yè)。且這種操作機可以固定在一個地方,也可以在往復(fù)運動的小車上。
◆服務(wù)機器人
服務(wù)機器人是機器人家族中的一個年輕成員,到目前為止尚沒有一個嚴格的定義,不同國家對服務(wù)機器人的認識也有一定差異。服務(wù)機器人的應(yīng)用范圍很廣,主要從事維護、保養(yǎng)、修理、運輸、清洗、保安、救援、監(jiān)護等工作。德國生產(chǎn)技術(shù)與自動化研究所所長施拉夫特博士給服務(wù)機器人下了這樣一個定義:服務(wù)機器人是一種可自由編程的移動裝置,它至少應(yīng)有三個運動軸,可以部分地或全自動地完成服務(wù)工作。這里的服務(wù)工作指的不是為工業(yè)生產(chǎn)物品而從事的服務(wù)活動,而是指為人和單位完成的服務(wù)工作。
? ◆娛樂機器人
娛樂機器人以供人觀賞、娛樂為目的,具有機器人的外部特征,可以像人,像某種動物,像童話或科幻小說中的人物等。同時具有機器人的功能,可以行走或完成動作,可以有語言能力,會唱歌,有一定的感知能力。
? ◆類人機器人
從其他類別的機器人可以看出,大多數(shù)的機器人并不像人,有的甚至沒有一點人的模樣,這一點使很多機器人愛好者大失所望。也許你會問,為什么科學(xué)家不研制類人機器人?這樣的機器人會更容易讓人接受。其實,研制出外觀和功能與人一樣的機器人是科學(xué)家們夢寐以求的愿望,也是他們不懈追求的目標。然而,研制出性能優(yōu)異的類人機器人,其最大的難關(guān)就是雙足直立行走。因為 機器人與人的學(xué)習(xí)方式不一樣。一個嬰兒要先學(xué)走,再學(xué)跑;而機器人則要先學(xué)跑,再學(xué)走。也就是說機器人學(xué)跑更容易些。
? ◆農(nóng)業(yè)機器人
由于機械化、自動化程度比較落后,“面朝黃土背朝天,一年四季不得閑”成了我國農(nóng)民的象征。但近年農(nóng)業(yè)機器人的問世,有望改變傳統(tǒng)的勞動方式。在農(nóng)業(yè)機器人的方面,目前日本居于世界各國之首。
國際機器人領(lǐng)域發(fā)展近幾年有如下幾個趨勢:
1.工業(yè)機器人性能不斷提高(高速度、高精度、高可靠性、便于操作和維修),而單機價格不斷下降,平均單機價格從91年的10.3萬美元降至97年的6.5萬美元。
2.機械結(jié)構(gòu)向模塊化、可重構(gòu)化發(fā)展。例如關(guān)節(jié)模塊中的伺服電機、減速機、檢測系統(tǒng)三位一體化;由關(guān)節(jié)模塊、連桿模塊用重組方式構(gòu)造機器人整機;國外已有模塊化裝配機器人產(chǎn)品問市
3.工業(yè)機器人控制系統(tǒng)向基于PC機的開放型控制器方向發(fā)展,便于標準化、網(wǎng)絡(luò)化;器件集成度提高,控制柜日見小巧,且采用模塊化結(jié)構(gòu);大大提高了系統(tǒng)的可靠性、易操作性和可維修性。
4.機器人中的傳感器作用日益重要,除采用傳統(tǒng)的位置、速度、加速度等傳感器外,裝配、焊接機器人還應(yīng)用了視覺、力覺等傳感器,而遙控機器人則采用視覺、聲覺、力覺、觸覺等多傳感器的融合技術(shù)來進行環(huán)境建模及決策控制;多傳感器融合配置技術(shù)在產(chǎn)品化系統(tǒng)中已有成熟應(yīng)用。
5.虛擬現(xiàn)實技術(shù)在機器人中的作用已從仿真、預(yù)演發(fā)展到用于過程控制,如使遙控機器人操作者產(chǎn)生置身于遠端作業(yè)環(huán)境中的感覺來操縱機器人。
6.當(dāng)代遙控機器人系統(tǒng)的發(fā)展特點不是追求全自治系統(tǒng),而是致力于操作者與機器人的人機交互控制,即遙控加局部自主系統(tǒng)構(gòu)成完整的監(jiān)控遙控操作系統(tǒng),使智能機器人走出實驗室進入實用化階段。美國發(fā)射到火星上的“索杰納”機器人就是這種系統(tǒng)成功應(yīng)用的最著名實例。
7.機器人化機械開始興起。從94年美國開發(fā)出“虛擬軸機床”以來,這種新型裝置已成為國際研究的熱點之一,紛紛探索開拓其實際應(yīng)用的領(lǐng)域。
外人原文文獻:
Robots
The industrial robot is used in the manufacturing environment to increase productivity . It can be used to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to the human worker . For example , one of the first industrial robots was used to replace the nuclear fuel rods in nuclear power plants . A human doing this job might be exposed to harmful amounts of radiation . The industrial robot can also operate on the assembly line , putting together small components , such as placing electronic components on a printed circuit board . Thus , the human worker can be relieved of the routine operation of this tedious task . Robots can also be programmed to defuse bombs , to serve the handicapped , and to perform functions in numerous applications in our society .
The robot can be thought of as a machine that will move an end-of-arm tool , sensor , and gripper to a preprogrammed location . When the robot arrives at this location , it will perform some sort of task . This task could be welding , sealing , machine loading , machine unloading , or a host of assembly jobs . Generally , this work can be accomplished without the involvement of a human being , except for programming and for turning the system on and off .
