《(浙江專用)2020版高考數(shù)學新增分大一輪復習 第九章 平面解析幾何 專題突破六 高考中的圓錐曲線問題(第3課時)證明與探索性問題課件.ppt》由會員分享,可在線閱讀,更多相關《(浙江專用)2020版高考數(shù)學新增分大一輪復習 第九章 平面解析幾何 專題突破六 高考中的圓錐曲線問題(第3課時)證明與探索性問題課件.ppt(56頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第3課時證明與探索性問題,,第九章高考專題突破六高考中的圓錐曲線問題,,NEIRONGSUOYIN,內(nèi)容索引,題型分類 深度剖析,課時作業(yè),題型分類深度剖析,1,PART ONE,,題型一證明問題,,師生共研,(1)求點P的軌跡方程;,解設P(x,y),M(x0,y0),,因為M(x0,y0)在C上,,因此點P的軌跡方程為x2y22.,證明由題意知F(1,0).,又由(1)知m2n22,故33mtn0.,又過點P存在唯一直線垂直于OQ, 所以過點P且垂直于OQ的直線l過C的左焦點F.,設Q(3,t),P(m,n),,圓錐曲線中的證明問題多涉及證明定值、點在定直線上等,有時也涉及一些否定性命題,
2、證明方法一般是采用直接法或反證法.,(1)求橢圓T的方程;,又a2b2c2, 聯(lián)立解得a23,b21.,(2)求證:PMPN.,縱坐標為1,PM斜率不存在,PN斜率為0,PMPN.,又kPM,kPN為方程的兩根,,所以PMPN. 綜上知PMPN.,縱坐標為1,PM斜率不存在,PN斜率為0,PMPN.,聯(lián)立得(13k2)x212k(sin kcos )x12(sin kcos )230, 令0, 即144k2(sin kcos )24(13k2)12(sin kcos )230,,所以PMPN. 綜上知PMPN.,化簡得(34cos2)k24sin 2k14sin20,,,題型二探索性問題,,師
3、生共研,(1)求橢圓E的方程;,(2)若過點F作與x軸不垂直的直線l交橢圓于P,Q兩點,在線段OF上是否存在點M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請說明理由.,解在線段OF上存在點M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形. 因為直線l與x軸不垂直, 則可設直線l的方程為yk(x1)(k0),P(x1,y1),Q(x2,y2),x1x2,,因為以MP,MQ為鄰邊的平行四邊形是菱形, 所以|MP||MQ|,,所以在線段OF上存在點M(m,0),,解決探索性問題的注意事項 探索性問題,先假設存在,推證滿足條件的結論,若結論正確則存
4、在,若結論不正確則不存在. (1)當條件和結論不唯一時要分類討論; (2)當給出結論而要推導出存在的條件時,先假設成立,再推出條件; (3)當條件和結論都不知,按常規(guī)方法解題很難時,要開放思維,采取另外合適的方法.,(1)當k0時,分別求C在點M和N處的切線方程;,(2)y軸上是否存在點P,使得當k變動時,總有OPMOPN?請說明理由.,解存在符合題意的點,證明如下: 設P(0,b)為符合題意的點,M(x1,y1),N(x2,y2), 直線PM,PN的斜率分別為k1,k2. 將ykxa代入C的方程得x24kx4a0. 故x1x24k,x1x24a.,當ba時,有k1k20, 則直線PM的傾斜角
5、與直線PN的傾斜角互補, 故OPMOPN,所以點P(0,a)符合題意.,課時作業(yè),2,PART TWO,,基礎保分練,1,2,3,4,5,6,(1)求橢圓C的方程;,,1,2,3,4,5,6,(2)過點A(2,0)作直線AQ交橢圓C于另外一點Q,交y軸于點R,P為橢圓C上一點,且AQOP,,,1,2,3,4,5,6,證明顯然直線AQ斜率存在,設直線AQ:yk(x2),R(0,2k),P(xP,yP),,,1,2,3,4,5,6,令直線OP為ykx且令xP0.,,1,2,3,4,5,6,(1)求橢圓C的標準方程;,(2)若經(jīng)過點P(1,0)的直線l交橢圓C于A,B兩點,是否存在直線l0:xx0(
