喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,所見即所得,CAD圖紙均為高清圖可自行編輯,文檔WORD都可以自己編輯的哦,有疑問咨詢QQ:1064457796,,,課題后的【XX系列】為整理分類用,與內(nèi)容無關(guān),請(qǐng)忽視
密 級(jí)
分類號(hào)
編 號(hào)
成 績
本科生畢業(yè)設(shè)計(jì) (論文)
外 文 翻 譯
原 文 標(biāo) 題
History of the development of the Steering System
譯 文 標(biāo) 題
轉(zhuǎn)向系統(tǒng)的發(fā)展的歷史
作者所在系別
機(jī)電工程學(xué)院
作者所在專業(yè)
作者所在班級(jí)
作 者 姓 名
作 者 學(xué) 號(hào)
指導(dǎo)教師姓名
指導(dǎo)教師職稱
完 成 時(shí) 間
教務(wù)處制
譯文標(biāo)題
轉(zhuǎn)向系統(tǒng)的發(fā)展
原文標(biāo)題
History of the development of the Steering System
作 者
Abbott
譯 名
艾布特
國 籍
美國
原文出處
Car and Driver
摘要:車輛的基本系統(tǒng)中必須有轉(zhuǎn)向系統(tǒng),駕駛員操縱方向盤來通過轉(zhuǎn)向系統(tǒng)來控制汽車的行駛方向,達(dá)到他的行駛目的。100多年來,汽車工業(yè)機(jī)械和電子技術(shù)在不斷發(fā)展和進(jìn)步。今天的汽車不是純機(jī)械意義上的汽車,它是機(jī)械、電子、材料和其他綜合產(chǎn)品。轉(zhuǎn)向系統(tǒng)隨著汽車工業(yè)的發(fā)展在長期進(jìn)化。
關(guān)鍵詞:轉(zhuǎn)向系統(tǒng) 汽車 駕駛 發(fā)展
轉(zhuǎn)向系統(tǒng)的發(fā)展
轉(zhuǎn)向系統(tǒng)在車輛系統(tǒng)的基本系統(tǒng)是必要的,司機(jī)通過方向盤來操縱和控制汽車的方向旅行,以實(shí)現(xiàn)他的駕駛意圖。
100多年來,汽車工業(yè)機(jī)械和電子技術(shù)的發(fā)展和進(jìn)步。今天,汽車不是純機(jī)械意義上的汽車,它是機(jī)械、電子、材料和其他綜合產(chǎn)品。轉(zhuǎn)向系統(tǒng)隨著汽車工業(yè)的發(fā)展在長期進(jìn)化。
傳統(tǒng)的轉(zhuǎn)向系統(tǒng)是機(jī)械轉(zhuǎn)向系統(tǒng),汽車方向盤,通過引導(dǎo)控制等一系列的機(jī)械零件方向盤實(shí)現(xiàn)偏轉(zhuǎn),從而實(shí)現(xiàn)轉(zhuǎn)向。
在1950年代,液壓動(dòng)力轉(zhuǎn)向系統(tǒng)在汽車應(yīng)用,標(biāo)志著轉(zhuǎn)向系統(tǒng)的開始。源以前的人類和液壓動(dòng)力轉(zhuǎn)向的助推器。
HPS液壓助力器(液壓動(dòng)力轉(zhuǎn)向)是基于機(jī)械轉(zhuǎn)向系統(tǒng)和液壓系統(tǒng)增加了。液壓系統(tǒng)和發(fā)動(dòng)機(jī),當(dāng)將軍的一部分引擎啟動(dòng)時(shí),提供汽車發(fā)動(dòng)機(jī)功率,另一部分動(dòng)能的液壓系統(tǒng)。由于其可靠工作,成熟的技術(shù)仍然得到了廣泛的應(yīng)用。轉(zhuǎn)向系統(tǒng)的主要特點(diǎn)是流體壓力,減少司機(jī)方向盤的支持,改善了操舵燈和汽車操作穩(wěn)定性。