The basic terminology of robotic systems is introduced in the following :
1. A robot is a reprogrammable , multifunctional manipulator designed to move parts , materials , tools , or special devices through variable programmed motions for the performance of a variety of different task . This basic definition leads to other definitions , presented in the following paragraphs , that give a complete picture of a robotic system .
2. Preprogrammed locations are paths that the robot must follow to accomplish work . At some of these locations , the robot will stop and perform some operation , such as assembly of parts , spray painting , or welding . These preprogrammed locations are stored in the robot’s memory and are recalled later for continuous operation . Furthermore , these preprogrammed locations , as well as other program data , can be changed later as the work requirements change . Thus , with regard to this programming feature , an industrial robot is very much like a computer , where data can be stored and later recalled and edited .
3. The manipulator is the arm of the robot . It allows the robot to bend , reach , and twist . This movement is provided by the manipulator’s axes , also called the degrees of freedom of the robot . A robot can have from 3 to 16 axes . The term degrees of freedom of freedom will always relate to the number of axes found on a robot .
4. The tooling and grippers are not part of the robotic system itself ; rather , they are attachments that fit on the end of the robot’s arm . These attachments connected to the end of the robot’s arm allow the robot to lift parts , spot-weld , paint , arc-weld , drill , deburr , and do a variety of tasks , depending on what is required of the robot .
5. The robotic system can also control the work cell of the operating robot . the work cell of the robot is the total environment in which the robot must perform its task . Included within this cell may be the controller , the robot manipulator , a work table , safety features , or a conveyor . All the equipment that is required in order for the robot to do its job is included in the work cell . In addition , signals from outside devices can communicate with the robot in order to tell the robot when it should assemble parts , pick up parts , or unload parts to a conveyor .
The robotic system has three basic components : the manipulator , the controller , and the power source .
A . Manipulator
The manipulator , which does the physical work of the robotic system , consists of two sections : the mechanical section and the attached appendage . The manipulator also has a base to which the appendages are attached . Fig.1 illustrates the connection of the base and the appendage of a robot .
