《2018年高中數(shù)學(xué) 第三章 圓錐曲線與方程 3.1.1 橢圓及其標(biāo)準(zhǔn)方程課件6 北師大版選修2-1.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018年高中數(shù)學(xué) 第三章 圓錐曲線與方程 3.1.1 橢圓及其標(biāo)準(zhǔn)方程課件6 北師大版選修2-1.ppt(24頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2.1.1橢圓的定義與標(biāo)準(zhǔn)方程,自然界處處存在著橢圓,我們?nèi)绾萎嫵鰴E圓呢?,先回憶如何畫圓,圓的定義:平面上到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓.,畫橢圓,如何定義橢圓?,,橢圓的定義:平面上到兩個(gè)定點(diǎn)F1,F2的距離之和為固定值(大于|F1F2|)的點(diǎn)的軌跡叫作橢圓.F1,F2叫作橢圓的焦點(diǎn),兩個(gè)焦點(diǎn)F1,F2的距離叫作橢圓的焦距。,,,,兩定:定點(diǎn)F1,F2,|F1F2|為定值,記為2c定長(zhǎng)(到兩個(gè)定點(diǎn)F1,F2的距離之和),記為2a,,大小比較:2a2c,,,思考:,1.改變兩釘子之間的距離,使其與繩長(zhǎng)相等,畫出的是什么圖形?,2繩長(zhǎng)小于兩釘子之間的距離,畫出的圖形是橢圓嗎?,3.為什么2
2、a2c?,因?yàn)槿切蝺蛇呏痛笥诘谌?想一想,平面上到點(diǎn)A(-5,0),B(5,0)的距離之和為10的點(diǎn)的軌跡是什么?平面上到點(diǎn)A(-5,0),B(5,0)的距離之和為6的點(diǎn)的軌跡存在嗎?平面上到點(diǎn)A(-5,0),B(5,0)的距離之和為16的點(diǎn)的軌跡是什么?,線段AB,不存在,,橢圓,探究一:怎樣表示橢圓的方程,建立坐標(biāo)系,設(shè)P(x,y)是橢圓上任意一點(diǎn),橢圓的焦距|F1F2|=2c,則F1、F2的坐標(biāo)分別是(c,0)、(c,0).P到F1和F2的距離的和為固定值2a(2a2c),由橢圓的定義得,兩邊除以得,由橢圓定義可知,,整理得,兩邊再平方,得,移項(xiàng),再平方,橢圓的標(biāo)準(zhǔn)方程,如何推導(dǎo)焦
3、點(diǎn)在y軸上的橢圓的標(biāo)準(zhǔn)方程呢?,(問(wèn)題:下面怎樣化簡(jiǎn)?),由橢圓的定義得:,由于,得方程,通過(guò)類比,從而得到焦點(diǎn)在y軸上的橢圓方程,兩種類型的橢圓方程,Y,橢圓的標(biāo)準(zhǔn)方程的特點(diǎn):,(1)橢圓標(biāo)準(zhǔn)方程的形式:左邊是兩個(gè)分式的平方和,右邊是1,(2)橢圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù)a、b、c滿足a2=b2+c2。,(3)由橢圓的標(biāo)準(zhǔn)方程可以求出三個(gè)參數(shù)a、b、c的值。,(4)橢圓的標(biāo)準(zhǔn)方程中,x2與y2的分母哪一個(gè)大,則焦點(diǎn)在哪一個(gè)軸上。,分母哪個(gè)大,焦點(diǎn)就在哪個(gè)軸上,平面內(nèi)到兩個(gè)定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)(大于F1F2)的點(diǎn)的軌跡,再認(rèn)識(shí)!,則a,b;,則a,b;,5,3,4,6,口答:,則a,b
4、;,則a,b,3,例.求下列橢圓的焦點(diǎn)坐標(biāo),以及橢圓上每一點(diǎn)到兩焦點(diǎn)距離的和。,解:橢圓方程具有形式,其中,因此,兩焦點(diǎn)坐標(biāo)為,橢圓上每一點(diǎn)到兩焦點(diǎn)的距離之和為,解:橢圓具有標(biāo)準(zhǔn)方程,其中,因此,所求方程為,例4.如圖:求滿足下列條件的橢圓方程,求橢圓上的的點(diǎn)到兩個(gè)焦點(diǎn)距離之積最大值,在曲線上任一點(diǎn)P,滿足PF1垂直PF2,求P點(diǎn)個(gè)數(shù)及坐標(biāo),做一做,小結(jié):,橢圓標(biāo)準(zhǔn)方程:,,,橢圓的定義,分母哪個(gè)大,焦點(diǎn)就在哪個(gè)軸上,平面內(nèi)到兩個(gè)定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)(大于F1F2)的點(diǎn)的軌跡,1.如果橢圓上一點(diǎn)P到焦點(diǎn)F1的距離等于6,則點(diǎn)P到另一個(gè)焦點(diǎn)F2的距離是。,2.橢圓上一點(diǎn)P到焦點(diǎn)F1的距離等于3,點(diǎn)P到另一個(gè)焦點(diǎn)F2的距離是1,求a的值。,