但與此同時(shí),也有一些液壓系統(tǒng)缺陷:完成針對(duì)汽車設(shè)計(jì)和制造的汽車轉(zhuǎn)向,若不能改變的動(dòng)力學(xué)特征后。直接后果是,在低功率動(dòng)態(tài)特征時(shí),汽車在低段可以很好,但在高速段感的好方法,因?yàn)椴荒苷{(diào)整動(dòng)力特征,沒有更好的方式驅(qū)動(dòng),高功率的動(dòng)態(tài)特征時(shí),以低段參數(shù)效果不是很好,如果沒有,目標(biāo)車輛液壓系統(tǒng)也必須在發(fā)動(dòng)機(jī)驅(qū)動(dòng)。因此,能源消耗,增加燃料發(fā)動(dòng)機(jī),現(xiàn)有的液壓油泄漏問題應(yīng)該不僅污染環(huán)境,而且容易影響其他組件。針對(duì)低溫,液壓系統(tǒng)性能很差。
近年來,隨著電子技術(shù)的廣泛應(yīng)用,轉(zhuǎn)向系統(tǒng)也越來越多的使用電子設(shè)備。因此,變成使用電子控制系統(tǒng)出現(xiàn)相應(yīng)的電動(dòng)液壓助力轉(zhuǎn)向系統(tǒng)。電動(dòng)液壓動(dòng)力轉(zhuǎn)向系統(tǒng)可以分為兩類:電動(dòng)液壓操舵系統(tǒng)(電液壓動(dòng)力(EHPS)和電動(dòng)液壓轉(zhuǎn)向電子控制轉(zhuǎn)向(液壓動(dòng)力轉(zhuǎn)向)。電動(dòng)液壓操舵系統(tǒng)在液壓動(dòng)力系統(tǒng)的基礎(chǔ)上開發(fā)的液壓增壓系統(tǒng),不同的是,電動(dòng)液壓系統(tǒng)液壓系統(tǒng)的電源,但不是由汽車發(fā)動(dòng)機(jī)汽車驅(qū)動(dòng)液壓系統(tǒng),節(jié)約能源,降低發(fā)動(dòng)機(jī)油耗。電動(dòng)液壓操舵裝置是在傳統(tǒng)的液壓助力系統(tǒng)的基礎(chǔ)上開發(fā),所不同的是,電動(dòng)液壓操舵系統(tǒng),電子控制設(shè)備增加。電子控制單元可以根據(jù)轉(zhuǎn)向速度,速度的汽車液壓系統(tǒng)的操作參數(shù),改變液壓增壓速度不同的大小,從而實(shí)現(xiàn)變化,動(dòng)態(tài)特征。但根據(jù)電機(jī)驅(qū)動(dòng)液壓系統(tǒng),反過來,電機(jī)停止轉(zhuǎn)動(dòng),從而減少能源消耗。
雖然電動(dòng)液壓動(dòng)力轉(zhuǎn)向液壓操舵系統(tǒng)克服了缺點(diǎn)。但由于液壓系統(tǒng)的存在,它的存在液壓油泄漏問題,和電動(dòng)液壓助力轉(zhuǎn)向系統(tǒng),介紹了電機(jī)驅(qū)動(dòng)系統(tǒng)更復(fù)雜,成本和可靠性。
為了區(qū)別電動(dòng)液壓轉(zhuǎn)向系統(tǒng)、電動(dòng)助力轉(zhuǎn)向系統(tǒng)電動(dòng)助力轉(zhuǎn)向(EPS)?,F(xiàn)在應(yīng)該知道各種各樣的轉(zhuǎn)向系統(tǒng),最大的區(qū)別在于電動(dòng)助力轉(zhuǎn)向系統(tǒng)沒有液壓系統(tǒng)。最初由液壓操舵系統(tǒng)的電動(dòng)機(jī)。電動(dòng)助力轉(zhuǎn)向系統(tǒng)一般由扭矩傳感器和微處理器、電機(jī)、等的基本原理是:當(dāng)司機(jī)將方向盤驅(qū)動(dòng)軸旋轉(zhuǎn),安裝在轉(zhuǎn)動(dòng)軸的扭矩傳感器和扭矩信號(hào)到電信號(hào)微處理器,微處理器基于其他車輛運(yùn)行速度和扭矩信號(hào)的參數(shù),根據(jù)治療的程序集電力汽車助推器方向和大小的助推器。自1988年以來,第一次在日本鈴木Cervo汽車裝備轉(zhuǎn)向系統(tǒng)、動(dòng)力轉(zhuǎn)向系統(tǒng)被廣泛承認(rèn)的人。
轉(zhuǎn)向系統(tǒng)主要體現(xiàn)在以下方面:動(dòng)力轉(zhuǎn)向系統(tǒng)可以提供不同在不同速度下的動(dòng)態(tài)特性。低,方向盤,增加更多的光,在高速轉(zhuǎn)向減少,甚至為了提高道路增加潮濕。動(dòng)力轉(zhuǎn)向系統(tǒng)只有在駕駛汽車去工作,提供動(dòng)力,以減少能源消耗。
