壓力鍋鍋體沖壓模具設計【含CAD圖紙、說明書】,含CAD圖紙、說明書,壓力鍋,沖壓,模具設計,cad,圖紙,說明書,仿單
摘 要
隨著中國工業(yè)不斷地發(fā)展,模具行業(yè)也顯得越來越重要。本文針對筒形件的沖裁工藝性和拉深工藝性,分析比較了成形過程的三種不同沖壓工藝(單工序、復合工序和連續(xù)工序)。介紹了圓筒件冷沖壓成形過程,經(jīng)過對圓筒件的批量生產(chǎn)、零件質(zhì)量、零件結(jié)構(gòu)以及使用要求的分析、研究,按照不降低使用性能為前提,將其確定為沖壓件,用沖壓方法完成零件的加工,且簡要分析了坯料形狀、尺寸,排樣、裁板方案,拉深次數(shù),沖壓工序性質(zhì)、數(shù)目和順序的確定。進行了工藝力、壓力中心、模具工作部分尺寸及公差的計算,并設計出模具。還具體分析了模具的主要零部件(如凸凹模、卸料裝置、拉深凸模、墊板、凸模固定板等)的設計與制造,沖壓設備的選用,凸凹模間隙調(diào)整和編制一個重要零件的加工工藝過程。列出了模具所需零件的詳細清單,并給出了合理的裝配圖。通過充分利用現(xiàn)代模具制造技術對傳統(tǒng)機械零件進行結(jié)構(gòu)改進、優(yōu)化設計、優(yōu)化工藝方法能大幅度提高生產(chǎn)效率,這種方法對類似產(chǎn)品具有一定的借鑒作用。
關鍵詞:圓筒件;模具設計;拉深
25
目 錄
摘 要 I
第一章 緒論 1
1.1 沖壓工藝與模具的發(fā)展方向 1
1.2 我國模具技術的發(fā)展趨勢 2
第2章 分析零件的工藝性 5
2.1 工藝分析 5
2.2 材料分析 6
2.3 毛坯圖 6
第3章 確定模具總體設計 11
3.1 模具類型的選擇 11
3.2 送料方式的選擇 11
3.3 定位方式的選擇 11
3.4 卸料、出件方式的選擇 11
3.5 導向方式的選擇 11
第4章 拉深模主要工藝參數(shù)的計算 13
4.1 拉深模工藝參數(shù)計算 13
4.3.1 拉深工藝 13
4.3.2 初選壓力機 13
4.3.3 壓力中心的計算 14
4.3.4 計算凸、凹模刃口尺寸及公差 14
第5章 模具主要零件的設計 15
5.1主要工作零件的設計 15
5.1.1 凸模的結(jié)構(gòu)設計 15
5.1.2 凹模的結(jié)構(gòu)設計 16
5.1.3 定位板的設計 17
5.2 推件塊的設計 19
5.3 選擇模架 19
5.4 推桿的設計 20
5.5 模柄 20
5.6 凸模固定板 21
5.7 墊板 21
5.8 螺釘和圓柱銷的選用 21
5.9 模具總裝圖及零件圖的繪制 22
結(jié)論 23
致謝 24
參考文獻 25
第一章 緒論
1.1 沖壓工藝與模具的發(fā)展方向
成形工藝與理論的研究
近年來,沖壓成形工藝有很多新的進展,特別是精密沖裁、精密成形、精密剪切、復合材料成形、超塑性成形、軟模成形以及電磁成形等新工藝日新月異,沖壓件的精度日趨精確,生產(chǎn)率也有極大提高,正在把沖壓加工提高到高品質(zhì)的、新的發(fā)展水平。前幾年的精密沖壓主要市是指對平板零件進行精密沖裁,而現(xiàn)在,除了精密沖裁外還可兼有精密彎曲、拉深、壓印等,可以進行復雜零件的立體精密成形。過去的精密沖裁只能對厚度為5~8mm以下的中板或薄板進行加工,而現(xiàn)在可以對厚度達25mm 的厚板實現(xiàn)精密沖裁,并可對σb >900MPa的高強度合金材料進行精沖。
