山東省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題六 解析幾何第1講 直線與圓 理
《山東省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題六 解析幾何第1講 直線與圓 理》由會員分享,可在線閱讀,更多相關(guān)《山東省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題六 解析幾何第1講 直線與圓 理(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、專題六 解析幾何第1講 直線與圓 真題試做 1.(2012·陜西高考,理4)已知圓C:x2+y2-4x=0,l是過點P(3,0)的直線,則( ). A.l與C相交 B.l與C相切 C.l與C相離 D.以上三個選項均有可能 2.(2012天津高考,理8)設(shè)m,n∈R,若直線(m+1)x+(n+1)y-2=0與圓(x-1)2+(y-1)2=1相切,則m+n的取值范圍是( ). A.[1-,1+] B.(-∞,1-]∪[1+,+∞) C.[2-2,2+2] D.(-∞,2-2]∪[2+2,+∞) 3.(2012·重慶高考,理3)對任意的實數(shù)k,
2、直線y=kx+1與圓x2+y2=2的位置關(guān)系一定是( ). A.相離 B.相切 C.相交但直線不過圓心 D.相交且直線過圓心 4.(2012·江蘇高考,12)在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是__________. 5.(2012·江西高考,文14)過直線x+y-2=0上點P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,則點P的坐標(biāo)是__________. 6.(2012·浙江高考,文17)定義:
3、曲線C上的點到直線l的距離的最小值稱為曲線C到直線l的距離.已知曲線C1:y=x2+a到直線l:y=x的距離等于曲線C2:x2+(y+4)2=2到直線l:y=x的距離,則實數(shù)a=__________. 考向分析 直線與方程是解析幾何的基礎(chǔ),高考中主要考查基本概念和求在不同條件下的直線方程;直線平行與垂直的關(guān)系的判定;兩條直線的交點和距離問題等,一般以選擇題、填空題的形式考查.對于圓的考查,主要是結(jié)合直線的方程用幾何法或待定系數(shù)法確定圓的標(biāo)準(zhǔn)方程及一般方程;利用圓的性質(zhì)求動點的軌跡方程;直線與圓,圓與圓的位置關(guān)系等問題,其中含參數(shù)問題為命題熱點.一般以選擇題、填空題的形式考查,難度不大,從能
4、力要求看,主要考查函數(shù)與方程的思想,數(shù)形結(jié)合思想以及分析問題與解決問題的能力. 熱點例析 熱點一 直線方程與兩條直線的位置關(guān)系 經(jīng)過點P(2,-3)作圓(x+1)2+y2=25的弦AB,使點P為弦AB的中點,則弦AB所在直線方程為( ). A.x-y-5=0 B.x-y+5=0 C.x+y+5=0 D.x+y-5=0 規(guī)律方法 (1)求直線方程的方法 ①直接法:直接選用恰當(dāng)?shù)闹本€方程的形式,寫出結(jié)果; ②待定系數(shù)法:先由直線滿足的一個條件設(shè)出直線方程,使方程中含有一待定系數(shù),再由題目中另一條件求出待定系數(shù). (2)兩條直線平行與垂直的判定 ①若兩條不
5、重合的直線l1,l2的斜率k1,k2存在,則l1∥l2?k1=k2,l1⊥l2?k1k2=-1; ②兩條不重合的直線a1x+b1y+c1=0和a2x+b2y+c2=0平行的充要條件為a1b2-a2b1=0且a1c2≠a2c1或b1c2≠b2c1; ③兩條直線a1x+b1y+c1=0和a2x+b2y+c2=0垂直的充要條件為a1a2+b1b2=0.判定兩直線平行與垂直的關(guān)系時,如果給出的直線方程中存在字母系數(shù),不僅要考慮斜率存在的情況,還要考慮斜率不存在的情況. (3)忽視對直線方程中的字母分類討論而丟解或增解 直線方程的截距式+=1中,有ab≠0的限制,而截距可以取正數(shù)、負(fù)數(shù)和零,所以
6、需要對a,b分類討論,否則容易造成丟解.如過點P(2,-1),在x軸,y軸上的截距分別為a,b,且滿足a=3b的直線易漏掉過原點的情形. 變式訓(xùn)練1 (1)“a=3”是“直線ax-2y-1=0與直線6x-4y+c=0平行”的__________條件.( ) A.充要 B.充分而不必要 C.必要而不充分 D.既不充分也不必要 (2)已知圓C過點(1,0),且圓心在x軸的正半軸上,直線l:y=x-1被圓C所截得的弦長為2,則過圓心且與直線l垂直的直線的方程為__________. 熱點二 圓的方程 【例2】已知圓C經(jīng)過點A(1,3),B(2,2),并且直線m:3x-2y=0平分