電動(dòng)機(jī)工作時(shí),由電池驅(qū)動(dòng)的電動(dòng)助力轉(zhuǎn)向系統(tǒng)不能在發(fā)動(dòng)機(jī)工作條件下的工作。電動(dòng)助力轉(zhuǎn)向系統(tǒng)不應(yīng)該液壓系統(tǒng),而液壓增壓系統(tǒng)和自動(dòng)裝配。和電動(dòng)助力轉(zhuǎn)向系統(tǒng)可以改變助推器微處理器算法的程序,簡單的動(dòng)力學(xué)特征的變化??茖W(xué)和技術(shù)的發(fā)展正在改變,傳統(tǒng)的轉(zhuǎn)向系統(tǒng)的轉(zhuǎn)向控制(車輪轉(zhuǎn)向),并將傳播機(jī)制。但思想的火花總是可以帶來驚喜!電子轉(zhuǎn)向系統(tǒng)南偏西方向(線)改變了傳統(tǒng)的三個(gè)最與微控制器的概念,取而代之的是轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)、三個(gè)最分成兩部分。電子轉(zhuǎn)向系統(tǒng)是最先進(jìn)的技術(shù)和汽車轉(zhuǎn)向系統(tǒng)。它主要由轉(zhuǎn)向控制模塊、執(zhí)行模塊和微控制器三個(gè)模塊。轉(zhuǎn)向控制模塊的主要功能是扭矩傳感器的檢測(cè)司機(jī)的意圖,和檢測(cè)信號(hào)(包括旋轉(zhuǎn)方向和轉(zhuǎn)速等)乘公共汽車,微控制器,基于信號(hào)和微控制器,和速度反饋控制模塊是一個(gè)方向盤,讓司機(jī),能感覺到。但就是這樣,是開發(fā)虛擬根據(jù)測(cè)試數(shù)據(jù)的集成,形成了“體驗(yàn)”,通過固化過程的微控制器。如此速度,轉(zhuǎn)向力矩的大小和一些對(duì)應(yīng)關(guān)系。
轉(zhuǎn)向角傳感器和致動(dòng)器包括轉(zhuǎn)向汽車,轉(zhuǎn)向電機(jī)控制器等。這是微控制器根據(jù)控制命令的函數(shù),執(zhí)行驅(qū)動(dòng)電機(jī)旋轉(zhuǎn)角度,完整的行動(dòng)。同樣大小的旋轉(zhuǎn)角度傳感器監(jiān)測(cè)和反饋微控制器,形成一個(gè)完整的準(zhǔn)確的閉環(huán)控制系統(tǒng),轉(zhuǎn)向運(yùn)動(dòng)。
微控制器是電子轉(zhuǎn)向系統(tǒng)的核心。它是接收信號(hào)檢測(cè)、處理發(fā)送相應(yīng)的控制信號(hào)。由于微控制器取代了轉(zhuǎn)向傳動(dòng)機(jī)構(gòu),因此系統(tǒng)的組件之間的機(jī)械連接,減少響應(yīng)速度和響應(yīng)的準(zhǔn)確性。并且把戰(zhàn)略、傳輸控制軟件編程設(shè)置,和其他設(shè)備,如ABS,自動(dòng)導(dǎo)航設(shè)備。傳導(dǎo)機(jī)制減少帶來的更大的汽車室內(nèi)空間,給更多的樂趣。并將行為可以被記錄下來,保存在軟件可以幫助eepm經(jīng)過進(jìn)一步完善轉(zhuǎn)向控制策略,甚至可以為交通事故提供證據(jù)。
全屏閱讀
關(guān)閉全屏閱讀
你的評(píng)分:
有道翻譯——中國最大最穩(wěn)定的免費(fèi)在線翻譯 添加書簽
History of the development of the Steering System
Steering system is necessary in vehicle system is the basic system, driver through the steering wheel to manipulate and control car's direction of travel, so as to realize the intention of his driving.
