9、于對式子進(jìn)行恰當(dāng)?shù)霓D(zhuǎn)化、變形.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,對點(diǎn)訓(xùn)練3設(shè)a,b,c,d均為正數(shù),且a+b=c+d,證明:,答案,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,考向1利用基本不等式求最值 (1)求a3+b3的最小值; (2)是否存在a,b,使得2a+3b=6?并說明理由.,答案,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,解題心得如果題設(shè)條件有(或者經(jīng)過化簡題設(shè)條件得到)兩個正數(shù)和或兩個正數(shù)積為定值,則可利用基本不等式求兩個正數(shù)積的最大值或兩個正數(shù)和的最小值.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,對點(diǎn)訓(xùn)練4(2017遼寧大連一模)已知a0,b0,函數(shù)f(x)=|x+a|+|2x-b|的最小值為1. (1)
10、求證:2a+b=2; (2)若a+2btab恒成立,求實(shí)數(shù)t的最大值.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,考向2利用柯西不等式求最值 例5(2017四川成都二診)已知函數(shù)f(x)=4-|x|-|x-3|.,答案,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,解題心得利用柯西不等式求最值時(shí),一定要滿足柯西不等式的形式,有時(shí)需要變形才能利用柯西不等式.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,對點(diǎn)訓(xùn)練5(2017河南洛陽一模)已知關(guān)于x的不等式|x+3|+|x+m|2m的解集為R. (1)求m的最大值; (2)已知a0,b0,c0,且a+b+c=1,求2a2+3b2+4c2的最小值及此時(shí)a
11、,b,c的值.,答案,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,(1)證明:f(x)2; (2)若f(3)<5,求a的取值范圍.,答案,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,解題心得絕對值三角不等式、基本不等式在解決多變量代數(shù)式的最值問題中有著重要的應(yīng)用,無論運(yùn)用絕對值三角不等式還是運(yùn)用基本不等式時(shí)應(yīng)注意等號成立的條件.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,對點(diǎn)訓(xùn)練6(2017湖南長沙一模)已知f(x)=|x-a|+|x-3|. (1)當(dāng)a=1時(shí),求f(x)的最小值; (2)若不等式f(x)3的解集非空,求a的取值范圍.,答案,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,1.含絕對值不等式的恒成立問題的求解方法 (1)分離參
12、數(shù)法:運(yùn)用“f(x)af(x)maxa,f(x)af(x)mina”可解決恒成立中的參數(shù)范圍問題. (2)數(shù)形結(jié)合法:在研究不等式f(x)g(x)恒成立問題時(shí),若能作出兩個函數(shù)的圖象,則通過圖象的位置關(guān)系可直觀解決問題. 2.含絕對值不等式的證明,可用“零點(diǎn)分段法”討論去掉絕對值符號,也可利用重要不等式|a+b||a|+|b|及其推廣形式|a1+a2++an||a1|+|a2|++|an|. 3.不等式求解和證明中應(yīng)注意的事項(xiàng) (1)作差比較法適用的主要是多項(xiàng)式、分式、對數(shù)式、三角式,作商比較法適用的主要是高次冪乘積結(jié)構(gòu). (2)利用柯西不等式求最值,實(shí)質(zhì)上就是利用柯西不等式進(jìn)行放縮,放縮不當(dāng)則等號可能不成立,因此,要切記檢驗(yàn)等號成立的條件.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,1.在解決有關(guān)絕對值不等式的問題時(shí),充分利用絕對值不等式的幾何意義解決問題能有效避免分類討論不全面的問題.若用零點(diǎn)分段法求解,要掌握分類討論的標(biāo)準(zhǔn),做到不重不漏. 2.在利用算術(shù)-幾何平均不等式或柯西不等式求最值時(shí),要注意檢驗(yàn)等號成立的條件,特別是多次使用不等式時(shí),必須使等號同時(shí)成立.,