《(全國通用版)2019高考數(shù)學二輪復習 板塊四 考前回扣 專題4 數(shù)列課件 理.ppt》由會員分享,可在線閱讀,更多相關《(全國通用版)2019高考數(shù)學二輪復習 板塊四 考前回扣 專題4 數(shù)列課件 理.ppt(38頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、回扣4數(shù)列,板塊四考前回扣,,,回歸教材,易錯提醒,內(nèi)容索引,,回扣訓練,回歸教材,1.牢記概念與公式 等差數(shù)列、等比數(shù)列,2.活用定理與結論 (1)等差、等比數(shù)列an的常用性質(zhì),(2)判斷等差數(shù)列的常用方法 定義法 an1and(常數(shù))(nN*)an是等差數(shù)列. 通項公式法 anpnq(p,q為常數(shù),nN*)an是等差數(shù)列. 中項公式法 2an1anan2(nN*)an是等差數(shù)列. 前n項和公式法 SnAn2Bn(A,B為常數(shù),nN*)an是等差數(shù)列.,通項公式法 ancqn(c,q均是不為0的常數(shù),nN*)an是等比數(shù)列.,3.數(shù)列求和的常用方法 (1)等差數(shù)列或等比數(shù)列的求和,直接利用公
2、式求和. (2)形如anbn(其中an為等差數(shù)列,bn為等比數(shù)列)的數(shù)列,利用錯位相減法求和.,(4)通項公式形如an(1)nn或ana(1)n(其中a為常數(shù),nN*)等正負項交叉的數(shù)列求和一般用并項法.并項時應注意分n為奇數(shù)、偶數(shù)兩種情況討論. (5)分組求和法:分組求和法是解決通項公式可以寫成cnanbn形式的數(shù)列求和問題的方法,其中an與bn是等差(比)數(shù)列或一些可以直接求和的數(shù)列. (6)并項求和法:先將某些項放在一起求和,然后再求Sn.,易錯提醒,1.已知數(shù)列的前n項和求an,易忽視n1的情形,直接用SnSn1表示.事實上,當n1時,a1S1;當n2時,anSnSn1. 2.易混淆幾
3、何平均數(shù)與等比中項,正數(shù)a,b的等比中項是 .,4.易忽視等比數(shù)列中公比q0導致增解,易忽視等比數(shù)列的奇數(shù)項或偶數(shù)項符號相同造成增解.,8.通項中含有(1)n的數(shù)列求和時,要把結果寫成n為奇數(shù)和n為偶數(shù)兩種情況的分段形式.,5.運用等比數(shù)列的前n項和公式時,易忘記分類討論.一定分q1和q1兩種情況進行討論. 6.利用錯位相減法求和時,要注意尋找規(guī)律,不要漏掉第一項和最后一項. 7.裂項相消法求和時,裂項前后的值要相等,,回扣訓練,解析,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,答案,1.設等差數(shù)列an的前n項和為Sn,已知S130,S14<0,若akak1
4、<0,則k等于 A.6 B.7 C.13 D.14,,解析因為an為等差數(shù)列,S1313a7,S147(a7a8), 所以a70,a8<0,a7a8<0,所以k7.,答案,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解析,2.已知在等比數(shù)列an中,a1a23,a3a412,則a5a6等于 A.3 B.15 C.48 D.63,,答案,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解析,解析a10,a6a70,a70,a1a132a70,S130的最大自然數(shù)n的值為12.,3.設等差數(shù)列an的前n項和為Sn,且a10,a3a100
5、,a6a70的最大自然數(shù)n的值為 A.6 B.7C.12 D.13,,,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解析由已知 9 ,所以an1an2, 所以數(shù)列an是公差為2的等差數(shù)列, a5a7a9(a23d)(a43d)(a63d) (a2a4a6)9d99227, 所以 3.故選C.,答案,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解析,5.已知正數(shù)組成的等比數(shù)列an,若a1a20100,那么a7a14的最小值為 A.20 B.25 C.50 D.不存在,,解析在正數(shù)組成的等比
6、數(shù)列an中, 因為a1a20100,由等比數(shù)列的性質(zhì)可得a1a20a7a14100,,當且僅當a7a1410時取等號,所以a7a14的最小值為20.,解析,答案,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,6.已知數(shù)列an的前n項和為Sn,若Sn2an4(nN*),則an等于 A.2n1 B.2n C.2n1 D.2n2,,解析an1Sn1Sn2an14(2an4)an12an,再令n1,S12a14a14, 數(shù)列an是以4為首項,2為公比的等比數(shù)列, an42n12n1,故選A.,解析,答案,1,2,3,4,5,6,7,8,9,10,11,12,14,13,
