外文翻譯--發(fā)動(dòng)機(jī)缸體介紹【中英文文獻(xiàn)譯文】
外文翻譯--發(fā)動(dòng)機(jī)缸體介紹【中英文文獻(xiàn)譯文】,中英文文獻(xiàn)譯文,外文,翻譯,發(fā)動(dòng)機(jī),缸體,介紹,中英文,文獻(xiàn),譯文
河南理工大學(xué)萬(wàn)方科技學(xué)院本科畢業(yè)論文
附錄:
外文資料與中文翻譯
外文資料:
Engine parts
Engine parts in the engine block is a more complex structure of spare parts box, its high precision, processing, complex process, and the processing quality will affect the overall performance engine, so it has become the engine manufacturer's focus parts one.
Engine block is the basic engine parts and skeleton, when the general assembly of the base components. Cylinder's role is supporting and ensuring the piston, connecting rod, crankshaft and other moving parts work, the exact location; to ensure the engine ventilation, cooling and lubrication; to provide a variety of auxiliary systems, components and engine installation.
1.1 Technical Characteristics
Cylinder cast for a whole structure, and its upper part 4 cylinder mounting hole; cylinder standard cylinder is divided into upper and lower divisions into two parts; cylinder to the rear of the front-side arrangement of the previous three coaxial mounting hole of the camshaft and the idler axle hole.
Cylinder process features are: the structure of complex shape; processing plane, more than holes; uneven wall thickness and stiffness is low; processing of high precision typical of box-type processing part. The main processing of the surface of cylinder block top surface, the main bearing side, cylinder bore, the main and camshaft bearing bore holes and so on, they will directly affect the machining ccuracy of the engine assembly precision and performance, mainly rely on precision equipment, industrial fixtures reliability and processing technology to ensure the reasonableness.
Technology program is the preparation of the master process is to process planning and key process equipment design guidance documents. The correct process of program design, facilitate the systematic application of new scientific and technological achievements and advanced production experience, to ensure product quality, improve working conditions, and improve process technology and process management level.
2.1 Process design principles
Design Technology program should be to ensure product quality at the same time, give full consideration to the production cycle, cost and environmental protection; based on the enterprises ability to actively adopt advanced process technology and equipment, and constantly enhance their level of technology.
Engine block machining process design should follow the following basic principles:
(1) The selection of processing equipment, processing equipment, the principle of selection adopted the principle of combining rigid-flexible, processing each horizontal machining center is located mainly small operations with vertical machining center, the key process a crank hole, cylinder hole, balancer shaft hole High-speed processing of high-precision horizontal machining center, an upper and lower non-critical processes before and after the four-dimensional high-efficiency rough milling and have a certain adjustment range of special machine processing;
(2) focus on a key process in principle process the body cylinder bore, crankshaft hole, Balance Shaft hole surface finishing and the combination of precision milling cylinder head, using a process focused on a setup program to complete all processing elements in order to ensure product accuracy The key quality processes to meet the cylinder capacity and the relevant technical requirements;
(3) All fixtures are used hydraulic clamp, clamping components, hydraulic pumps and hydraulic control components used in Germany or the United States producing high quality and reliable components;
(4) The whole line used in all wet processing, using standalone BTA, high-precision machining processes critical horizontal machining center with constant cooling and to install high-precision high-voltage double-circuit band-pass fine filtration system, all with high-pressure processing center in the cold.
According to the technological characteristics of automobile engine cylinder block and the production mandate, the engine block machining automatic production line is composed of horizontal machining center CWK500 and CWK500D machining centers, special milling / boring machine, vertical machining centers matec-30L and other appliances.
(1) top and bottom, and tile covered only the combination of aperture rough milling machine dedicated to this machine to double-sided horizontal milling machine, using moving table driven parts, machine tools imported Siemens S7-200PLC system control, machine control cabinet set up an independent, cutting automate the process is completed and two kinds of automatic and adjust the state;
(2) high-speed horizontal machining center machining center can be realized CWK500 the maximum flow of wet processing, but because of equipment, automatic BTA treatment system through the built-in tray under the wide-type chip conveyor and the completion of the machining center can be dry processing; machine tool spindle speed 6000r/min, rapid feeding speed 38m/min;
(3)The combination of front and rear face rough milling machine tool using hydraulic transmission; control system imported Siemens S7-200PLC system control, machine tools have a certain flexibility;
(4) The special machine TXK1500 this machine vertical machining center by the modification of shape, with vertical machining center features and performance, this machine has high strength, high wear-resistant, high stability, high accuracy, high-profile etc.;
(5) high-speed vertical machining center matec-30L of the machining center spindle high speed 9000r/min. Control system uses Siemens SINUMERIK840D control system;
(6) high-speed horizontal machining center spindle CWK500D highest speed 15000r/min.