For more than 100 years, automobile industry with mechanical and electronic technology development and progress. Today, the car is not purely mechanical sense of a car, it is the mechanical, electronic, materials and other comprehensive product. Steering system with the development of the car industry after the long evolution.
The traditional steering system is mechanical steering system, automotive steering wheel, by pilot control through such a series of mechanical parts steering wheel to realize the deflection, so as to realize the steering.
As in the 1950s, hydraulic power steering system in automotive applications, marked the beginning of steering system. Sources of power steering by previous human to human and hydraulic booster.
Hydraulic booster HPS (Hydraulic Power Steering) is in the Steering system based on the mechanical and Hydraulic system increased a. The hydraulic system and the engine, when the general part of the engine starts, provide automobile engine power forward, another part of the kinetic energy of hydraulic system for power. Due to its reliable work, mature technology still has been widely used. The steering system of the main characteristic is the fluid pressure, reduce drivers support in the steering wheel, improved the steering light and auto operation stability. But at the same time, there are also some hydraulic power system flaw:
Aiming at vehicle design and manufacture, after the completion of the vehicle steering
dynamical characteristics cannot change. The direct consequence is that when the dynamical characteristics in low power, car in low segment can get very good, but in high-speed period has good way to sense, because cannot adjust dynamical characteristics, no better way drivers, When the dynamical characteristics in high power, not very good at low segment tprompt effect, If not, aiming to vehicle hydraulic system must also be in the engine driving. As a result, the energy consumption, increase fuel engine,
Existing hydraulic oil leakage problems should not only to environmental pollution, and easy to other components,
Aiming at low temperatures, hydraulic system performance is poor.
In recent years, with the electronic technology in the wide application, steering system also more and more used electronic devices. Turn into the electronic control system, therefore, the corresponding appeared electrohydraulic power steering system. Electrohydraulic Power Steering can be divided into two categories: electric Hydraulic Steering system (Electro Hydraulic Power - the EHPS) and electric Hydraulic Steering Electronically Controlled ECHPS Steering (Hydraulic Power Steering). Electric hydraulic steering system is in hydraulic power system on the basis of the development of hydraulic booster systems, and different is, electric hydraulic power system of power sources in the hydraulic system, but not by motor engine motor drive hydraulic system, save energy and reduce the engine fuel consumption. Electric hydraulic steering is in traditional hydraulic booster systems on the basis of the development, the difference is that the electric hydraulic steering system, electronic control devices increased. The electronic control unit can according to the steering rate, speed auto operation parameters of hydraulic system, change the size of the hydraulic booster at different speeds, so as to realize the change, dynamical characteristics. But under the motor drive hydraulic system, in turn, motor can stop turning, thereby reducing energy consumption.
Although electrohydraulic power steering system of hydraulic steering overcomes the drawbacks. But due to the existence of hydraulic system, it exists the hydraulic oil leakage problem, and electrohydraulic power steering system, introduced motor drive system is more complex, costs and reliability.
In order to avoid Electric hydraulic Steering system, Electric Power Steering system of Electric Power Steering (EPS) should now. It with all sorts of steering system, the biggest difference lies in the electric power steering system has no hydraulic system. Originally produced by hydraulic steering system by motor. Electric power steering system of general by the torque sensor and microprocessor, motor, etc. The basic principle is: when the driver turned the steering wheel drive shaft rotation, to install in the rotation axes of the torque sensor and torque signal into electrical signals to microprocessors, microprocessor based on speed and torque signal other vehicles running parameters, according to the set procedures in the treatment of that power motors booster direction and the size of the booster. Since 1988, the first in Japan suzuki Cervo car to equip the steering system, power steering system is widely recognized by the people.