7、圓的面積.求圓C的方程. 規(guī)律方法 圓的方程的求法 求圓的方程一般有兩類方法:(1)幾何法,通過研究圓的性質(zhì)、直線和圓、圓與圓的位置關(guān)系,從而求得圓的基本量和方程;(2)代數(shù)法,用待定系數(shù)法先設(shè)出圓的方程,再由條件求得各系數(shù),從而求得圓的方程一般采用待定系數(shù)法. 特別提醒:圓心到切線的距離等于半徑,該結(jié)論在解題過程中經(jīng)常用到,需牢記. 變式訓(xùn)練2 我們把圓心在一條直線上且相鄰兩圓彼此外切的一組圓叫做“串圓”.在如圖所示的“串圓”中,圓C1和圓C3的方程分別為x2+y2=1和(x-3)2+(y-4)2=1,則圓C2的方程為_______. 熱點三 直線與圓的位置關(guān)系 【例3】
8、如圖所示,已知以點A(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過點B(-2,0)的動直線l與圓A相交于M,N兩點,Q是MN的中點,直線l與l1相交于點P. (1)求圓A的方程; (2)當(dāng)|MN|=2時,求直線l的方程; (3)是否為定值?如果是,求出其定值;如果不是,請說明理由. 規(guī)律方法 (1)研究直線與圓的位置關(guān)系最基本的解題方法為代數(shù)法,將幾何問題代數(shù)化,利用函數(shù)與方程思想解題. (2)與弦長有關(guān)的問題常用幾何法,即利用圓的半徑r,圓心到直線的距離d,及半弦長,構(gòu)成直角三角形的三邊,利用其關(guān)系來處理. 變式訓(xùn)練3 已知直線l:2mx-y-8m-3=0和圓
9、C:(x-3)2+(y+6)2=25. (1)證明:不論m取什么實數(shù),直線l與圓C總相交; (2)求直線l被圓C截得的線段的最短長度以及此時直線l的方程. 思想滲透 1.?dāng)?shù)形結(jié)合思想 解答與圓有關(guān)的范圍問題時,經(jīng)常以形助數(shù),巧妙破解. 【典型例題1】若直線y=x+b與曲線y=3-有公共點,則b的取值范圍是( ). A.[-1,1+2] B.[1-2,1+2] C.[1-2,3] D.[1-,3] 解析:方程y=x+b表示斜率為1的平行直線系,曲線方程可化為(x-2)2+(y-3)2=4(1≤y≤3)表示圓心為(2,3),半徑為2的下半圓. 如圖所示,當(dāng)
10、直線y=x+b與半圓相切時須滿足圓心(2,3)到直線x-y+b=0的距離等于2,即=2,解得b=1-2或b=1+2(舍). 當(dāng)直線y=x+b過點(0,3)時,可得b=3,由圖可知滿足題意的b的取值范圍為1-2≤b≤3. 答案:C 2.分類討論思想 遇到字母時往往要對其進(jìn)行討論. 【典型例題2】試判斷方程x2+y2+4x+2my+8=0表示的曲線類型. 解:將x2+y2+4x+2my+8=0配方,得(x+2)2+(y+m)2=m2-4. (1)當(dāng)m2-4>0, 即m<-2或m>2時,原方程表示以(-2,-m)為圓心,為半徑的圓; (2)當(dāng)m2-4=0, 即m=±2時,原方
11、程表示點(-2,-2)或(-2,2); (3)當(dāng)m2-4<0, 即-2<m<2時,原方程不表示任何曲線. 1.“a=b”是“直線y=x+2與圓(x-a)2+(y-b)2=2相切”的( ). A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 2.已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為( ). A.(x+1)2+(y-1)2=2 B.(x-1)2+(y+1)2=2 C.(x-1)2+(y-1)2=2 D.(x+1)2+(y+1)2=2 3.(2012·安徽安慶二模,5)已知圓C:x2+y
12、2-2x+4y-4=0,直線l:2x+y=0,則圓C上的點到直線l的距離最大值為( ). A.1 B.2 C.3 D.4 4.(2012·山東濰坊二模,14)若a,b,c是Rt△ABC的三邊的長(c為斜邊長),則圓C:x2+y2=4被直線l:ax+by+c=0所截得的弦長為__________. 5.(2012·吉林長春實驗中學(xué)二模,14)圓心在直線x-2y-1=0上,且經(jīng)過原點和點(2,1)的圓的方程為__________. 6.(2012·湖北武昌5月模擬,13)在圓x2+y2=4上的點,與直線l:4x+3y-12=0的距離的最小值是__________.
