影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2013年全國高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級訓(xùn)練30 解答題專項訓(xùn)練(解析幾何) 理

上傳人:xian****hua 文檔編號:147636174 上傳時間:2022-09-02 格式:DOC 頁數(shù):5 大小:1.21MB
收藏 版權(quán)申訴 舉報 下載
2013年全國高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級訓(xùn)練30 解答題專項訓(xùn)練(解析幾何) 理_第1頁
第1頁 / 共5頁
2013年全國高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級訓(xùn)練30 解答題專項訓(xùn)練(解析幾何) 理_第2頁
第2頁 / 共5頁
2013年全國高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級訓(xùn)練30 解答題專項訓(xùn)練(解析幾何) 理_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

11.8 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2013年全國高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級訓(xùn)練30 解答題專項訓(xùn)練(解析幾何) 理》由會員分享,可在線閱讀,更多相關(guān)《2013年全國高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級訓(xùn)練30 解答題專項訓(xùn)練(解析幾何) 理(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題升級訓(xùn)練30 解答題專項訓(xùn)練(解析幾何) 1.設(shè)有半徑為3千米的圓形村落,A,B兩人同時從村落中心出發(fā),B向北直行,A先向東直行,出村后不久,改變前進(jìn)方向,沿著與村落周界相切的直線前進(jìn),后來恰與B相遇.設(shè)A,B兩人速度一定,其速度比為3∶1,問兩人在何處相遇? 2.已知圓C:x2+y2-2x+4y-4=0.問是否存在斜率為1的直線l,使得l被圓C截得的弦為AB,且以AB為直徑的圓經(jīng)過原點(diǎn)?若存在,寫出直線l的方程;若不存在,說明理由. 3.設(shè)直線l1:y=k1x+1,l2:y=k2x-1,其中實(shí)數(shù)k1,k2滿足k1k2+2=0. (1)證明l1與l2相交; (2)證明l1與l2的

2、交點(diǎn)在橢圓2x2+y2=1上. 4.已知過拋物線y2=2px(p>0)的焦點(diǎn),斜率為2的直線交拋物線于A(x1,y1),B(x2,y2)(x1<x2)兩點(diǎn),且|AB|=9. (1)求該拋物線的方程; (2)O為坐標(biāo)原點(diǎn),C為拋物線上一點(diǎn),若,求λ的值. 5.已知橢圓C的中心為坐標(biāo)原點(diǎn)O,一個長軸端點(diǎn)為(0,2),短軸端點(diǎn)和焦點(diǎn)所組成的四邊形為正方形,直線l與y軸交于點(diǎn)P(0,m),與橢圓C交于相異兩點(diǎn)A,B,且. (1)求橢圓方程; (2)求m的取值范圍. 6.設(shè)橢圓C:+=1(a>b>0)的右焦點(diǎn)為F,過F的直線l與橢圓C相交于A,B兩點(diǎn),直線l的傾斜角為60°,. (1)求

3、橢圓C的離心率; (2)如果|AB|=,求橢圓C的方程. 7.已知點(diǎn)F1,F(xiàn)2分別為橢圓C:+=1(a>b>0)的左、右焦點(diǎn),P是橢圓C上的一點(diǎn),且|F1F2|=2,∠F1PF2=,△F1PF2的面積為. (1)求橢圓C的方程; (2)點(diǎn)M的坐標(biāo)為,過點(diǎn)F2且斜率為k的直線l與橢圓C相交于A,B兩點(diǎn),對于任意的k∈R,是否為定值?若是,求出這個定值;若不是,說明理由. 8.已知拋物線C1:x2=y(tǒng),圓C2 :x2+(y-4)2=1的圓心為點(diǎn)M. (1)求點(diǎn)M到拋物線C1的準(zhǔn)線的距離; (2)已知點(diǎn)P是拋物線C1上一點(diǎn)(異于原點(diǎn)),過點(diǎn)P作圓C2的兩條切線,交拋物線C1于A,B

4、兩點(diǎn),若過M,P兩點(diǎn)的直線l垂直于AB,求直線l的方程. 參考答案 1.解:建立如圖所示平面直角坐標(biāo)系,由題意,可設(shè)A,B兩人速度分別為3v千米/時,v千米/時,再設(shè)出發(fā)x0小時后,A在點(diǎn)P改變方向,又經(jīng)過y0小時,在點(diǎn)Q處與B相遇.則P,Q兩點(diǎn)坐標(biāo)為(3vx0,0),(0,vx0+vy0). 由|OP|2+|OQ|2=|PQ|2知, (3vx0)2+(vx0+vy0)2=(3vy0)2, 即(x0+y0)(5x0-4y0)=0. ∵x0+y0>0,∴5x0=4y0.① 將①代入kPQ=-,得kPQ=-. 又已知PQ與圓相切,直線PQ在y軸上的截距就是兩人相遇的位置.