Steering system is mainly embodied in the following aspects:
A power steering system can provide different at different speeds under the dynamical characteristics. In the low road, steering, to increase more light, At high speed reduced steering, even in order to improve the road are increased to damp.
A power steering system only in steering motors to work, to provide power, so as to reduce energy consumption.
A motor, so by battery-powered electric power steering system can not work in engine under the condition of the work.
Electric power steering system should not hydraulic system, compared with hydraulic booster systems and automated assembly. And electric power steering system can change the booster program microprocessor algorithm, easy dynamical characteristics of the change. The development of science and technology is changing, the traditional steering system of steering control (wheel steering), and turn of transmission mechanism. But the thought of the spark can always bring surprise! Electronic Steering system SBW Steering (to the Wire) was changed to the traditional concept of three most with micro-controller, it was replaced By the Steering transmission mechanism, the three most into two parts. Electronic steering system is the most advanced and automotive steering system of technology. It mainly consists of steering control module, to execute module and micro controller three modules.
Steering control module's main function is to torque sensor detection by the driver intention, and to detect signal (including rotation direction and rotational speed, etc) by bus to micro controller, and micro controller based on the signal, and speed feedback control module is a steering wheel to make drivers, can feel road. But this is the way, is the development of virtual according to test data of integrated, formed "experience", and by way of curing process in the form of micro controller. So it is with speed, turning to the size of the torque rate and some corresponding relation.
Steering Angle sensor and actuator including steering motors, steering motor controller etc. It is the function of micro controller based on the control command, drive motor rotation Angle to execute, complete to action. Also the size of the rotation Angle sensor monitoring and feedback to micro controller, forming a complete accurate closed-loop control system, steering movement.
Micro controller is the core of electronic steering system. It is receiving signal detection, processed send corresponding control signal.
Due to the micro controller replaced steering transmission mechanism, thus mechanical connection between components of the system, reduce the response speed and the accuracy of the response. And to turn strategy, transmission control software programming any Settings, And other equipment, such as ABS, automatic navigation equipment. Transmission mechanism of reducing brings a bigger car interior space, give rides more fun. And turning behavior can be recorded, save in software that can help EEPROM after further perfecting the steering control strategy, even can provide.
6
指 導(dǎo) 教 師 評(píng) 語
