《(福建專用)2019高考數(shù)學一輪復習 第八章 立體幾何 8.6 空間向量及其運算課件 理 新人教A版.ppt》由會員分享,可在線閱讀,更多相關《(福建專用)2019高考數(shù)學一輪復習 第八章 立體幾何 8.6 空間向量及其運算課件 理 新人教A版.ppt(31頁珍藏版)》請在裝配圖網上搜索。
1、8.6空間向量及其運算,知識梳理,考點自測,1.空間向量的有關概念 (1)空間向量:在空間中,具有和的量叫做空間向量,其大小叫做向量的或. (2)相等向量:方向且模的向量. (3)共線向量:如果表示空間向量的有向線段所在的直線_______或,則這些向量叫做或,a平行于b記作ab. (4)共面向量:平行于同一的向量叫做共面向量.,大小,方向,長度,模,相同,相等,平行,重合,共線向量,平行向量,平面,知識梳理,考點自測,2.空間向量的有關定理 (1)共線向量定理:對空間任意兩個向量a,b(b0),ab存在R,使a=b. (2)共面向量定理:若兩個向量a,b不共線,則向量p與向量a,b共面存在唯
2、一的有序實數(shù)對(x,y),使p=xa+yb. (3)空間向量基本定理:如果三個向量a,b,c不共面,那么對空間任一向量p,存在唯一的有序實數(shù)組x,y,z使得p=xa+yb+zc.其中a,b,c叫做空間的一個基底. 3.兩個向量的數(shù)量積 (1)ab=|a||b|cos. (2)ab (a,b為非零向量). (3)|a|2=.,ab=0,a2,知識梳理,考點自測,4.空間向量的坐標運算 (1)設a=(a1,a2,a3),b=(b1,b2,b3),則 a+b=. a-b=. a=. ab=.,(a1+b1,a2+b2,a3+b3),(a1-b1,a2-b2,a3-b3),(a1,a2,a3),a1b
3、1+a2b2+a3b3,(x2-x1.y2-y1,z2-z1),知識梳理,考點自測,知識梳理,考點自測,2,3,4,1,5,1.下列結論正確的畫“”,錯誤的畫“”. (1)若A,B,C,D是空間任意四點,則有 (2)|a|-|b|=|a+b|是a,b共線的充要條件.() (3)空間中任意兩非零向量a,b共面.() (4)對于空間非零向量a,b,abab=0.() (5)對于非零向量b,由ab=bc,得a=c.(),答案,知識梳理,考點自測,2,3,4,1,5,2.若x,yR,有下列命題: 若p=xa+yb,則p與a,b共面; 若p與a,b共面,則p=xa+yb; 其中真命題的個數(shù)是() A.1
4、B.2C.3D.4,答案,解析,知識梳理,考點自測,2,3,4,1,5,3.已知向量a=(+1,0,2),b=(6,2-1,2),若ab,則與的值可以是() C.-3,2D.2,2,答案,解析,知識梳理,考點自測,2,3,4,1,5,4.若向量a=(2,-2,-2),b=(2,0,4),則a與b的夾角的余弦值為(),答案,解析,知識梳理,考點自測,2,3,4,1,5,5.如圖,在一個60的二面角的棱上,有兩個點A,B,AC,BD分別是在這個二面角的兩個半平面內垂直于AB的線段,且AB=4,AC=6,BD=8,則CD的長為.,答案,解析,考點1,考點2,考點3,考點4,考點1,考點2,考點3,考
5、點4,考點1,考點2,考點3,考點4,考點1,考點2,考點3,考點4,思考空間向量的線性運算與平面向量的線性運算有什么區(qū)別與聯(lián)系? 解題心得1.選定空間不共面的三個向量作基向量,并用它們表示出指定的向量,這是用向量解決立體幾何問題的基本要求,另外解題時應結合已知和所求,觀察圖形,聯(lián)想相關的運算法則和公式等,就近表示所需向量. 2.空間向量問題可以轉化為平面向量問題來解決,即把空間向量轉化到某一個平面上,利用三角形法則或平行四邊形法則來解決.,考點1,考點2,考點3,考點4,對點訓練1在三棱錐O-ABC中,M,N分別是OA,BC的中點,G是ABC的重心,用基向量,答案,考點1,考點2,考點3,考