2.2 Process design basis
Affect the engine block part of the process design factors are manifold. Specifically, can be understood from the following aspects.
(1) product object, product drawings and technical documents related to the complexity of the engine block under the precision requirements of the process to take corresponding measures. Production targets for the four-cylinder automobile engine cylinder block;
(2) the production program, the production of the nature and type of production of the engine block the production program of 400 million;
(3) The annual effective system of work equipment, working for 320 days, with an average equipment loading rate of 80%, two shifts, 16 hours / day.
Engine block complex structure, high precision, large size, is thin-walled parts, there are a number of high precision plane and holes.
Engine block machining process characteristics: mainly flat and the hole processing, processing of flat generally use planing, milling methods such as processing, processing of hole used mainly boring, processing and multi-purpose drilling holes. As the cylinder complex structure, so how to
ensure that the mutual position of the surface processing precision is an important issue.
3.1 The selection of blank
Engine block on the materials used are generally gray cast iron HT150, HT200, HT250, there is also cast aluminum or steel plate, this engine block using high-strength alloy cast iron. Cylinder in the processing prior to aging treatment in order to eliminate stress and improve the rough casting mechanical properties.
Improve the rough accuracy, reduction of machining allowance, is to improve the automated production line system productivity and processing quality of the important measures. As the foreign box-type parts of rough quality and high precision, and its production-line system has been implemented directly on the blank line, not only eliminating the need for blank check device also saves the rough quality problems due to waste of machining time, increase overall efficiency. Therefore, the refinement of rough is to improve the productivity of the most promising way out. For the engine block production line, can be rough in parts on-line pre-milling six face, removing most of the margin, to facilitate direct on-line parts.
3.2 machining process selection and processing of the benchmark
Choose the right processing technology base is directly related to the processing quality can ensure the parts. Generally speaking, process benchmarking can be divided into coarse and fine reference base.
(1) The baseline for the on-line thick rough, which is particularly important the choice of benchmark crude, if crude benchmark choice unreasonable, will the uneven distribution of machining allowance, processing and surface offsets, resulting in waste. In the cylinder production line, we have adopted for the coarse side of the base;
(2) refined the base of this box for the engine block parts, the general use of “side two sales” for a full range of uniform benchmarks. For the longer automated production line system, due to pin holes in the course of the wear and tear caused by inaccurate positioning, therefore, will be divided into
2-3 segment pin holes used. In the cylinder pin hole of the process, we have adopted to the side, bottom and the spindle hole positioning, in the processing center on the process.
3.3 Machining Processing Stages and processes of the arrangements
Often a part of many apparent need for processing, of course, the surface machining accuracy are different. Processing of high precision surface, often after repeated processing; As for the processing of the surface of low precision, only need to go through one or two on the list. Thus, when the development process in order to seize the “processing high precision surface,”this conflict, the reasonable arrangement processes and rational division stage of processing. Arrange the order of the principle of process is: after the first coarse refined, the first surface after the hole, the first benchmark other. In the engine block machining, the same should follow this principle.
(1) roughing stage engine block machining process, the arrangements for roughing process, to fully carry out rough rough, trim most of the margin in order to ensure production efficiency;
(2) semi-finishing phase of the engine block machining, in order to ensure the accuracy of some important surface processing, and arrange some semi-finishing operations, will be required accuracy and surface roughness of the surface of the middle of some processing to complete, while demanding the surface of semi-finished, to prepare for future finishing;
(3) The finishing stage of requiring high accuracy and surface roughness of the surface processing;
(4) secondary processing, such as small surface screw holes, you can finish of the major surface after the one hand, when the workpiece deformation process little impact at the same time also reduced the rejection rate; In addition, if the main surface of a waste, these small the surface will not have to be processed, thus avoiding a waste of man-hours. However, if the processing is very easy for a small surface bumps the main surface, it should be placed on a small surface finish prior to the main surface finishing;
(5) should make proper arrangements for secondary processes such as product inspection process, in part roughing stage, the key process before ining Processing Stages and processTand after processing, spare parts all the processing has been completed, should be appropriate arrangements.