外文翻譯成績:
指導(dǎo)教師簽字:
年 月 日
注:1. 指導(dǎo)教師對(duì)譯文進(jìn)行評(píng)閱時(shí)應(yīng)注意以下幾個(gè)方面:①翻譯的外文文獻(xiàn)與畢業(yè)設(shè)計(jì)(論文)的主題是否高度相關(guān),并作為外文參考文獻(xiàn)列入畢業(yè)設(shè)計(jì)(論文)的參考文獻(xiàn);②翻譯的外文文獻(xiàn)字?jǐn)?shù)是否達(dá)到規(guī)定數(shù)量(3 000字以上);③譯文語言是否準(zhǔn)確、通順、具有參考價(jià)值。
2. 外文原文應(yīng)以附件的方式置于譯文之后。
輕型貨車循環(huán)球式轉(zhuǎn)向器設(shè)計(jì)
摘 要
循環(huán)球式轉(zhuǎn)向器是由螺母與絲杠傳動(dòng)副以及齒扇軸與螺母?jìng)鲃?dòng)副二個(gè)部分組成。螺母與絲杠傳動(dòng)副是由里面的鋼珠聯(lián)系起來的,而齒扇軸與螺母?jìng)鲃?dòng)副則是通過齒之間的嚙合聯(lián)系的,最終完成了力的傳遞。
本文首先對(duì)汽車轉(zhuǎn)向器目前研究的概況和發(fā)展趨勢(shì)做出了闡述說明,研究BJ2020車型汽車轉(zhuǎn)向系統(tǒng),整理出汽車轉(zhuǎn)向系統(tǒng)的設(shè)計(jì)要求,然后根據(jù)汽車的類型、汽車的前后軸的負(fù)荷以及汽車的用途選擇了初步的轉(zhuǎn)向器類型,隨后進(jìn)行汽車轉(zhuǎn)向器選型分析并完成總結(jié),完成循環(huán)球式轉(zhuǎn)向器各項(xiàng)主要參數(shù)的選擇,并根據(jù)循環(huán)球式轉(zhuǎn)向器的角傳動(dòng)比、傳動(dòng)效率以及使用用途并參考以往的成功車的型號(hào)對(duì)循環(huán)球式向器的強(qiáng)度和具體參數(shù)進(jìn)行了計(jì)算,再進(jìn)行循環(huán)球式轉(zhuǎn)向器性能分析最后完成設(shè)計(jì)圖紙以及設(shè)計(jì)說明書。論文最后用建模的方式畫出了轉(zhuǎn)向器的三維設(shè)計(jì)圖,從立體的角度反映了轉(zhuǎn)向器的結(jié)構(gòu)功能。還有零件圖,畫出了循環(huán)球式轉(zhuǎn)向器零件的尺寸。裝配圖畫出了各個(gè)零件之間的配合,更全面反映了循環(huán)球式轉(zhuǎn)向器的結(jié)構(gòu)。受力分析則清晰的展現(xiàn)了循環(huán)球式轉(zhuǎn)向器的各種受力情況。
論文最后完成了BJ2020轉(zhuǎn)向器從結(jié)構(gòu)形式的初步選擇到制造工藝最后布置的所有設(shè)計(jì),所有設(shè)計(jì)合乎標(biāo)準(zhǔn)。
關(guān)鍵詞:循環(huán)球式轉(zhuǎn)向器;工藝布置;受力分析
I
ABSTRACT
Ecirculating ball type steering gear is composed of the nut and screw transmission gear and shaft and nut transmission of two parts. The nut and the screw pair is composed of a link inside the ball, and the gear shaft and nut transmission pair is linked through the meshing be- tween the final completion of the transfer of power.
Firstly, the steering situation and trend of current study to make an exposition of BJ2020 models of automobile steering system, sorting out the system design requirements for autom-
otive steering, then according to the type of car, use the car front and rear axle load and vehic- le selection of the steering type preliminary, followed by steering gear the selection and anal- ysis of the complete summary, complete the circulating ball type main parameters for the ste- ering and steering angle, gear ratio according to the circulating ball type, transmission efficie- ncy and use of reference and the model of successful car cycling ball strength and device spe- cific parameters are calculated, then the recirculating ball type steering the performance anal- ysis is finally complete the design drawings and design specification. Finally, by using the w- ay of modeling drawing to three-dimensional design, from three-dimensional angle reflects the shift The structure and function of device. And part drawing, draw the size of the recircul- ating ball type steering gear assembly drawing parts. Coordination between the various parts, more comprehensively reflect the circulating ball type steering gear structure. The stress anal- ysis show the recirculating ball steering the force.
At the end of the article, all the designs of the BJ2020 redirector from the initial selection of structural form to the final layout of the manufacturing process are completed, and the des- ign is up to standard.