6、點4,例2已知E,F,G,H分別是空間四邊形ABCD的邊AB,BC,CD,DA的中點,用向量方法證明: (1)E,F,G,H四點共面; (2)BD平面EFGH.,考點1,考點2,考點3,考點4,考點1,考點2,考點3,考點4,思考共線定理、共面定理有哪些應用?,考點1,考點2,考點3,考點4,對點訓練2如圖,已知斜三棱柱ABC-A1B1C1,點M,N分別在AC1和BC上,且滿足 (2)直線MN是否與平面ABB1A1平行?,答案,考點1,考點2,考點3,考點4,例3已知向量a=(1,2,3),b=(-2,-4,-6),|c|= ,若(a+b)c=7,則a與c的夾角為() A.30B.60C
7、.120D.150,答案,解析,考點1,考點2,考點3,考點4,思考空間向量用空間直角坐標系的坐標表示的主要用途有哪些? 解題心得空間向量的坐標表示主要應用于向量平行、向量垂直、向量的模、向量的夾角,在研究幾何問題中只要建立適當?shù)淖鴺讼?把空間幾何體中涉及的直線和平面用向量表示,就可以使得幾何證明通過代數(shù)運算得到解決,這是使用空間向量研究立體幾何問題的基本思想.,考點1,考點2,考點3,考點4,對點訓練3(2017廣東中山模擬)已知向量a,b滿足條件: |a|=2,|b|= ,且a與2b-a互相垂直,則a與b的夾角為.,答案,解析,考點1,考點2,考點3,考點4,例4如圖所示,在平行六面體A
8、BCD-A1B1C1D1中,以頂點A為端點的三條棱長都為1,且兩兩夾角為60. (1)求AC1的長; (2)求證:AC1BD; (3)求BD1與AC夾角的余弦值.,考點1,考點2,考點3,考點4,考點1,考點2,考點3,考點4,考點1,考點2,考點3,考點4,思考空間向量的數(shù)量積主要有哪些應用? 解題心得空間向量數(shù)量積的應用 (1)求夾角.設向量a,b所成的角為,則 ,進而可求兩異面直線所成的角. (2)求長度(距離).運用公式|a|2=aa,可使線段長度的計算問題轉化為向量數(shù)量積的計算問題. (3)解決垂直問題.利用abab=0(a0,b0),可將垂直問題轉化為向量數(shù)量積的計算問題.
9、,考點1,考點2,考點3,考點4,對點訓練4如圖,四棱錐P-ABCD的底面ABCD為直角梯形,ADBC,BAD=90,PA底面ABCD,且PA=AD=AB=1. (1)若BC=3,求異面直線PC與BD所成角的余弦值; (2)若BC=2,求證:平面BPC平面PCD.,考點1,考點2,考點3,考點4,考點1,考點2,考點3,考點4,考點1,考點2,考點3,考點4,1.利用向量的線性運算和空間向量基本定理表示向量是向量應用的基礎. 2.利用共線向量定理、共面向量定理可以證明一些平行、共面問題;利用數(shù)量積運算可以解決一些距離、夾角問題. 3.利用向量解立體幾何題的一般方法:把線段或角度轉化為用向量表示,用已知向量表示未知向量,然后通過向量的運算或證明去解決問題.,考點1,考點2,考點3,考點4,1.向量的數(shù)量積滿足交換律、分配律,但不滿足結合律,即ab=ba,a(b+c)=ab+ac成立,(ab)c=a(bc)不一定成立. 3.求異面直線所成的角,一般可以轉化為兩向量的夾角,但要注意兩種角的范圍不同,最后應進行轉化.,