《高考數(shù)學(xué)大一輪復(fù)習(xí) 第七章 第1節(jié) 空間幾何體的結(jié)構(gòu)、三視圖和直觀圖課件 理 新人教A版.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)大一輪復(fù)習(xí) 第七章 第1節(jié) 空間幾何體的結(jié)構(gòu)、三視圖和直觀圖課件 理 新人教A版.ppt(50頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第1節(jié)空間幾何體的結(jié)構(gòu)、 三視圖和直觀圖,.認(rèn)識(shí)柱、錐、臺(tái)、球及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu).能畫出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述三視圖所表示的立體模型,會(huì)用斜二測(cè)法畫出它們的直觀圖.會(huì)用平行投影方法畫出簡(jiǎn)單空間圖形的三視圖與直觀圖,了解空間圖形的不同表示形式,,整合主干知識(shí),1空間幾何體的結(jié)構(gòu)特征,相等,全等,公共點(diǎn),平行于底面,相似,質(zhì)疑探究:由棱柱的結(jié)構(gòu)特征可知:棱 z柱有兩個(gè)面互相平行,其余各面都是平行四邊形,反過(guò)來(lái),成立嗎? 提示:不一定成立,如圖所示幾何體有兩個(gè)面互相平行,其余各面都是平行四邊形,
2、但不滿足每相鄰兩個(gè)四邊形的公共邊都互相平行,所以不是棱柱.,,,2空間幾何體的三視圖,正視圖,側(cè)視圖,俯視圖,正前方,正左方,正上方,對(duì)正,平齊,相等,主左,主俯,俯左,右,下,3. 空間幾何體的直觀圖,斜二測(cè),垂直,仍平行于坐標(biāo)軸,不變,原來(lái)的一半,1(2014福建高考)某空間幾何體的正視圖是三角形,則該幾何體不可能是() A圓柱B圓錐 C四面體 D三棱柱 解析:圓柱的正視圖是矩形或圓,不可能是三角形,則該幾何體不可能是圓柱故選A. 答案:A,2(2015青島模擬)將長(zhǎng)方體截去一個(gè)四棱錐后,得到的幾何體的直觀圖如右圖所示,則該幾何體的俯視圖為(),,,解析:長(zhǎng)方體的側(cè)面與底面垂直,所以俯視圖
3、是C. 答案:C,3如圖,已知三棱錐的底面是直角三角形,直角邊邊長(zhǎng)分別為3和4,過(guò)直角頂點(diǎn)的側(cè)棱長(zhǎng)為4,且垂直于底面,該三棱錐的主視圖是(),,解析:通過(guò)觀察圖形,三棱錐的主視圖應(yīng)為高為4,底面邊長(zhǎng)為3的直角三角形 答案:B,4利用斜二測(cè)畫法得到的以下結(jié)論,正確的是______(寫出所有正確的序號(hào)) 三角形的直觀圖是三角形;平行四邊形的直觀圖是平行四邊形;正方形的直觀圖是正方形;圓的直觀圖是橢圓;菱形的直觀圖是菱形 解析:正確;由原圖形中平行的線段在直觀圖中仍平行可知正確;但是原圖形中垂直的線段在直觀圖中一般不垂直,故錯(cuò);正確;中原圖形中相等的線段在直觀圖中不一定相等,故錯(cuò)誤 答案:,5一個(gè)幾
4、何體的主視圖為一個(gè)三角形,則這個(gè)幾何體可能是下列幾何體中的________(填入所有可能的幾何體前的編號(hào)) 三棱錐;四棱錐;三棱柱;四棱柱;圓錐;圓柱,解析:存在可以得主視圖為三角形的情況;四棱錐,若底面是矩形,有一側(cè)棱垂直于底面可以得主視圖為三角形;三棱柱,把側(cè)面水平放置,正對(duì)著底面看,得主視圖為三角形;四棱柱,不論從哪個(gè)方向看都得不出三角形;圓錐的底面水平放置,主視圖是三角形;圓柱從不同方向看是矩形或圓,不可能是三角形 答案:,,聚集熱點(diǎn)題型,典例賞析1 設(shè)有以下四個(gè)命題: 底面是平行四邊形的四棱柱是平行六面體; 底面是矩形的平行六面體是長(zhǎng)方體; 直四棱柱是直平行六面體; 棱臺(tái)的相對(duì)側(cè)棱延
5、長(zhǎng)后必交于一點(diǎn) 其中真命題的序號(hào)是________,空間幾何體的結(jié)構(gòu)特征,思路索引利用有關(guān)幾何體的概念判斷所給命題的真假 解析命題符合平行六面體的定義,故命題是正確的底面是矩形的平行六面體的側(cè)棱可能與底面不垂直,故命題是錯(cuò)誤的因?yàn)橹彼睦庵牡酌娌灰欢ㄊ瞧叫兴倪呅?,故命題是錯(cuò)誤的命題由棱臺(tái)的定義知是正確的 答案,(2)通過(guò)反例對(duì)結(jié)構(gòu)特征進(jìn)行辨析,即要說(shuō)明一個(gè)命題是錯(cuò)誤的,只要舉出一個(gè)反例即可,,拓展提高(1)緊扣結(jié)構(gòu)特征是判斷的關(guān)鍵,熟悉空間幾何體的結(jié)構(gòu)特征,依據(jù)條件構(gòu)建幾何模型,在條件不變的情況下,變換模型中的線面關(guān)系或增加線、面等基本元素,然后再依據(jù)題意判定,變式訓(xùn)練 1以下命題: 以直角三
