影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

(全國通用版)2019高考數(shù)學二輪復習 專題二 數(shù)列 第2講 數(shù)列的求和問題課件 文.ppt

上傳人:tia****nde 文檔編號:14486778 上傳時間:2020-07-21 格式:PPT 頁數(shù):42 大?。?.63MB
收藏 版權(quán)申訴 舉報 下載
(全國通用版)2019高考數(shù)學二輪復習 專題二 數(shù)列 第2講 數(shù)列的求和問題課件 文.ppt_第1頁
第1頁 / 共42頁
(全國通用版)2019高考數(shù)學二輪復習 專題二 數(shù)列 第2講 數(shù)列的求和問題課件 文.ppt_第2頁
第2頁 / 共42頁
(全國通用版)2019高考數(shù)學二輪復習 專題二 數(shù)列 第2講 數(shù)列的求和問題課件 文.ppt_第3頁
第3頁 / 共42頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(全國通用版)2019高考數(shù)學二輪復習 專題二 數(shù)列 第2講 數(shù)列的求和問題課件 文.ppt》由會員分享,可在線閱讀,更多相關(guān)《(全國通用版)2019高考數(shù)學二輪復習 專題二 數(shù)列 第2講 數(shù)列的求和問題課件 文.ppt(42頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第2講數(shù)列的求和問題,專題二數(shù)列,板塊三專題突破核心考點,,考情考向分析,高考對數(shù)列求和的考查主要以解答題的形式出現(xiàn),通過分組轉(zhuǎn)化、錯位相減、裂項相消等方法求一般數(shù)列的和,體現(xiàn)了轉(zhuǎn)化與化歸的思想.,,,熱點分類突破,真題押題精練,內(nèi)容索引,熱點分類突破,有些數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將數(shù)列通項拆開或變形,可轉(zhuǎn)化為幾個等差、等比數(shù)列或常見的數(shù)列,即先分別求和,然后再合并.,,熱點一分組轉(zhuǎn)化法求和,解答,例1(2018北京海淀區(qū)模擬)已知等差數(shù)列an滿足2an1an2n3 (nN*). (1)求數(shù)列an的通項公式;,解設等差數(shù)列an的公差為d, 因為2an1an2n3,,所以ana1

2、(n1)d2n1(nN*).,解答,解因為數(shù)列anbn是首項為1,公比為2的等比數(shù)列, 所以anbn2n1, 因為an2n1,所以bn2n1(2n1). 設數(shù)列bn的前n項和為Sn, 則Sn(1242n1)135(2n1),所以數(shù)列bn的前n項和為2n1n2(nN*).,在處理一般數(shù)列求和時,一定要注意使用轉(zhuǎn)化思想.把一般的數(shù)列求和轉(zhuǎn)化為等差數(shù)列或等比數(shù)列進行求和,在求和時要分清楚哪些項構(gòu)成等差數(shù)列,哪些項構(gòu)成等比數(shù)列,清晰正確地求解.在利用分組求和法求和時,由于數(shù)列的各項是正負交替的,所以一般需要對項數(shù)n進行討論,最后再驗證是否可以合并為一個公式.,,解答,跟蹤演練1已知等差數(shù)列an的公差為

3、d,且關(guān)于x的不等式a1x2dx3<0的解集為(1,3), (1)求數(shù)列an的通項公式;,故數(shù)列an的通項公式為an12(n1), 即an2n1(nN*).,解答,(2)若bn 2an,求數(shù)列bn的前n項和Sn.,解據(jù)(1)求解知an2n1,,,,熱點二錯位相減法求和,錯位相減法是在推導等比數(shù)列的前n項和公式時所用的方法,這種方法主要用于求數(shù)列anbn的前n項和,其中an,bn分別是等差數(shù)列和等比數(shù)列.,解答,例2(2018百校聯(lián)盟聯(lián)考)已知等比數(shù)列an的公比q1,前n項和為Sn(nN*),a1a3 ,a11,a21,a31分別是一個等差數(shù)列的第1項,第2項,第5項. (1)求數(shù)列an的通項

4、公式;,所以a11, 由a11,a21,a31分別是一個等差數(shù)列的第1項,第2項,第5項, 得a31(a11)4(a21)(a11), 即a3a14(a2a1), 即q214(q1),即q24q30, 因為q1,所以q3,所以an3n1(nN*).,(2)設bnanlg an,求數(shù)列bn的前n項和Tn.,解答,解bnanlg an(n1)3n1lg 3, 所以Tn03232333(n1)3n1lg 3, 3Tn032233334(n1)3nlg 3, 兩式相減得,2Tn332333n1(n1)3nlg 3,(1)錯位相減法適用于求數(shù)列anbn的前n項和,其中an為等差數(shù)列,bn為等比數(shù)列. (