The base of the manipulator is usually fixed to the floor of the work area . Sometimes , though , the base may be movable . In this case , the base is attached to either a rail or a track , allowing the manipulator to be moved from one location to another .
As mentioned previously , the appendage extends from the base of the robot . The appendage is the arm of the robot . It can be either a straight , movable arm or a jointed arm . the jointed arm is also known as an articulated arm .
The appendages of the robot manipulator give the manipulator its various axes of motion . These axes are attached to a fixed base , which , in turn , is secured to a mounting . This mounting ensures that the manipulator will remain in one location。
At the end of the arm , a wrist is connected . The wrist is made up of additional axes and a wrist flange . The wrist flange allows the robot user to connect different tooling to the wrist for different jobs .
The manipulator’s axes allow it to perform work within a certain area . This area is called the work cell of the robot , and its size corresponds to the size of the manipulator . Fig.2 illustrates the work cell of a typical assembly robot . As the robot’s physical size increases , the size of the work cell must also increase .
The movement of the manipulator is controlled by actuators , or drive systems . The actuators , or drive system , allows the various axes to move within the work cell . The drive system can use electric , hydraulic , or pneumatic power . The energy developed by the drive system is converted to mechanical power by various mechanical drive systems .The drive systems are coupled through mechanical linkages .These linkages, in turn , drive the different axes of the robot . The mechanical linkages may be composed of chains , gears ,and ball screws.
B. Controller
The controller in the robotic system is the heart of the operation. The controller stores preprogrammed information for later recall, control peripheral devices, and communicates with computers within the plant for constant updates in production
The controllers is used to control the robot manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hand-held teach pendent. This information is stored in the memory of the controller for later recall. The controller stores all program data of the robotic system. It can store several different programs, and any of these programs can be edited.
The controller is also required to communicate with peripheral equipment within the work cell. For example, the controller has an input line that identifies when a machining operation is completed. When the machine cycle is completed, the input line turns on, telling the controller to position the manipulator so that it can pick up the finished part. Then, a new part is picked up by the manipulator and placed into the machine. Next, the controller signals the machine to start operation.
The controller can be made from mechanically operated drums that step through a sequence of events. This type of controller operates with a very simple robotic system. The controllers found on the majority of robotic systems are more complex devices and represent state-of-the-art electronics. That is, they are microprocessor-operated. These microprocessors are either 8-bit, 16-bit, or 32-bit processors. This power allows the controller to be very flexible in its operation.
The controller can send electric signals over communication lines that allow it to talk with the various axes of manipulator. This two-way communication between the robot manipulator and the controller maintains a constant update of the location and the operation of the system. The controller also controls any tooling placed on the end of the robot’s wrist.
The controller also has the job of communicating with the different plant computers . The communication link establishes the robot as part of a computer-assisted manufacturing (CAM) system.
As the basic definition stated , the robot is a reprogrammable , multifunctional manipulator . Therefore , the controller must contain some type of memory storage . The microprocessor-based systems operate in conjunction with solid-state memory devices . These memory devices may be magnetic bubbles , random-access memory , floppy disks , or magnetic tape . Each memory storage device stores program information for later recall or for editing .
C. Power supply
The power supply is the unit that supplies power to the controller and the manipulator . Two types of power are delivered to the robotic system . One type of power is the AC power for operation of the controller . The other type of power is used for driving the various axes of the manipulator . For example , if the robot manipulator id controlled by hydraulic or pneumatic manipulator drives , control signals are sent to these devices , causing motion of the robot .
For each robotic system , power is required to operate the manipulator . This power can be developed from either a hydraulic power source , a pneumatic power source , or an electric power source , These power sources are part of the total components of the robotic work cell .
