《(浙江專用)2019高考數學二輪復習精準提分 第二篇 重點專題分層練中高檔題得高分 第22練 導數的概念及簡單應用課件.ppt》由會員分享,可在線閱讀,更多相關《(浙江專用)2019高考數學二輪復習精準提分 第二篇 重點專題分層練中高檔題得高分 第22練 導數的概念及簡單應用課件.ppt(57頁珍藏版)》請在裝配圖網上搜索。
1、第二篇重點專題分層練,中高檔題得高分,第22練導數的概念及簡單應用小題提速練,,明晰考情1.命題角度:考查導數的幾何意義,利用導數研究函數的單調性、極值和最值.2.題目難度:中低檔難度.,核心考點突破練,,,欄目索引,,,易錯易混專項練,高考押題沖刺練,考點一導數的幾何意義,要點重組(1)f(x0)表示函數f(x)在xx0處的瞬時變化率.(2)f(x0)的幾何意義是曲線yf(x)在點P(x0,y0)處切線的斜率.,,核心考點突破練,1.已知函數f(x1)則曲線yf(x)在點(1,f(1))處切線的斜率為A.1B.1C.2D.2,,由導數的幾何意義,得所求切線的斜率k1.,答案,解析,2.設函數
2、f(x)x3ax2,若曲線yf(x)在點P(x0,f(x0))處的切線方程為xy0,則點P的坐標為A.(0,0)B.(1,1)C.(1,1)D.(1,1)或(1,1),,解析由題意可知f(x)3x22ax,,答案,解析,則點P的坐標為(1,1)或(1,1).故選D.,3.(2018全國)設函數f(x)x3(a1)x2ax,若f(x)為奇函數,則曲線yf(x)在點(0,0)處的切線方程為A.y2xB.yxC.y2xD.yx,,答案,解析,解析方法一f(x)x3(a1)x2ax,f(x)3x22(a1)xa.又f(x)為奇函數,f(x)f(x)恒成立,即x3(a1)x2axx3(a1)x2ax恒成
3、立,a1,f(x)3x21,f(0)1,曲線yf(x)在點(0,0)處的切線方程為yx.故選D.方法二f(x)x3(a1)x2ax為奇函數,f(x)3x22(a1)xa為偶函數,a1,即f(x)3x21,f(0)1,曲線yf(x)在點(0,0)處的切線方程為yx.故選D.,4.若直線ykxb是曲線ylnx2的切線,也是曲線yln(x1)的切線,則b_______.,答案,解析,1ln2,考點二導數與函數的單調性,方法技巧(1)若求單調區(qū)間(或證明單調性),只要在函數定義域內解(或證明)不等式f(x)0或f(x)<0.(2)若已知函數的單調性,則轉化為不等式f(x)0或f(x)0在單調區(qū)間上恒成
4、立問題來求解.,5.已知函數f(x)lnxx,若abf(),cf(5),則A.c
5、解析,,解析f(x)6x26mx6,當x(2,)時,f(x)0恒成立,,當x2時,g(x)0,即g(x)在(2,)上單調遞增,,8.定義在R上的函數f(x)滿足f(x)f(x)恒成立,若x1f(x1)B.f(x2)
6、提醒(1)f(x0)0是函數yf(x)在xx0處取得極值的必要不充分條件.(2)函數f(x)在a,b上有唯一一個極值點,這個極值點就是最值點.,9.若x2是函數f(x)(x2ax1)ex1的極值點,則f(x)的極小值為A.1B.2e3C.5e3D.1,,答案,解析,解析函數f(x)(x2ax1)ex1,則f(x)(2xa)ex1(x2ax1)ex1ex1x2(a2)xa1.由x2是函數f(x)的極值點,得f(2)e3(42a4a1)(a1)e30,所以a1.所以f(x)(x2x1)ex1,f(x)ex1(x2x2).由ex10恒成立,得當x2或x1時,f(x)0,且當x2時,f(x)0;當2x
7、1時,f(x)0;當x1時,f(x)0.所以x1是函數f(x)的極小值點.所以函數f(x)的極小值為f(1)1.故選A.,10.已知函數f(x)axlnx,當x(0,e(e為自然對數的底數)時,函數f(x)的最小值為3,則a的值為A.eB.e2C.2eD.2e2,,答案,解析,當a0時,f(x)0,f(x)在(0,e上單調遞減,f(x)minf(e)0,與題意不符.,f(x)minf(e)0,與題意不符.綜上所述,ae2.故選B.,則g(x)g(x)0,g(x)是R上的奇函數.又當x(0,)時,g(x)f(x)x<0,所以g(x)在(0,)上單調遞減,所以g(x)是R上的單調減函數.原不等式等
8、價于g(2m)g(m)0,g(2m)g(m)g(m),所以2mm,m1.,11.設函數f(x)在R上存在導數f(x),對任意xR,都有f(x)f(x)x2,在(0,)上f(x)
9、x)只有一個零點,,此時f(x)2x33x21,f(x)6x(x1),當x1,1時,f(x)在1,0上單調遞增,在(0,1上單調遞減.又f(1)0,f(1)4,f(0)1,f(x)maxf(x)minf(0)f(1)143.,1.已知f(x)lnx,g(x)直線l與函數f(x),g(x)的圖象都相切,且與f(x)圖象的切點為(1,f(1)),則m等于A.1B.3C.4D.2,,易錯易混專項練,又f(1)0,切線l的方程為yx1.g(x)xm,設直線l與g(x)的圖象的切點坐標為(x0,y0),,,答案,解析,于是解得m2.故選D.,答案,解析,,解析方法一(特殊值法),不具備在(,)上單調遞增
10、,排除A,B,D.故選C.方法二(綜合法),3.函數f(x)的定義域為開區(qū)間(a,b),導函數f(x)在(a,b)內的圖象如圖所示,則函數f(x)在開區(qū)間(a,b)內的極小值點有A.1個B.2個C.3個D.4個,答案,解析,,解析由極小值的定義及導函數f(x)的圖象可知,f(x)在開區(qū)間(a,b)內有1個極小值點.,4.若直線ya分別與直線y2(x1),曲線yxlnx交于點A,B,則|AB|的最小值為____.,答案,解析,設方程xlnxa的根為t(t0),則tlnta,,令g(t)0,得t1.當t(0,1)時,g(t)0,g(t)單調遞減;當t(1,)時,g(t)0,g(t)單調遞增,,解題