13、 7.已知直線l過點P(0,2),斜率為k,圓Q:x2+y2-12x+32=0. (1)若直線l和圓相切,求直線l的方程; (2)若直線l和圓交于A,B兩個不同的點,問是否存在常數(shù)k,使得與共線?若存在,求出k的值;若不存在,請說明理由. 參考答案 命題調(diào)研·明晰考向 真題試做 1.A 解析:由題意可知圓心坐標(biāo)為(2,0),半徑r=2.因為點P(3,0)到圓心的距離d==1<2, 所以點P在圓內(nèi).故直線l與圓C相交. 2.D 解析:直線與圓相切, ∴=1, ∴|m+n|=, 即:mn=m+n+1, 設(shè)m+n=t,則mn≤2=, ∴t+1≤,∴t2-4t-4≥0,
14、解得:t≤2-2或t≥2+2. 3.C 解析:直線y=kx+1過定點(0,1),而02+12<2, 所以點(0,1)在圓x2+y2=2內(nèi)部,直線y=kx+1與圓x2+y2=2相交且直線不經(jīng)過圓心,故選C. 4. 解析:圓C的方程可化為(x-4)2+y2=1,直線y=kx-2是過定點(0,-2)的動直線.圓心C到直線y=kx-2的距離d=,要使其滿足已知條件,則需d≤1+1, 即≤1+1,解得0≤k≤. 故k的最大值為. 5.(,) 解析:如圖所示,過P點作圓x2+y2=1的兩條切線,切點分別為A,B,由已知得,∠APO=30°,所以|PO|=2. 設(shè)P點坐標(biāo)為(x0,y0),
15、 則解得 故所求坐標(biāo)為(,). 6. 解析:x2+(y+4)2=2到直線y=x的距離為-=, 所以y=x2+a到y(tǒng)=x的距離為,而與y=x平行且距離為的直線有兩條,分別是y=x+2與y=x-2,而拋物線y=x2+a開口向上,所以y=x2+a與y=x+2相切,可求得a=. 精要例析·聚焦熱點 熱點例析 【例1】A 解析:設(shè)圓心為C,則AB垂直于CP. kCP==-1,故直線AB:y+3=x-2,即x-y-5=0,故選A. 【變式訓(xùn)練1】(1)C 解析:兩條直線平行的充要條件是:=≠, 即故“a=3”是“直線ax-2y-1=0與直線6x-4y+c=0平行”的必要而不充分條件.
16、 (2)x+y-3=0 解析:設(shè)圓心坐標(biāo)為(x0,0)(x0>0). 由于圓過點(1,0),則半徑r=|x0-1|,圓心到直線l的距離d=. 由弦長為2可知2=(x0-1)2-2,整理得(x0-1)2=4. ∴x0-1=±2,∴x0=3或x0=-1(舍去). 因此圓心為(3,0),由此可求得過圓心且與直線y=x-1垂直的直線方程為y=-(x-3),即x+y-3=0. 【例2】解:由已知得,線段AB的中點E,kAB==-1,故線段AB的中垂線方程為y-=x-,即x-y+1=0. 因為圓C經(jīng)過A,B兩點,故圓心在線段AB的中垂線上, 又因為直線m:3x-2y=0平分圓的面積, 所以
17、直線m經(jīng)過圓心. 由解得即圓心C(2,3). 而圓的半徑r=|CB|==1, 所以圓C的方程為(x-2)2+(y-3)2=1. 【變式訓(xùn)練2】2+(y-2)2= 解析:易求出C1(0,0),半徑r1=1, 圓心C3(3,4),半徑r3=1. 設(shè)圓C2的圓心坐標(biāo)為C2(a,b),半徑r2,據(jù)題意即可解出故圓C2的方程為2+(y-2)2=. 【例3】解:(1)設(shè)圓A的半徑為R. ∵圓A與直線l1:x+2y+7=0相切, ∴R==2. ∴圓A的方程為(x+1)2+(y-2)2=20. (2)當(dāng)直線l與x軸垂直時,易知x=-2符合題意; 當(dāng)直線l與x軸不垂直時,設(shè)直線l的方程
18、為y=k(x+2),即kx-y+2k=0. 連接AQ,則AQ⊥MN. ∵|MN|=2, ∴|AQ|==1. 由|AQ|==1,得k=, ∴直線l的方程為3x-4y+6=0. ∴所求直線l的方程為x=-2或3x-4y+6=0. (3)∵AQ⊥BP,∴, ∴ . 當(dāng)直線l與x軸垂直時,得P,則=. 又=(1,2),∴. 當(dāng)直線l的斜率存在時,設(shè)直線l的方程為y=k(x+2). 由 解得P, ∴=, ∴=-=-5. 綜上所述,是定值,且. 【變式訓(xùn)練3】(方法一)(1)證明:設(shè)圓心C到直線l的距離為d,則有d=, 整理可得4(d2-1)m2+12m+d2-9=0