Keywords:Recirculating ball steering; Process arrangement;Force analysis
III
目 錄
摘 要 I
ABSTRACT II
1 緒論 1
1.1 課題背景 1
1.2 轉(zhuǎn)向器的介紹 1
1.3 國外的研究現(xiàn)狀 5
1.4 國內(nèi)的研究現(xiàn)狀 5
1.5 本課題研究的主要內(nèi)容 6
1.6 本章小結(jié) 7
2 轉(zhuǎn)向器的設(shè)計(jì)與參數(shù)選擇 8
2.1 轉(zhuǎn)向器的主要使用性能參數(shù) 8
2.2 主要尺寸參數(shù)的選擇 10
2.3 循環(huán)球式轉(zhuǎn)向器的強(qiáng)度校核 18
2.4 轉(zhuǎn)向搖臂軸直徑的確定 20
2.5 本章小結(jié) 21
3 建模及受力分析 22
3.1 二維工程圖 22
3.2 三維零件圖 24
3.3 受力分析 27
3.4 本章小結(jié) 30
4 結(jié) 論 31
參考文獻(xiàn) 32
附錄1:外文翻譯 33
附錄2:翻譯原文 37
致 謝 41
2
輕型貨車循環(huán)球式轉(zhuǎn)向器設(shè)計(jì)
1 緒論
1.1 課題背景
轉(zhuǎn)向器別名轉(zhuǎn)向機(jī)、方向機(jī),它在轉(zhuǎn)向系中的地位卓然,是很重要的部件。它的作用不僅能使作用在方向盤上的力傳到車輪時(shí)變得更大并且還可以改變力的傳遞方向,所以轉(zhuǎn)向器的設(shè)計(jì)就顯得意義非凡。
轉(zhuǎn)向器可根據(jù)其結(jié)構(gòu)不同可分為齒輪齒條式、循環(huán)球曲柄指銷式、蝸桿曲柄指銷式、蝸桿滾輪式、循環(huán)球-齒條齒扇式等。當(dāng)根據(jù)助力來看時(shí)又可分為有助力和無助力二種。其中又根據(jù)動(dòng)力來源的不同可分為氣壓動(dòng)力型、液壓動(dòng)力型和電動(dòng)動(dòng)力型等多種類型。
轉(zhuǎn)向器具有將駕駛員作用在方向盤的手力放大,并且能夠使速度變慢之后再傳給轉(zhuǎn)向機(jī)構(gòu)。它作為汽車的重要部分,并且它決定了汽車安全性能的優(yōu)劣,它的質(zhì)量直接影響了汽車的操縱穩(wěn)定性,由此它的設(shè)計(jì)不可忽視。
因?yàn)檠h(huán)球式轉(zhuǎn)向器具備傳動(dòng)效率高、工作狀態(tài)平穩(wěn)、牢靠,螺桿及螺母上的螺旋槽經(jīng)滲碳、淬火及磨削加工,耐磨性好、壽命長,且齒扇與齒條嚙合間隙的調(diào)整便利易行,這種構(gòu)造與液力式動(dòng)力轉(zhuǎn)向液壓裝置的匹配安裝時(shí)也極為方便。故本文選用循環(huán)球式轉(zhuǎn)向器。
1.2 轉(zhuǎn)向器的介紹
1.2.1轉(zhuǎn)向系統(tǒng)的簡介
轉(zhuǎn)向系統(tǒng)是用來改變或者保持汽車行駛方向的一系列裝置。汽車轉(zhuǎn)向系統(tǒng)的最重要的功能就是能按照駕駛員自己的想法去控制汽車的行駛方向。有的轉(zhuǎn)向系統(tǒng)還有助力機(jī)構(gòu),能夠在一定程度上減輕了駕駛員的手力,這種機(jī)構(gòu)對(duì)于女性駕駛者則顯得很重要。
轉(zhuǎn)向器的設(shè)計(jì)必須滿足以下要求:
(1)方向盤一定要左置;
(2)后輪不可以單獨(dú)的作為轉(zhuǎn)向輪;
(3)不可以使用全動(dòng)力轉(zhuǎn)向機(jī)構(gòu);
(4)必須有漸進(jìn)的轉(zhuǎn)向輪的偏轉(zhuǎn);
(5)轉(zhuǎn)向輪必須具備足夠的硬度以保證行駛安全;
(6)轉(zhuǎn)向系統(tǒng)必須在合理的位置,以確保駕駛員能夠方便準(zhǔn)確的操作,轉(zhuǎn)向系統(tǒng)不能和其它的裝置有干涉;
- 1 -
(7)轉(zhuǎn)向輪能夠自動(dòng)恢復(fù)正位,從而確保車輪沿著直線行駛;