6、角形的一邊為軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體是圓錐; 以直角梯形的一腰為軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體是圓臺(tái); 圓柱、圓錐、圓臺(tái)的底面都是圓; 一個(gè)平面截圓錐,得到一個(gè)圓錐和一個(gè)圓臺(tái) 其中正確命題的個(gè)數(shù)為() A0 B1 C2 D3,解析:命題錯(cuò),因?yàn)檫@條邊若是直角三角形的斜邊,則得不到圓錐命題錯(cuò),因這腰必須是垂直于兩底的腰命題對(duì)命題錯(cuò),必須用平行于圓錐底面的平面截圓錐才行 答案:B,典例賞析2 (1)(2015威海模擬)將正方體(如圖1所示)截去兩個(gè)三棱錐,得到圖2所示的幾何體,則該幾何體的側(cè)視圖為(),空間幾何體的三視圖,,(2)(2013四川高考)一個(gè)幾何體的三視圖如圖所示,則該幾何體的直觀圖可以是(
7、),,,,(3)(2015陜西省高三質(zhì)檢)如圖是由若干個(gè)相同的小立方體組成的幾何體的俯視圖,其中小立方體中的數(shù)字表示相應(yīng)位置的小立方體的個(gè)數(shù),則該幾何體的左視圖為(),,(4)(2015長(zhǎng)春模擬)一只螞蟻從正方體ABCDA1B1C1D1的頂點(diǎn)A處出發(fā),經(jīng)正方體的表面,按最短路線爬行到達(dá)頂點(diǎn)C1位置,則下列圖形中可以表示正方體及螞蟻?zhàn)疃膛佬新肪€的正視圖可能是________(填上序號(hào)),,解析(1)圖2所示的幾何體的側(cè)視圖由點(diǎn)A,D,B1,D1確定外形為正方形,判斷的關(guān)鍵是兩條對(duì)角線AD1和B1C是一實(shí)一虛,其中要把AD1和B1C區(qū)別開來(lái),故選B. (2)根據(jù)幾何體的三視圖中正視圖與側(cè)視圖一致,
8、并且俯視圖是兩個(gè)圓,可知只有選項(xiàng)D適合,故選D. (3)由俯視圖知左視圖從左到右最高的小立方體個(gè)數(shù)分別為2,3,1,故選C.,(4)由點(diǎn)A經(jīng)正方體的表面,按最短路線爬行到達(dá)頂點(diǎn)C1位置,共有6種展開方式,若把平面ABB1A1和平面BCC1B1展到同一個(gè)平面內(nèi),在矩形中連接AC1會(huì)經(jīng)過(guò)BB1的中點(diǎn),故此時(shí)的正視圖為.若把平面ABCD和平面CDD1C1展到同一個(gè)平面內(nèi),在矩形中連接AC1會(huì)經(jīng)過(guò)CD的中點(diǎn),此時(shí)正視圖會(huì)是.其他幾種展開方式對(duì)應(yīng)的正視圖在題中沒有出現(xiàn)或者已在中 答案(1)B(2)D(3)C(4),拓展提高空間幾何體的三視圖的常見題型與求解策略,提醒對(duì)于簡(jiǎn)單組合體的三視圖,首先要確定正視
9、、側(cè)視、俯視的方向,其次要注意組合體由哪些幾何體組成,弄清它們的組成方式,特別應(yīng)注意它們的交線的位置,區(qū)分好實(shí)線和虛線的不同,變式訓(xùn)練 2(2015泰安模擬)某幾何體的三視圖如圖所示,當(dāng)xy最大時(shí),該幾何體的體積為________,,空間幾何體的直觀圖,答案D,,變式訓(xùn)練 3如圖所示,四邊形ABCD是一平面圖形的水平放置的斜二測(cè)畫法的直觀圖,在斜二測(cè)直觀圖中,四邊形ABCD是一直角梯形,ABCD,ADCD,且BC與y軸平行,若AB6,DC4,AD2.則這個(gè)平面圖形的實(shí)際面積為________,備課札記 ______________________________________________
10、______________________________________________________,,提升學(xué)科素養(yǎng),(理)忽視幾何體的放置與特征致誤,,(注:對(duì)應(yīng)文數(shù)熱點(diǎn)突破之三十二),在一個(gè)幾何體的三視圖中,正視圖和俯視圖如圖所示,則相應(yīng)的側(cè)視圖可以為(),,正解由正視圖和俯視圖可以推測(cè)幾何體為半圓錐和三棱錐的組合體(如圖所示),且頂點(diǎn)在底面的射影恰是底面半圓的圓心,可知側(cè)視圖為等腰三角形,且輪廓線為實(shí)線,故選D. 答案D,,易錯(cuò)分析(1)根據(jù)正視圖和俯視圖確定原幾何體的形狀時(shí)出現(xiàn)錯(cuò)誤,誤把半圓錐看成半圓柱,不能準(zhǔn)確判斷出幾何體的形狀而誤選A. (2)對(duì)實(shí)線與虛線的畫法規(guī)則不明確而
11、誤選C. 防范措施1.首先確定幾何體,面對(duì)讀者是怎么放置的 2要分清三視圖中的虛線是被哪部分擋住的 3要明確三視圖中三角形的高度是不是幾何體的高度,(2015汕尾模擬)一個(gè)正方體截去兩個(gè)角后所得幾何體的正視圖、俯視圖如圖所示,則其側(cè)視圖為(),,解析:根據(jù)一個(gè)正方體截去兩個(gè)角后所得幾何體的正視圖、俯視圖可得幾何體的直觀圖為:,,所以側(cè)視圖為:,,答案:C,1一條規(guī)律 三視圖的長(zhǎng)度特征:“長(zhǎng)對(duì)正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長(zhǎng),側(cè)視圖和俯視圖一樣寬,,2一點(diǎn)注意 若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實(shí)、虛線的畫法.,3兩個(gè)概念 (1)正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱 (2)正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐特別地,各棱均相等的正三棱錐叫正四面體,