Stage of processing division, has the following advantages: First, it can take measures to eliminate the rough workpiece after the stress, to ensure accuracy; second, finishing on the back, and will not damage during transport the surface of the workpiece has been processed; again, first roughing the surface defects can be detected early and promptly deal with rough, do not waste working hours. But most small parts, do not sub very thin.
3.4 cylinder surface of the main processing and secondary processes
Cylinder surface and support the main processing operations are:
(1) plane processing At present, the milling of engine blocks is the primary means of planar processing, domestic milling feed rate is generally 300-400mm/min, and foreign 2000-4000mm/min milling feed rate compared to far cry, to be on increasing, therefore, improve the milling feed rate, reduce overhead time is to improve the productivity of the major means of finishing a number of plane engine block when the milling feed rate to reach 2399 mm / min, greatly improved efficiency; Top surface of the cylinder milling is a key process in the process, the flatness requirements for 0.02/145mm, the surface roughness of Ra1.6um. Processing in the cylinder, the use of side and spindle bearing bore positioning, top, bottom and middle vagay only aperture while processing used in the processing line outside of the knife device can better meet the engine block machining accuracy ;
(2) General holes machining holes in general are still using the traditional processing of drilling, expansion, boring, reaming, tapping and other craft approach. Issues in the design process of specific programs, use of coated cutting tools, cutting tools and other advanced tools within the cooling, and using a large flow of cooling systems, greatly improving the cutting speed, improved productivity; he key process before ining ProceW
(3) deep hole processing of the traditional processing method is used to grade twist drill feed, low efficiency of their production, processing and quality is poor. The deep hole in the engine block processing, the use of gun drilling process;
(4) The three-axis machining holes for the cylinder-axis machining holes holes of high precision, long working hours of the restrictive process. Thus, work arrangements, processing methods, tools and so on should be special attention. All cover pre-processing, that is, semi-circular hole and the cylinder block main bearing cap of the shortage of processing, its main purpose is to remove blank margin, release stress, to prepare for the post-order processing; in crankshaft machining processing center hole, using double-sided Boring, boring the first holes in the crankshaft hole at one end to 1 / 2 length, and then turn 180 degrees workbench, from the other end and then bore another 1 / 2 length.
(5) The cylinder bore machining cylinder hole cylinder machining processing is a key process in the one, under normal circumstances, the machining process as a rough boring, semi-fine boring, precision boring and honing. Cylinder bore wall for the early detection of casting defects, eliminate stress, should be thick cylinder boring holes in advance; due to the structural characteristics of the different cylinder bore, must be in honing process to improve the cylinder bore surface quality. In the high-volume production, the cylinder bore honing generally use the multi-axis grinding machine or honing Automatic Line. Here we use honing automatic lines, from the coarse-heng. Fine-heng and testing equipment, composed of three;
(6) Cleaning Cleaning is divided into wet cleaning and dry cleaning. Machining cylinder automatic production line using a large flow of wet cleaning;
(7) Detect points outside the line detection and line detection of two kinds. Quality inspection in the engine block, according to the actual vity; he key process before iniXsituation with lines outside the detection, the main use of coordinate measuring machine integrated measurements of the cylinder, each 200 samples 1-5 pieces, each class random one. 3.5 cylinder processing the choice of cutting parameters
Engine block choice of cutting parameters including cutting speed, feed rate and feed rate option. As the processing equipment is used in high precision and rigidity of machine tools and high-speed machining centers in order to ensure the efficiency of cutting may be the appropriate choice of cutting a larger amount.
The main processing engine block surface plane and bearing bore, cylinder bore holes such as the processing, while the plane and bearing bore, cylinder bore of the processing method is mainly milling and boring, so the discussion here, the choice of cutting parameters are mainly milling and Boring choice of cutting parameters.