由于引入了CAE,沖壓成形已從原來的對應力應變進行有限元等分析而逐步發(fā)展到采用計算機進行工藝過程的模擬與分析,以實現(xiàn)沖壓過程的優(yōu)化設計。在沖壓毛坯設計方面也開展了計算機輔助設計,可以對排樣或拉深毛坯進行優(yōu)化設計。
此外,對沖壓成形性能和成形極限的研究,沖壓件成形難度的判定以及成形預報等技術的發(fā)展,均標志著沖壓成形以從原來的經(jīng)驗、實驗分析階段開始走上由沖壓理論指導的科學階段,使沖壓成形走向計算機輔助工程化和智能化的發(fā)展道路。
為了滿足制件更新?lián)Q代快和生產(chǎn)批量小的發(fā)展趨勢
發(fā)展了一些新的成形工藝(如高能成形和旋壓等)、簡易模具(如軟模和低熔點合金模等)、通用組合模具和數(shù)控沖壓設備等。這樣,就使沖壓生產(chǎn)既適合大量生產(chǎn),也同樣適用于小批生產(chǎn)。不斷改進板料性能,以提高其成形能力和使用效果,例如研制高強度鋼板,用來生產(chǎn)汽車覆蓋件,以減輕零件重量和提高其結(jié)構(gòu)強度。
1.2 我國模具技術的發(fā)展趨勢
當前,我國工業(yè)生產(chǎn)的特點是產(chǎn)品品種多、更新快和市場競爭激烈。在這種情況下, 用戶對模具制造的要求是交貨期短、精度高、質(zhì)理好、價格低。因此,模具工業(yè)的發(fā)展的趨勢是非常明顯的。
1.2.1、 模具產(chǎn)品將日趨高精度化、大型化、復雜化
模具產(chǎn)品成形零件的日漸大型化,以及由于高效率生產(chǎn)要求的一模多腔(塑封模已達到一模幾百腔)使模具日趨大型化。
隨著零件微型化,以及模具結(jié)構(gòu)發(fā)展的要求(如多工位復合模工位數(shù)的增加,其步距精度的提高)精密模具精度已由原來的5μm提高到2~3μm,今后有些模具加工精度公差要求在1μm以下,這就要求發(fā)展超精加工。
1.2.2、多功能復合模具將進一步發(fā)展
新型多功能復合具是在多工位復合模基礎上開發(fā)出來的。一套多功能模具除了沖壓成形零件外,還可擔負轉(zhuǎn)位、疊壓、攻絲、鉚接、鎖緊等組裝任務。通過這種多勸能模具生產(chǎn)出來的不再是單個零件,而是成批的組件。如觸頭與支座的組件,各種小型電機、電器及儀表的鐵芯組件等。
1.2.3、熱流道模具在塑料模具中的比重將逐步提高
由于采用熱流道技術的模具可提高制作的生產(chǎn)率和質(zhì)量,并能大幅度節(jié)省制作的原材料和節(jié)約能源,所以廣泛應用這項技術是塑料模具的一大變革。國外熱流道模具已有一半用上了熱流道技術,有的廠甚至已達80%以上,效果十分明顯。國內(nèi)近幾年已開始推廣應用,但總體 還達不到10%,個別企業(yè)已達到20%-30%。制訂熱流道元器件的國家標準,積極生產(chǎn)價廉高 質(zhì)量的元器件,是發(fā)展熱流道模具的關鍵。
1.2.4、模具標準件的應用將日漸廣泛
使用模具標準件不但能縮短模具制造周期,而且能提高模具質(zhì)量和降低模具制造成本。 因此,模具標準件的應用必將日漸廣泛。為此,首先要制訂統(tǒng)一的國家標準,并嚴格按標準生產(chǎn);其次要逐步形成規(guī)模生產(chǎn),提高標準件質(zhì)量、降低成本;再次是要進一步增加標準件規(guī)格品種,發(fā)展和完善聯(lián)銷網(wǎng),保證供貨迅速。
1.2.5、模具使用優(yōu)質(zhì)材料及應用先進的表面處理技術將進一步受重視