11、秘籍(1)對于未知切點的切線問題,一般要先設出切點.(2)f(x)遞增的充要條件是f(x)0,且f(x)在任意區(qū)間內不恒為零.(3)利用導數求解函數的極值、最值問題要利用數形結合思想,根據條件和結論的聯系靈活進行轉化.,1.(2017浙江)函數yf(x)的導函數yf(x)的圖象如圖所示,則函數yf(x)的圖象可能是,,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,,高考押題沖刺練,解析觀察導函數f(x)的圖象可知,f(x)的函數值從左到右依次為小于0,大于0,小于0,大于0,對應函數f(x)的增減性從左到右依次為減、增、減、增.觀察選項可知,排除A,C.如圖所示,f(x)有
12、3個零點,從左到右依次設為x1,x2,x3,且x1,x3是極小值點,x2是極大值點,且x20,故選項D正確.故選D.,1,2,3,4,5,6,7,8,9,10,11,12,2.函數f(x)(x3)ex的單調遞增區(qū)間是A.(,2)B.(0,3)C.(1,4)D.(2,),,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,解析函數f(x)(x3)ex的導函數為f(x)(x3)exex(x3)ex(x2)ex.由函數導數與函數單調性的關系,得當f(x)0時,函數f(x)單調遞增,此時由不等式f(x)(x2)ex0,解得x2.,3.已知函數f(x)4x3在區(qū)間1,2上是增函數,則實數
13、m的取值范圍為A.4m5B.2m4C.m2D.m4,,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,4.若函數f(x)(x1)ex,則下列命題正確的是A.對任意m,都存在xR,使得f(x),方程f(x)m總有兩個實根,,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,解析f(x)(x2)ex,當x2時,f(x)0,f(x)為增函數;當x<2時,f(x)<0,f(x)為減函數.,故B正確.,5.函數f(x)是定義在區(qū)間(0,)上的可導函數,其導函數為f(x),且滿足xf(x)2f(x)0,則不等式的解集為
14、A.x|x2013B.x|x2013C.x|2013x0D.x|2018x2013,,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,解析構造函數g(x)x2f(x),則g(x)x2f(x)xf(x).當x0時,2f(x)xf(x)0,g(x)0,g(x)在(0,)上單調遞增.,1,2,3,4,5,6,7,8,9,10,11,12,當x20180,即x2018時,(x2018)2f(x2018)52f(5),g(x2018)g(5),x20185,2018x2013.,6.函數f(x)3x2lnx2x的極值點的個數是A.0B.1C.2D.無數,,解析函數定義域為(0,),,答
15、案,解析,1,2,3,4,5,6,7,8,9,10,11,12,由于x0,方程6x22x10中的200恒成立,即f(x)在定義域上單調遞增,無極值點.,7.已知函數f(x)x22xa(ex1ex1)有唯一零點,則a等于,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,,解析方法一f(x)x22xa(ex1ex1)(x1)2aex1e(x1)1,令tx1,則g(t)f(t1)t2a(etet)1.g(t)(t)2a(etet)1g(t),函數g(t)為偶函數.f(x)有唯一零點,g(t)也有唯一零點.又g(t)為偶函數,由偶函數的性質知g(0)0,,1,2,3,4,5,6,7,
16、8,9,10,11,12,故選C.,方法二f(x)0a(ex1ex1)x22x.,1,2,3,4,5,6,7,8,9,10,11,12,x22x(x1)211,當且僅當x1時取“”.若a0,則a(ex1ex1)2a,,若a0,則f(x)的零點不唯一.故選C.,,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,解析因為f(x)x3x2a,所以由題意可知,f(x)3x22x在區(qū)間0,a上存在x1,x2(0 x1x2a),,所以方程3x22xa2a在區(qū)間(0,a)上有兩個不相等的實根.令g(x)3x22xa2a(0 xa),,1,2,3,4,5,6,7,8,9,10,11,12,1
17、,2,3,4,5,6,7,8,9,10,11,12,答案,解析,9.已知函數f(x)axlnx,aR,若f(e)3,則a的值為___.,解析因為f(x)a(1lnx),aR,f(e)3,,10.已知函數f(x)x32ax21在x1處的切線的斜率為1,則實數a____,此時函數yf(x)在0,1上的最小值為____.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,解析由題意得f(x)3x24ax,則有f(1)3124a11,,1,2,3,4,5,6,7,8,9,10,11,12,則f(x)3x22x,當x0,1時,,11.(2018全國)已知函數f(x)2sinxsin2x,
18、則f(x)的最小值是_______.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,解析f(x)2cosx2cos2x2cosx2(2cos2x1)2(2cos2xcosx1)2(2cosx1)(cosx1).cosx10,,1,2,3,4,5,6,7,8,9,10,11,12,又f(x)2sinxsin2x2sinx(1cosx),,12.已知函數f(x)exx,若f(x)<0的解集中只有一個正整數,則實數k的取值范圍為______________.,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,當x0,當x1時,g(x)<0,所以g(x)在(,1)上單調遞增,在(1,)上單調遞減,,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,本課結束,