19、,① 為使上面關(guān)于m的方程有實數(shù)解, 則Δ=122-16(d2-1)(d2-9)≥0,解得0≤d≤. 可得d<5,故不論m為何實數(shù),直線l與圓C總相交. (2)解:由(1)可知0≤d≤,即d的最大值為. 根據(jù)平面幾何知識可知:當(dāng)圓心到直線l的距離最大時,直線l被圓C截得的線段長度最短. ∴當(dāng)d=時,線段(即弦)的最短長度為2=2. 將d=代入①可得m=-,代入直線l的方程得直線被圓C截得最短線段時l的方程為x+3y+5=0. (方法二)(1)證明:將直線l的方程變形有:m(2x-8)-y-3=0, 解得知直線l過定點A(4,-3). 又∵(4-3)2+(-3+6)2<25,
20、∴A點在圓C內(nèi)部,因此直線l與圓C總相交. (2)同方法一. 創(chuàng)新模擬·預(yù)測演練 1.A 解析:直線y=x+2與圓(x-a)2+(y-b)2=2相切?圓心(a,b)到直線y=x+2的距離d=r,即=,|a-b+2|=2.解得a-b=0或a-b=-4,故選A. 2.B 解析:由圓心在直線x+y=0上,不妨設(shè)為C(a,-a), ∴r==, 解得a=1,r=, ∴圓C的方程為(x-1)2+(y+1)2=2. 3.C 解析:可利用數(shù)形結(jié)合法進(jìn)行分析解決. 4.2 5.2+2= 解析:設(shè)所求圓的方程為(x-a)2+(y-b)2=r2, 由題設(shè)可得解此方程組,得所以所求圓的方程為2
21、+2=. 6. 解析:圓的半徑是2,圓心O(0,0)到l:4x+3y-12=0的距離d==,所以圓x2+y2=4上的點與直線l:4x+3y-12=0的距離的最小值是-2=. 7.解:(1)將圓的方程化簡,得(x-6)2+y2=4.圓心Q(6,0),半徑r=2. 直線l的方程為:y=kx+2, 故圓心到直線l的距離d==,因為直線l和圓相切,故d=r,即=2,解得k=0或k=-,所以,直線l的方程為y=2或3x+4y-8=0. (2)將直線l的方程和圓的方程聯(lián)立得 消y得(1+k2)x2+4(k-3)x+36=0, 因為直線l和圓相交,故Δ=[4(k-3)]2-4×36×(1+k2)>0,解得-<k<0. 設(shè)A(x1,y1),B(x2,y2), 則有 而y1+y2=kx1+2+kx2+2=k(x1+x2)+4,=(x1+x2,y1+y2),=(6,-2). 因為與共線, 所以-2×(x1+x2)=6×(y1+y2), 即(1+3k)(x1+x2)+12=0, 代入得(1+3k)+12=0,解得k=-. 又因為-<k<0,所以沒有符合條件的常數(shù)k.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 社保與商保區(qū)別
- 蘇少版小學(xué)二年級上冊音樂(五線譜)全冊ppt課件
- 抗生素基礎(chǔ)知識課件
- 人教版高中英語選修六Unit2Readingppt課件新
- 高一下學(xué)期開學(xué)收心主題班會全解課件
- 培訓(xùn)管理手冊的說明課件
- 蘇教化學(xué)必修江蘇專用專題單元課時電能轉(zhuǎn)化為化學(xué)能課件
- 部編版《掌聲》課件
- 小學(xué)綜合實踐活動《我有一雙小巧手:不倒翁》課件
- 2021年蘇教版一年級科學(xué)下冊全冊ppt課件
- 統(tǒng)(部)編版語文五年級下冊13-人物描寫一組教學(xué)PPT-附教案、說課稿和課時練課件
- 六年級科學(xué)上冊-生活中的能量ppt課件-冀教版
- 幼兒園課件-小班社會活動:我能我會
- 【新人教版】一年級數(shù)學(xué)上冊10的認(rèn)識和加減法課件
- 23電阻的串聯(lián)和并聯(lián)