在整個模具價格構(gòu)成中,材料所占比重不大,一般在20%~30%之間,因此選用優(yōu)質(zhì)鋼材和應用的表面處理技術來提高模具的壽命就顯得十分必要。對于模具鋼來說,要采用電渣 重熔工藝,努力提高鋼的純凈度、等向性、致密度和均勻性及研制更高性能或有特殊性能的模具鋼。如采用粉末冶金工藝制作的粉末高速鋼等。粉末高速鋼解決了原來高速鋼冶煉過程 中產(chǎn)生的一次碳化物粗大和偏析,從而影響材質(zhì)的問題。其碳化物微細,組織均勻,沒有材料方向性,因此它具有韌性高、磨削工藝性好、耐磨性高、長年使用尺寸穩(wěn)定等特點,是一種很有發(fā)展前途的鋼材。特別對形狀復雜的沖件及高速沖壓的模具,其優(yōu)越性更加突出。這種鋼材還適用于注射成型漆加玻璃纖維或金屬粉末的增強塑料的模具,如型腔、形芯、澆口等主要部件。另外,模具鋼品種規(guī)格多樣化、產(chǎn)品精料化、制品化,盡量縮短供貨時間亦是重要方向。
模具熱處理和表面處理是能否充分發(fā)揮模具鋼材性能的關鍵環(huán)節(jié)。模具熱處理的發(fā)展 方向是采用真空熱處理。模具表面處理除完善普及常用表面處理方法,即擴滲如:滲碳、滲 氮、滲硼、滲鉻、滲釩外,應發(fā)展設備昴貴、工藝先進的氣相沉積(TiN、TiC等)、等離子噴涂等技術。
1.2.6、在模具設計制造中將全面推廣CAD/CAM/CAE技術
模具CAD/CAM/CAE技術是模具技術發(fā)展的一個重要里程碑。實踐證明,模具CAD/CAM/CAE 技術是模具設計制造的發(fā)展方向。現(xiàn)在,全面普及CAD/CAM/CAE技術已基本成熟。由于模具CAD/CAM技術已發(fā)展成為一項比較成熟的共性技術,近年來模具CAD/CAM技術的硬件與軟件 價格已降低到中小企業(yè)普遍可以接受的程度,特別是微機的普及應用,更為廣大模具企業(yè)普 及模具CAD/CAM技術創(chuàng)造了良好的條伯。隨著微機軟件的發(fā)展和進步,技術培訓工作也日趨 簡化。在普及推廣模具CAD/CAM技術的過程中,應抓住機遇,重點扶持國產(chǎn)模具軟件的開發(fā)和應用。
加大技術培訓和技術服務的力度。應時一步擴大CAE技術的應用范圍。對于已普及了 模具CAD/CAM技術的一批以家電行業(yè)代表的企業(yè)來說,應積極做好模具CAD/CAM技術的深化 應用工作,即開展企業(yè)信息化工程,可從CAPP,PDM、CIMS,VR,逐步深化和提高。
1.2.7、快速原型制造(RPM)技術得到更好的發(fā)展
快速原型制造(RPM)技術是美國首先推出的。它是伴隨著計算機技術、激光成形技術和 新材料技術的發(fā)展而產(chǎn)生的,是一種全新的制造技術,是基于新穎的離散/堆積(即材料累加)成形思想,根據(jù)零件CAD模型、快速自動完成復雜的三維實體(原型)制造。RPM技術是集精密機械制造、計算機、NC技術、激光成形技術和材料科學最新發(fā)展的高科技技術,被公認為是繼NC技術之后的一次技術革命。
RPM技術可直接或間接用于模具制造。首先是通過立體光固化(SLA)疊層實體制造(LOM) 激光選區(qū)燒結(jié)(SLS)、三維打印(3D-P)熔融沉積成形(FDM)等不同方法得到制件原型。然后通過一些傳統(tǒng)的快速制模方法,獲得長壽命的金屬模具或非金屬的低壽命模具。主要有精密鑄造、粉末冶金、電鑄和熔射(熱噴涂)等方法。這種方法制模,具有技術先進、成本較低、設計制造周期短、精度適中等特點。從模具的概念設計到制造完成僅為傳統(tǒng)加工方法所需時間的1/3和成本的1/4左右。因此,快速制模技術與快速原型制造技術的結(jié)合,將是傳統(tǒng)快速制模技術,進一步深入發(fā)展的方向。