5、2)所謂“錯位”,就是要找“同類項”相減.要注意的是相減后得到部分求等比數(shù)列的和,此時一定要查清其項數(shù). (3)為保證結(jié)果正確,可對得到的和取n1,2進行驗證.,,跟蹤演練2(2018安慶模擬)在等差數(shù)列an中a49,前三項的和為15. (1)求數(shù)列an的通項公式;,解答,an2n1(nN*).,解答,,裂項相消法是指把數(shù)列和式中的各項分別裂開后,某些項可以相互抵消從而求和的方法,主要適用于 或 (其中an為等差數(shù)列)等形式的數(shù)列求和.,熱點三裂項相消法求和,解答,例3(2018天津市十二校模擬)已知數(shù)列an的前n項和Sn滿足:Sna(Snan1) (nN*)(a為常數(shù),a0,a1

6、). (1)求an的通項公式;,解Sna(Snan1), n1時,a1a. n2時,Sn1a(Sn1an11), SnSn1ana(SnSn1)aanaan1,,數(shù)列an是以a為首項,a為公比的等比數(shù)列, anan(nN*).,解答,(2)設bnanSn,若數(shù)列bn為等比數(shù)列,求a的值;,解由bnanSn得,b12a, b22a2a, b32a3a2a. 數(shù)列bn為等比數(shù)列,,解答,(1)裂項相消法的基本思想就是把通項an分拆成anbnkbn(k1,kN*)的形式,從而在求和時達到某些項相消的目的,在解題時要善于根據(jù)這個基本思想變換數(shù)列an的通項公式,使之符合裂項相消的條件. (2)常用的裂項

7、公式,,解答,跟蹤演練3(2018濰坊模擬)已知等比數(shù)列an的前n項和為Sn,a12,an0(nN*),S6a6是S4a4,S5a5的等差中項. (1)求數(shù)列an的通項公式;,解S6a6是S4a4,S5a5的等差中項,,S6a6S4a4S5a5S6a6, 化簡得4a6a4,,解答,,解由(1)得,bn 2n3.,Tnc1c2cn,真題押題精練,真題體驗,答案,解析,解析 設等差數(shù)列an的公差為d,,2.(2017天津)已知an為等差數(shù)列,前n項和為Sn(nN*),bn是首項為2的等比數(shù)列,且公比大于0,b2b312,b3a42a1,S1111b4. (1)求an和bn的通項公

8、式;,解答,解設等差數(shù)列an的公差為d,等比數(shù)列bn的公比為q. 由已知b2b312,得b1(qq2)12,而b12, 所以q2q60. 又因為q0,解得q2,所以bn2n. 由b3a42a1,可得3da18, 由S1111b4,可得a15d16, 聯(lián)立,解得a11,d3, 由此可得an3n2(nN*). 所以數(shù)列an的通項公式為an3n2(nN*),數(shù)列bn的通項公式為bn2n(nN*).,(2)求數(shù)列a2nb2n1的前n項和(nN*).,解答,解設數(shù)列a2nb2n1的前n項和為Tn,由a2n6n2,b2n124n1,得a2nb2n1(3n1)4n, 故Tn24542843(3n1)4n,

9、4Tn242543844(3n4)4n(3n1)4n1, ,得3Tn2434234334n(3n1)4n1,押題預測,答案,解析,押題依據(jù),押題依據(jù)數(shù)列的通項以及求和是高考重點考查的內(nèi)容,也是考試大綱中明確提出的知識點,年年在考,年年有變,變的是試題的外殼,即在題設的條件上有變革,有創(chuàng)新,但在變中有不變性,即解答問題的常用方法有規(guī)律可循.,1,押題依據(jù)錯位相減法求和是高考的重點和熱點,本題先利用an,Sn的關(guān)系求an,也是高考出題的常見形式.,解答,押題依據(jù),解當n1時,a1S11, 當n2時,anSnSn12n1(nN*), 又a11滿足an2n1, an2n1(nN*).,且bn0,2bn1bn,,解答,(2)設cnanbn,求數(shù)列cn的前n項和Tn.,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!