7、16,15,,d2a1d,d0,da1,,解析在等差數(shù)列an中,a2,a4,a8成等比數(shù)列,,解析,答案,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,8.已知Sn為數(shù)列an的前n項和,若an(4cos n)n(2cos n)(nN*),則S20等于 A.31 B.122 C.324 D.484,,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解析由題意可知,因為an(4cos n)n(2cos n),,所以S20(a1a3a19)(a2a4a20) 122,故選B.,解析,答案,1,2,3,4,5,6,7,8,9,10,11,1
8、2,14,13,16,15,,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解析由題意a1,a3,a13成等比數(shù)列,可得(12d)2112d, 解得d2, 故an2n1,Snn2,,當且僅當n2時取得最小值4.,解析,答案,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,11.在等差數(shù)列an中,已知a3a810,則3a5a7________.,20,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解析設公差為d,
9、 則a3a82a19d10, 3a5a73(a14d)(a16d)4a118d21020.,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,12.若等比數(shù)列an的各項均為正數(shù),且a10a11a9a122e5,則ln a1ln a2ln a20________.,50,答案,解析,解析數(shù)列an為等比數(shù)列,且a10a11a9a122e5, a10a11a9a122a10a112e5,a10a11e5, ln a1ln a2ln a20ln(a1a2a20) ln(a10a11)10ln(e5)10ln e5050.,1,2,3,4,5,6,7,8,9,10,11,12
10、,14,13,16,15,13.數(shù)列an的前n項和為Sn,已知a12,Sn1(1)nSn2n,則S100______.,198,答案,解析,解析當n為偶數(shù)時,Sn1Sn2n,Sn2Sn12n2, 所以Sn2Sn4n2, 故Sn4Sn24(n2)2,所以Sn4Sn8, 由a12知,S12,又S2S12,所以S24, 因為S4S242210, 所以S46,所以S8S48,S12S88,,S100S968, 所以S100248S41926198.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,14.若數(shù)列an滿足a2a1a3a2a4a3an1an,則稱數(shù)列
11、an為“差遞減”數(shù)列.若數(shù)列an是“差遞減”數(shù)列,且其通項an與其前n項和Sn(nN*)滿足2Sn3an21(nN*),則實數(shù)的取值范 圍是___________.,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解析當n1時,2a13a121,a112, 當n1時,2Sn13an121, 所以2an3an3an1,an3an1, 所以an(12)3n1,anan1(12)3n1(12)3n2(24)3n2, 依題意(24)3n2是一個遞減數(shù)列,,解答,15.Sn為等差數(shù)列an的前n項和,且a11,S728.記bnlg an,其中x表示不超過x的最大整數(shù),如0.9
12、0,lg 991. (1)求b1,b11,b101;,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解設an的公差為d,據(jù)已知有721d28, 解得d1.所以an的通項公式為ann(nN*). b1lg 10,b11lg 111,b101lg 1012.,解答,(2)求數(shù)列bn的前1 000項和.,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,所以數(shù)列bn的前1 000項和為1902900311 893.,解答,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,由化簡得(anan1)(anan12)0, 又數(shù)列an各項為正數(shù), 當n2時,anan12, 故數(shù)列an成等差數(shù)列,公差為2,,證明,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,