RPM技術還可以解決石墨電極壓力振動(研磨)成形法中母模(電極研具)制造困難問題,使該法獲得新生。青島海爾模具有限公司還構(gòu)建了基于RE(逆向工程技術)/RPM的模具并行開發(fā)系統(tǒng),具有開發(fā)質(zhì)量高、開發(fā)成本低及開發(fā)周期短等優(yōu)點。
第2章 分析零件的工藝性
沖壓件工藝性是指沖壓零件在沖壓加工過程中加工的難易程度。雖然沖壓加工工藝過程包括備料—沖壓加工工序—必要的輔助工序—質(zhì)量檢驗—組合、包裝的全過程,但分析工藝性的重點要在沖壓加工工序這一過程里。而沖壓加工工序很多,各種工序中的工藝性又不盡相同。即使同一個零件,由于生產(chǎn)單位的生產(chǎn)條件、工藝裝備情況及生產(chǎn)的傳統(tǒng)習慣等不同,其工藝性的涵義也不完全一樣。這里我們重點分析零件的結(jié)構(gòu)工藝性。
該零件是圓筒件,如圖2-1,該零件為筒形件,料厚t=1mm,拉深后厚度不變;零件底部圓角半徑r=15mm;尺寸公差都為IT14,滿足拉深工藝對精度等級的要求。
圖2-1 工件圖
2.1 工藝分析
工藝性對精度的要求是一般情況下,拉深件的尺寸精度應在IT13級以下,不宜高于IT11級;對于精度要求高的拉深件,應在拉深后增加整形工序,以提高其精度,由于材料各向異性的影響,拉深件的口部一般是不整齊的,為了獲得所需要的圓筒外形,需要增加修邊工序。
影響拉深件工藝性的因素主要有拉深件的結(jié)構(gòu)與尺寸、精度和材料。拉深工藝性對結(jié)構(gòu)與尺寸的要求是拉深件因盡量簡單、對稱,并能一次拉深成形;拉深件的壁厚公差或變薄量一般不應超出拉深工藝壁厚變化規(guī)律;當零件一次拉深的變形程度過大時,為避免拉裂,需采用多次拉深,這時在保證必要的表面質(zhì)量前提下,應允許內(nèi)、外表面存在拉深過程中可能產(chǎn)生的痕跡;在保證裝配要求下,應允許拉深件側(cè)壁有一定的斜度;拉深件的徑向尺寸應只標注外形尺寸或內(nèi)形尺寸,而不能同時標注內(nèi)、外形尺寸。
工藝性要求材料具有良好的塑性,屈強比值越小,一次拉深允許的極限變形程度越大,拉深的性能越好;板厚方向性系數(shù)r和板平面方向性系數(shù)反映了材料的各向異性性能,當r較大或較小時,材料寬度的變形比厚度方向的變形容易,板平面方向性能差異較小,拉深過程中材料不易變薄或拉裂,因而有利于拉深成形。
2.2 材料分析
該零件結(jié)構(gòu)較簡單、形狀對稱,屬于圓筒形拉深件。零件尺寸公差為IT14,利用普通沖裁方法可以達到零件圖樣要求。工作環(huán)境是耐100℃的高溫,能在堿性的茶水里長時間的浸泡。工件材料為08F,材料的抗剪強度為300-390MPa,抗拉強度為400-480MPa,伸長率為32,屈服極限為200。
2.3 毛坯圖
單工序拉深模的毛坯是單個的,級進模的坯料則是條料。為了拉深計算的需要,級進模的拉深也要像單個毛坯一樣計算毛坯直徑。計算毛坯直徑是根據(jù)拉深成形以后,工件的表面積與毛坯面積相等的原理,進行毛坯直徑的計算。
坯料尺寸計算:
圖2-2 工件圖
根據(jù)拉深件尺寸,修邊余量5.0,其零件高度為H=160mm, d=238.5mm,、
根據(jù)公式:
如下圖代入數(shù)據(jù)
判斷能否一次拉成
總的拉深因數(shù):
工件的相對高度:
由于 ,
查得有凸緣的圓筒件第一次拉深的最小拉深因數(shù)為
由于m總
收藏