《廣東省珠海市2021年中考數(shù)學試卷B卷》由會員分享,可在線閱讀,更多相關《廣東省珠海市2021年中考數(shù)學試卷B卷(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、廣東省珠海市2021年中考數(shù)學試卷B卷
姓名:________ 班級:________ 成績:________
一、 選擇題 (共8題;共16分)
1. (2分) (2015七上龍崗期末) 若兩個數(shù)絕對值之差為0,則這兩個數(shù)( )
A . 相等
B . 互為相反數(shù)
C . 都為0
D . 相等或互為相反數(shù)
2. (2分) 若與-8ab2x是同類項,則x+y的值是( )
A . -1
B . 0
C . 1
D . 2
3. (2分) (2018七上平頂山期末) 現(xiàn)在網(wǎng)購越來越多地成為人們的主要消費方式,在201
2、8年的“雙十一”網(wǎng)上促銷活動中,天貓的支付交易額突破2135億元,其中數(shù)據(jù)2135億用科學記數(shù)法表示為( )
A .
B .
C .
D .
4. (2分) (2017八下蒙城期末) 在端午節(jié)道來之前,雙十中學高中部食堂推薦了A,B,C三家粽子專賣店,對全校師生愛吃哪家店的粽子作調查,以決定最終向哪家店采購.下面的統(tǒng)計量中最值得關注的是( )
A . 方差
B . 平均數(shù)
C . 中位數(shù)
D . 眾數(shù)
5. (2分) 某電視臺每播放18分鐘節(jié)目便插播2分鐘廣告,打開電視收看該臺恰好遇到廣告的概率是( )
A .
B .
C .
D
3、 .
6. (2分) (2019七上福田期末) 對如圖的幾何體變換位置或視角,則可以得到的幾何體是( )
A .
B .
C .
D .
7. (2分) (2018九上番禺期末) 關于 的二次函數(shù) ,下列說法正確的是( )
A . 圖象的開口向上
B . 圖象與 軸的交點坐標為(0,2)
C . 當 時, 隨 的增大而減小
D . 圖象的頂點坐標是(-1,2)
8. (2分) (2016八下涼州期中) 如圖,菱形ABCD的兩條對角線相交于O,若AC=6,BD=4,則菱形ABCD的周長是( )
A . 24
B .
4、16
C . 4
D . 2
二、 填空題 (共8題;共8分)
9. (1分) (2018八上江都月考) 函數(shù)y= 的自變量x的取值范圍為________.
10. (1分) (2019八上定安期末) 若m-n=2,則m2-2mn+n2=________.
11. (1分) 如圖,在△ABC中,DE∥BC,且AD=2,DB=3,則 =________.
12. (1分) (2019九上道外期末) 點A(2,﹣4)在反比例函數(shù)y= 的圖象上,則k的值等于________.
13. (1分) (2017高淳模擬) 如圖,點A,B,C在⊙O上,∠ACB的度數(shù)是2
5、0, 的長為π,則⊙O的半徑是________.
14. (1分) (2017鎮(zhèn)江) 如圖,AB是⊙O的直徑,AC與⊙O相切,CO交⊙O于點D.若∠CAD=30,則∠BOD=________.
15. (1分) (2018連云港) 如圖,一次函數(shù)y=kx+b的圖像與x軸、y軸分別相交于A、B兩點,⊙O經(jīng)過A、B兩點,已知AB=2,則 的值為________.
16. (1分) 如圖,菱形ABCD中,AB=AC,點E、F分別為邊AB、BC上的點,且AE=BF,連接CE、AF交于點H,連接DH交AG于點O.則下列結論①△ABF≌△CAE,②∠AHC=120,③AH+CH=DH
6、,④AD2=OD?DH中,正確的是________.
三、 解答題 (共11題;共119分)
17. (5分) (2019東陽模擬) 計算:﹣12016﹣( )﹣2+ ﹣cos60
18. (10分) (2017八下興化期中) 解方程:
(1) ;
(2) .
19. (5分) (2017深圳模擬) 解不等式組:
20. (20分) (2016九上無錫期末) 居民區(qū)內的“廣場舞”引起媒體關注,遼寧都市頻道為此進行過專訪報道.小平想了解本小區(qū)居民對“廣場舞”的看法,進行了一次抽樣調查,把居民對“廣場舞”的看法分為四個層次:A 非常贊同;B 贊同但要有時間限制
7、;C 無所謂;D 不贊同.并將調查結果繪制了圖1和圖2兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息解答下列問題:
(1) 求本次被抽查的居民有多少人?
(2) 將圖1和圖2補充完整;
(3) 求圖2中“C”層次所在扇形的圓心角的度數(shù);
(4) 估計該小區(qū)4000名居民中對“廣場舞”的看法表示贊同(包括A層次和B層次)的大約有多少人.