(1) milling the choice of the amount of usage the choice of milling milling effect is directly related to good or bad. Generally speaking, the choice of dosage milling principles: Face milling cutter should be as much as possible when you first take a larger milling depth and width of milling, and then select the larger milling rate of as much as possible. Milling in a specific amount of choice when many factors involved, but in general, rough milling large margin when the workpiece, processing requirements low, the main consideration of the durability of cutter; Fine Milling margin is small, high precision machining, improvement in the quality processing of primary consideration;
In the engine block of the milling process, the use of machine tools as having a high stiffness, high-speed machine tools, big power, rigidity is good, so has chosen the relatively large amount of cutting.
(2) boring dosage amount of choice options under the rough finishing process varies. Rough, the selection of a larger depth of cut, finish, the selection of a smaller depth of cut. Depth of cut determined later, as cutting a large amount of use. In the cutting depth and feed rate after the selection ?=can be a reasonable tool to ensure durability under the conditions of use calculations or look-up table method to determine the cutting speed. In general, the rough, choose a lower cutting speed, finishing, the selection of a higher cutting speed.
In the engine block boring process, the selection of machine tools as having a high stiffness, high-speed machine tools, big power, good rigidity; tool for foreign advanced tools, high quality, rigidity is good, so has chosen the relatively large amount of cutting.
4.Through the engine block of the structure and process characteristics of the analysis, discusses the engine block machining process design principles and basis of the choice of cutting parameters, and U-turn at high speed milling and boring, for example, design, analysis of the engine cylinder body of high-speed milling and turnover boring process, and in the processing need to pay attention to.
中文翻譯:
發(fā)動(dòng)機(jī)缸體
發(fā)動(dòng)機(jī)缸體是發(fā)動(dòng)機(jī)零件中結(jié)構(gòu)較為復(fù)雜的箱體零件,其精度要求高,加工工藝復(fù)雜,且加工質(zhì)量的好壞直接影響發(fā)動(dòng)機(jī)整機(jī)性能,因此,它成為各發(fā)動(dòng)機(jī)生產(chǎn)廠家所關(guān)注的重點(diǎn)零件之一。
1.發(fā)動(dòng)機(jī)缸體的工藝特點(diǎn)