The different function's robot also one after another appears, and enlivened in the different domain, from the space to the underground, developed from the industry broadly to the agriculture, the forest, the herd, the fishing, even entered the common family. Robot's many type, broad application, affects the depth, is we are unexpected. Divides from robot's use, may divide into two broad headings:
Military robot:
?◆ ground military robot
The ground robot is mainly refers to the intelligence or the remote control wheeled and the track-laying vehicle. The ground military robot may divide into the independent vehicles and half independent vehicles. The independent vehicles depend upon the own intelligent autonomous navigation, the avoidance obstacle, the independence complete each kind of combat mission; Half independent vehicles may exercise independently under person's surveillance, when encounters the difficulty the operators may carry on the remote control intervention.
◆ unmanned aerial vehicle
Is called the airborne robot's unmanned aerial vehicle is in the military robot develops the quickest family, the first autopilot has been published since 1913, unmanned aerial vehicle's fundamental type has achieved 300 many kinds, at present the unmanned aerial vehicle which sells in the world market has 40 many kinds. The US participated in nearly the world all important wars. Is advanced as a result of its science and technology, the national strength is strong, thus 80 for many years, the world unmanned aerial vehicle's development basically has been prompts forward by the line. The US studies one of unmanned aerial vehicle earliest countries, regardless of today looking from technical level or unmanned aerial vehicle's type and quantity, the US occupies the world leader. the comprehensive survey unmanned aerial vehicle develops the history, may say that the modern warfare is the power which the unmanned aerial vehicle develops, the high technology and new technology development is the foundation which it progresses unceasingly.?
◆ underwater robot
The underwater robot divides into some person of robots and nobody robot two broad headings:
Some person of submersibles mobile nimble, is advantageous for the processing complex question, holds the post the life will possibly have the danger, moreover the price will be expensive. The unmanned submersible is the underwater robot which the people said that “Shinao” is one kind. It is suitable for the long time, the wide range inspection duty, in the recent 20 years, the underwater robot had the very big development, they both may military and be possible civil. Further develops along with the human to the sea, in the 21st century they will certainly to have a more widespread application. According to the unmanned submersible and the water surface support equipment (depot ship or platform) contact method's difference, the underwater robot may divide into two broad headings: One kind has the cable underwater robot, in the custom is called as it controls remotely the submersibles, is called ROV; Another kind does not have the cable underwater robot, in the submersibles custom is called as it the autonomous submersibles, is called AUV. Has the cable robot is the remote control type, divides into towed, (seabed) according to its mode of motion the mobile and the float (from navigation) the formula three kinds. Does not have the cable underwater robot only to be able to be autonomous -like, at present also only then the observation float type one mode of motion, but its prospect is bright.
◆ spatial robot
The spatial robot is one kind of low end light teleoperator, may in the planet atmospheric environment the guidance and the flight. Therefore, it must overcome many difficulties, for example it must be able, in changes unceasingly in three dimensional environment movement and autonomous navigation; Cannot pause nearly; Must be able real-time to determine it in the spatial position and the condition; Must be able to carry on the control primarily to the American its vertical movement; Must forecast and plan the way for its star border flight.?
Civil robot:
?◆ industry robot
The industry robot is refers to the industry the application one kind can carry on the automatic control, to be possible to duplicate programs, multi-purpose, the multi-degrees-of-freedom, the multipurpose operation machine, can transport the material, the work piece or manages the tool, with completes each kind of work. And this kind of operation machine may fix in a place, may also on the reciprocal motion car.
◆ service robot
The service robot is in a robot family's young member, so far still did not have a strict definition, the different country to serves robot's understanding also to have certain difference. Serves robot's application scope to be very broad, is mainly engaged in work and so on maintenance, maintenance, repair, transportation, clean, security, rescue, guardianship. The German production technology and Institute of Automation manager executed Dr. Lafute for to serve the robot to give this kind of definition: Serves the robot is the shifter which one kind may program freely, it should have three motive axles at least, may partially or the completely automatic completes the services. Here services refer to are not the servicing activities which is engaged in for the industrial production goods, but refers to the services which the manner and the unit comp