6、x02),使得A,B到直線l0的距離dA,dB滿足 恒成立,若存在,求出x0的值;若不存在,請說明理由.,,1,2,3,4,5,6,解若直線l的斜率不存在,則直線l0為任意直線都滿足要求; 當直線l的斜率存在時,設其方程為yk(x1), 設A(x1,y1),B(x2,y2)(不妨令x11x2), 則dAx0 x1,dBx0 x2,,,1,2,3,4,5,6,,由題意知,0顯然成立,,綜上可知,存在直線l0:x4,,1,2,3,4,5,6,,1,2,3,4,5,6,3.已知頂點是坐標原點的拋物線的焦點F在y軸正半軸上,圓心在直線y 上的圓E與x軸相切,且E,F(xiàn)關于點M(1,0)對稱. (1
7、)求E和的標準方程;,,因為E,F(xiàn)關于M(1,0)對稱,,所以的標準方程為x24y. 因為E與x軸相切,故半徑r|a|1, 所以E的標準方程為(x2)2(y1)21.,1,2,3,4,5,6,,1,2,3,4,5,6,,證明由題意知,直線l的斜率存在, 設l的斜率為k,那么其方程為yk(x1)(k0),,因為l與E交于A,B兩點,,1,2,3,4,5,6,,16k216k0恒成立, 設C(x1,y1),D(x2,y2),則x1x24k,x1x24k,,1,2,3,4,5,6,4.已知橢圓 1(ab0)的長軸與短軸之和為6,橢圓上任一點到兩焦點F1,F(xiàn)2的距離之和為4. (1)求橢圓的標準
8、方程;,,1,2,3,4,5,6,解由題意,2a4,2a2b6, a2,b1.,,(2)若直線AB:yxm與橢圓交于A,B兩點,C,D在橢圓上,且C,D兩點關于直線AB對稱,問:是否存在實數(shù)m,使|AB| 若存在,求出m的值;若不存在,請說明理由.,1,2,3,4,5,6,解C,D關于直線AB對稱, 設直線CD的方程為yxt,,,64t245(4t24)0, 解得t2<5, 設C,D兩點的坐標分別為(x1,y1),(x2,y2),,1,2,3,4,5,6,設CD的中點為M(x0,y0),,,又點M也在直線yxm上,,1,2,3,4,5,6,,1,2,3,4,5,6,,1,2,3,4,5,
9、6,技能提升練,(1)求直線ON的斜率kON;,,解設橢圓的焦距為2c,,從而橢圓C的方程可化為x23y23b2.,1,2,3,4,5,6,設A(x1,y1),B(x2,y2),弦AB的中點N(x0,y0),,,1,2,3,4,5,6,,設M(x,y),由(1)中各點的坐標有(x,y)(x1,y1)(x2,y2), 故xx1x2,yy1y2. 又因為點M在橢圓C上,所以有(x1x2)23(y1y2)23b2,,1,2,3,4,5,6,,又點A,B在橢圓C上,,將,代入可得221.,1,2,3,4,5,6,,所以,對于橢圓上的每一個點M,總存在一對實數(shù),,所以存在0,2),使得cos ,sin
10、. 也就是:對于橢圓C上任意一點M,,1,2,3,4,5,6,,1,2,3,4,5,6,,拓展沖刺練,(1)求橢圓C的標準方程;,,1,2,3,4,5,6,,解方法一由題意及橢圓的定義,,,1,2,3,4,5,6,,,1,2,3,4,5,6,,解由(1)可得N(0,1). 顯然當直線l的斜率不存在時,不滿足題意, 則直線l的斜率存在,設直線l的方程為ykxm,,36k2m212(13k2)(m21)12(13k2m2)0, 設A(x1,y1),B(x2,y2),,,1,2,3,4,5,6,,,1,2,3,4,5,6,,所以x1x2y1y2(y1y2)10,,,1,2,3,4,5,6,,化簡得k42k210,解得k21,k1,此時0,符合題意.,此時0,符合題意. 綜上所述,存在滿足題意的直線l,且直線l的條數(shù)為4.,