發(fā)動(dòng)機(jī)缸體是發(fā)動(dòng)機(jī)的基礎(chǔ)零件和骨架,同時(shí)又是發(fā)動(dòng)機(jī)總裝配時(shí)的基準(zhǔn)零
件。缸體的作用是支承和保證活塞、連桿、曲軸等運(yùn)動(dòng)部件工作時(shí)的準(zhǔn)確位置;保證發(fā)動(dòng)機(jī)的換氣、冷卻和潤(rùn)滑;提供各種輔助系統(tǒng)、部件及發(fā)動(dòng)機(jī)的安裝。
1.1 工藝特點(diǎn)
缸體為一整體鑄造結(jié)構(gòu),其上部有4個(gè)缸套安裝孔;缸體的水平隔板將缸體分成上下兩部分;缸體的前端面從前到后排列有三個(gè)同軸線(xiàn)的凸輪軸安裝孔和惰輪軸孔。
缸體的工藝特點(diǎn)是:結(jié)構(gòu)、形狀復(fù)雜;加工的平面、孔多;壁厚不均,剛度低;加工精度要求高,屬于典型的箱體類(lèi)加工零件。缸體的主要加工表面有頂面、主軸承座側(cè)面、缸孔、主軸承孔及凸輪軸孔等,它們的加工精度將直接影響發(fā)動(dòng)機(jī)的裝配精度和工作性能,主要依靠設(shè)備精度、工夾具的可靠性和加工工藝的合理性來(lái)保證。
2.發(fā)動(dòng)機(jī)缸體工藝方案設(shè)計(jì)原則和依據(jù)
工藝方案是工藝準(zhǔn)備工作的總綱,是工藝規(guī)程設(shè)計(jì)和關(guān)鍵工藝裝備設(shè)計(jì)的指導(dǎo)文件。正確的工藝方案設(shè)計(jì),有助于系統(tǒng)地運(yùn)用新的科學(xué)技術(shù)成果和先進(jìn)的生產(chǎn)經(jīng)驗(yàn),保證產(chǎn)品質(zhì)量,改善勞動(dòng)條件,提高工藝技術(shù)和工藝管理水平。
2.1 工藝方案設(shè)計(jì)的原則
設(shè)計(jì)工藝方案應(yīng)在保證產(chǎn)品質(zhì)量的同時(shí),充分考慮生產(chǎn)周期、成本和環(huán)境保護(hù);根據(jù)本企業(yè)能力,積極采用國(guó)內(nèi)外先進(jìn)的工藝技術(shù)和裝備,不斷提高企業(yè)工藝水平。
發(fā)動(dòng)機(jī)缸體機(jī)械加工工藝設(shè)計(jì)應(yīng)遵循以下基本原則:
(1) 加工設(shè)備選型原則 加工設(shè)備選型采用剛?cè)峤Y(jié)合的原則,加工設(shè)各以臥式加工中心為主,少量工序采用立式加工中心,關(guān)鍵工序一曲軸孔、缸孔、平衡軸孔加工采用高精度高速臥式加工中心,非關(guān)鍵工藝一上下前后四個(gè)平面的粗銑采用高效并有一定調(diào)整范圍的專(zhuān)用機(jī)床加工;
(2) 集中工序原則 關(guān)鍵工序一機(jī)體缸孔、曲軸孔、平衡軸孔的精加工及缸蓋結(jié)合面的精銑,采用集中在一道工序一次裝夾完成全部加工內(nèi)容的方案,以確保產(chǎn)品精度滿(mǎn)足缸體關(guān)鍵品質(zhì)的工藝能力和有關(guān)技術(shù)要求;
(3) 全部夾具均采用液壓夾具,夾緊元件、液壓泵及液壓控制元件采用德國(guó)或美國(guó)產(chǎn)優(yōu)質(zhì)可靠元器件;
(4) 整線(xiàn)全部采用濕式加工,采用單機(jī)獨(dú)立排屑,高精度關(guān)鍵加工工序的臥式加工中心采用恒溫冷卻并加裝高精度高壓雙回路帶旁通精過(guò)濾系統(tǒng),加工中心全部帶有高壓內(nèi)冷。
根據(jù)汽車(chē)發(fā)動(dòng)機(jī)缸體的工藝特點(diǎn)和生產(chǎn)任務(wù)要求,發(fā)動(dòng)機(jī)缸體機(jī)械加工自動(dòng)生產(chǎn)線(xiàn)由臥式加工中心CWK500和CWK500D加工中心、專(zhuān)用銑/鏜床、立式加工中心matec-30L等設(shè)備組成。
(1) 頂?shù)酌婕巴呱w止口面粗銑組合機(jī)床 本機(jī)床為雙面臥式專(zhuān)用銑床,采用移動(dòng)工作臺(tái)帶動(dòng)工件,機(jī)床采用進(jìn)口西門(mén)子S7-200PLC系統(tǒng)控制,機(jī)床設(shè)獨(dú)立電控柜,切削過(guò)程自動(dòng)化完成,有自動(dòng)和調(diào)整兩種狀態(tài);
(2) 高速臥式加工中心CWK500該加工中心可實(shí)現(xiàn)最大流量的濕加工,但由于設(shè)備自動(dòng)排屑處理系統(tǒng)是通過(guò)位于托盤(pán)下的內(nèi)置寬式排屑器而完成,該加工中心可以進(jìn)行干加工;機(jī)床主軸轉(zhuǎn)速6000r/min,快速進(jìn)給速度38m/min;
(3) 前后端面粗銑組合機(jī)床 機(jī)床采用液壓傳動(dòng);控制系統(tǒng)采用進(jìn)口西門(mén)子S7-200PLC系統(tǒng)控制,機(jī)床具有一定的柔性;
(4) 專(zhuān)用機(jī)床TXK1500 本機(jī)床由立式加工中心改造而成型,具備立式加工中心的特點(diǎn)及性能,該機(jī)床具有高強(qiáng)度、高耐磨度、高穩(wěn)定性、高精度、高配置等優(yōu)點(diǎn);
(5) 高速立式加工中心matec-30L該加工中心主軸最高轉(zhuǎn)速9000r/min??刂葡到y(tǒng)采用西門(mén)子公司SINUMERIK840D控制系統(tǒng);
(6) 高速臥式加
收藏