21. (6分) (2019合肥模擬) 如圖,甲分為三等分數(shù)字轉盤,乙為四等分數(shù)字轉盤,自由轉動轉盤.
(1) 轉動甲轉盤,指針指向的數(shù)字小于3的概率是________;
(2) 同時自由轉動兩個轉盤,用列舉的方法求兩個轉盤指針指向的
8、數(shù)字均為奇數(shù)的概率.
22. (10分) (2017八上溫州月考) 如圖,AB∥CD,CE平分∠ACD交AB于點E.
(1) 求證:△ACE是等腰三角形.
(2) 若AC=13,CE=10,求△ACE的面積.
23. (15分) (2019七上雞西期末) 如圖,在平面直角坐標系中,點M的坐標為(2,8),點N的坐標為(2,6),將線段MN向右平移4個單位長度得到線段PQ(點P和點Q分別是點M和點N的對應點),連接MP、NQ,點K是線段MP的中點.
(1) 求點K的坐標;
(2) 若長方形PMNQ以每秒1個單位長度的速度向正下方運動,(點A、B、C、D、E分別是點M、
9、N、Q、P、K的對應點),當BC與x軸重合時停止運動,連接OA、OE,設運動時間為t秒,請用含t的式子表示三角形OAE的面積S(不要求寫出t的取值范圍);
(3) 在(2)的條件下,連接OB、OD,問是否存在某一時刻t,使三角形OBD的面積等于三角形OAE的面積?若存在,請求出t值;若不存在,請說明理由.
24. (10分) 綜合題。
(1) 解不等式:5(x﹣2)+8<6(x﹣1)+7;若(1)中的不等式的最小整數(shù)解是方程2x﹣ax=3的解,求a的值.
(2) 解不等式組: ,把解集在數(shù)軸上表示出來,并寫出不等式組的所有整數(shù)解.
25. (10分) (2017崇左) 2
10、011年3月11日13時46分日本發(fā)生了9.0級大地震,伴隨著就是海嘯.山坡上有一顆與水平面垂直的大樹,海嘯過后,大樹被刮傾斜后折斷倒在山坡上,樹的頂部恰好接觸到坡面(如圖所示).已知山坡的坡角∠AEF=23,測得樹干的傾斜角為∠BAC=38,大樹被折斷部分和坡面的角∠ADC=60,AD=4米.
(1)
求∠DAC的度數(shù);
(2)
求這棵大樹折斷前高是多少米?(注:結果精確到個位)(參考數(shù)據(jù): )
26. (8分) (2017八下鄞州期中) 定義:有一個內角為90,且對角線相等的四邊形稱為準矩形.
(1) ①如圖1,準矩形ABCD中,∠ABC=90,若AB=2,BC=3
11、,則BD=________;
②如圖2,直角坐標系中,A(0,3),B(5,0),若整點P使得四邊形AOBP是準矩形,則點P的坐標是________;(整點指橫坐標、縱坐標都為整數(shù)的點)
(2) 如圖2,正方形ABCD中,點E、F分別是邊AD、AB上的點,且CF⊥BE,求證:四邊形BCEF是準矩形;
(3) 已知,準矩形ABCD中,∠ABC=90,∠BAC=60,AB=2,當△ADC為等腰三角形時,請直接寫出這個準矩形的面積是________.
27. (20分) (2017新泰模擬) 如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標原點,A、
12、B兩點的坐標分別為(﹣3,0)、(0,4),拋物線y= x2+bx+c經(jīng)過點B,且頂點在直線x= 上.
(1) 求拋物線對應的函數(shù)關系式;
(2) 若把△ABO沿x軸向右平移得到△DCE,點A、B、O的對應點分別是D、C、E,當四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
(3) 在(2)的條件下,連接BD,已知對稱軸上存在一點P使得△PBD的周長最小,求出P點的坐標;
(4) 在(2)、(3)的條件下,若點M是線段OB上的一個動點(點M與點O、B不重合),過點M作∥BD交x軸于點N,連接PM、PN,設OM的長為t,△PMN的面積為S,求S和t的
13、函數(shù)關系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時M點的坐標;若不存在,說明理由.
第 16 頁 共 16 頁
參考答案
一、 選擇題 (共8題;共16分)
1、答案:略
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、 填空題 (共8題;共8分)
9-1、
10-1、
11、答案:略
12-1、
13-1、
14-1、
15-1、
16-1、
三、 解答題 (共11題;共119分)
17-1、
18-1、
18-2、
19-1、
20、答案:略
21-1、
21-2、
22-1、
22-2、
23-1、
23-2、
23-3、
24-1、
24-2、
25-1、
25-2、
26-1、
26-2、
26-3、
27-1、
27-2、
27-3、
27-4、