5、 設(shè)直線y=-x+b(b>0)與圓x2+y2=9相切, 則有=3,解得b=. 答:A,B相遇點(diǎn)在離村中心正北千米處. 2.解:假設(shè)l存在,設(shè)其方程為y=x+m,代入x2+y2-2x+4y-4=0,得2x2+2(m+1)x+m2+4m-4=0. 再設(shè)A(x1,y1),B(x2,y2), 于是x1+x2=-(m+1),x1x2=. 以AB為直徑的圓經(jīng)過原點(diǎn),即直線OA與OB互相垂直,也就是kOA·kOB=-1, 所以·=-1,即2x1x2+m(x1+x2)+m2=0, 將x1+x2=-(m+1),x1x2=, 代入整理得m2+3m-4=0,解得m=-4或m=1. 故所求的直線存

6、在,且有兩條,其方程分別為x-y+1=0,x-y-4=0. 3.證明:(1)假設(shè)l1與l2不相交,則l1與l2平行,有k1=k2,代入k1k2+2=0,得k12+2=0,這與k1為實(shí)數(shù)的事實(shí)相矛盾.從而k1≠k2,即l1與l2相交. (2)方法一:由方程組 解得交點(diǎn)P的坐標(biāo)為, 而2x2+y2=2+ ===1. 此即表明交點(diǎn)P(x,y)在橢圓2x2+y2=1上. 方法二:交點(diǎn)P的坐標(biāo)(x,y)滿足故知x≠0. 從而 代入k1k2+2=0,得·+2=0. 整理后,得2x2+y2=1.所以交點(diǎn)P在橢圓2x2+y2=1上. 4.解:(1)直線AB的方程是y=2,與y2=2px聯(lián)

7、立, 從而有4x2-5px+p2=0,所以x1+x2=. 由拋物線定義得|AB|=x1+x2+p=9, 所以p=4,從而拋物線方程是y2=8x. (2)由p=4,知4x2-5px+p2=0可化為x2-5x+4=0, 從而x1=1,x2=4,y1=-2,y2=4, 從而A(1,-2),B(4,4). 設(shè)=(x3,y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2), 又y32=8x3,所以[2(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1, 解得λ=0,或λ=2. 5.解:(1)由題意,知橢圓的焦點(diǎn)在y軸上, 設(shè)橢圓方程為+=1(a>b>0), 由題意

8、,知a=2,b=c,又a2=b2+c2,則b=, 所以橢圓方程為+=1. (2)設(shè)A(x1,y1),B(x2,y2),由題意,知直線l的斜率存在, 設(shè)其方程為y=kx+m,與橢圓方程聯(lián)立, 即消去y則(2+k2)x2+2mkx+m2-4=0, Δ=(2mk)2-4(2+k2)(m2-4)>0, 由根與系數(shù)的關(guān)系,知 又=,即有(-x1,m-y1)=2(x2,y2-m),∴-x1=2x2. ∴∴=. 整理,得(9m2-4)k2=8-2m2, 又9m2-4=0時不成立,所以k2=>0,得<m2<4, 此時Δ>0,所以m的取值范圍為∪. 6.解:設(shè)A(x1,y1),B(x2,

9、y2), 由題意知,y1<0,y2>0. (1)直線l的方程為y=(x-c),其中c=. 聯(lián)立得(3a2+b2)y2+2b2cy-3b4=0, 解得y1=,y2=. 因?yàn)?,所以-y1=2y2. 即=2·, 得離心率e==. (2)因?yàn)閨AB|=|y2-y1|,所以·=, 由=,得b=a. 所以a=,得a=3,b=. 橢圓C的方程為+=1. 7.解:(1)設(shè)|PF1|=m,|PF2|=n. 在△PF1F2中,由余弦定理得22=m2+n2-2mncos, 化簡得,m2+n2-mn=4. 由=,得mnsin=. 化簡得mn=. 于是(m+n)2=m2+n2-mn+3

10、mn=8. ∴m+n=2,由此可得,a=. 又∵半焦距c=1,∴b2=a2-c2=1. 因此,橢圓C的方程為+y2=1. (2)由已知得F2(1,0),直線l的方程為y=k(x-1), 由 消去y得,(2k2+1)x2-4k2x+2(k2-1)=0. 設(shè)A(x1,y1),B(x2,y2), 則x1+x2=,x1x2=. ∵= =+y1y2 =+k2(x1-1)(x2-1) =(k2+1)x1x2-(x1+x2)++k2 =(k2+1)-++k2 =+=-. 由此可知=-為定值. 8.解:(1)由題意可知,拋物線的準(zhǔn)線方程為:y=-, 所以圓心M(0,4)到準(zhǔn)線

11、的距離是. (2)設(shè)P(x0,x02),A(x1,x12),B(x2,x22),由題意得x0≠0,x0≠±1,x1≠x2. 設(shè)過點(diǎn)P的圓C2的切線方程為y-x02=k(x-x0), 即y=kx-kx0+x02.① 則=1, 即(x02-1)k2+2x0(4-x02)k+(x02-4)2-1=0. 設(shè)PA,PB的斜率為k1,k2(k1≠k2),則k1,k2是上述方程的兩根, 所以k1+k2=,k1k2=. 將①代入y=x2,得x2-kx+kx0-x02=0, 由于x0是此方程的根,故x1=k1-x0,x2=k2-x0, 所以kAB==x1+x2=k1+k2-2x0 =-2x0,. 由MP⊥AB, 得kAB·kMP=·=-1, 解得x02=, 即點(diǎn)P的坐標(biāo)為, 所以直線l的方程為y=±x+4.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!