(8)在后輪做轉(zhuǎn)向輪的時(shí)候,具有二根及以上轉(zhuǎn)向車軸的全掛車和具有一根及以上轉(zhuǎn)向車軸的半掛車,以80km/h車速行駛時(shí),駕駛員在不做反常修正時(shí),能夠保持車輪直線行駛;
(9)當(dāng)所有的助力系統(tǒng)損壞不能正常工作時(shí),必須保證汽車有能夠控制行駛方向的能力;
(10)當(dāng)助力裝置本身沒有獨(dú)立的輔助獨(dú)立機(jī)構(gòu)時(shí),一定要具備蓄能器;
(11)轉(zhuǎn)向系統(tǒng)的部件安裝、設(shè)計(jì)等必須保證與駕駛員的衣物等物件不會(huì)拉扯,且其表面不能有棱角,不能對(duì)駕駛員產(chǎn)生傷害;
(12)汽車左右轉(zhuǎn)彎時(shí),它的回轉(zhuǎn)角和轉(zhuǎn)向力沒有明顯差異;
(13)以10km/h車速轉(zhuǎn)彎且以12m的半徑前行和轉(zhuǎn)彎時(shí),不帶助力的系統(tǒng)要求其轉(zhuǎn)向力不大于245N,帶助力轉(zhuǎn)向但助力轉(zhuǎn)向失去效用的系統(tǒng),要求其轉(zhuǎn)向力不得大于588N,一般的情況下機(jī)動(dòng)動(dòng)作時(shí)間不得超過4s,帶有助力轉(zhuǎn)向的系統(tǒng)則要求它的助力失效時(shí)間不得大于65s,左右兩個(gè)方向都必須要進(jìn)行試驗(yàn)測(cè)試。
1.2.2機(jī)械轉(zhuǎn)向系
操縱機(jī)構(gòu)、機(jī)械轉(zhuǎn)向器和轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)三大部分組成了汽車機(jī)械式轉(zhuǎn)向系,其具體結(jié)構(gòu)如圖1-1所示。汽車機(jī)械式的動(dòng)力來源是駕駛員的手力,并且它的所有傳動(dòng)件都是機(jī)械的。
圖1-1 機(jī)械式轉(zhuǎn)向器
1—轉(zhuǎn)向盤2—轉(zhuǎn)向軸3—轉(zhuǎn)向萬向4—轉(zhuǎn)向傳動(dòng)軸5—轉(zhuǎn)向器
6—轉(zhuǎn)向搖臂 7—轉(zhuǎn)向直拉桿 8—轉(zhuǎn)向節(jié)臂9—左轉(zhuǎn)向節(jié)
10、12—左右梯形臂11—轉(zhuǎn)向橫拉桿13—右轉(zhuǎn)向節(jié)
駕駛員作用在轉(zhuǎn)向盤上面的力通過轉(zhuǎn)向柱傳到轉(zhuǎn)向軸,從轉(zhuǎn)向盤到轉(zhuǎn)向傳動(dòng)軸這一部分的零件都屬于轉(zhuǎn)向操縱機(jī)構(gòu)。再將力傳到直拉桿,再到轉(zhuǎn)向器,轉(zhuǎn)向器在將力傳到減速器(圖中轉(zhuǎn)向系統(tǒng)無減速器,其位置在轉(zhuǎn)向器旁邊),到這里再到轉(zhuǎn)向拉桿,作用到轉(zhuǎn)向節(jié)臂。最后作用在轉(zhuǎn)向輪上,從而使其產(chǎn)生偏轉(zhuǎn),改變汽車行駛的方向。而轉(zhuǎn)向橫拉桿、轉(zhuǎn)向節(jié)和轉(zhuǎn)向節(jié)臂等零件均屬于轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)。
(1)轉(zhuǎn)向操縱機(jī)構(gòu)
轉(zhuǎn)向操縱機(jī)構(gòu)是由圖1-2中的方向盤、轉(zhuǎn)向軸、轉(zhuǎn)向管柱等零部件組成的。它主要作用是將駕駛員作用在轉(zhuǎn)向盤的力傳給轉(zhuǎn)向器。
圖1-2 轉(zhuǎn)向操縱機(jī)構(gòu)
(2)轉(zhuǎn)向器
齒輪齒條式轉(zhuǎn)向器由轉(zhuǎn)向齒輪、轉(zhuǎn)向殼體和轉(zhuǎn)向齒條等組成,結(jié)構(gòu)如圖1-3所示。齒輪齒條式轉(zhuǎn)向器的優(yōu)點(diǎn)是造價(jià)低,結(jié)構(gòu)很簡單,體積較小,轉(zhuǎn)向靈敏,可以實(shí)現(xiàn)直接帶動(dòng)橫拉桿。但是它由于逆效率很高,容易產(chǎn)生打手,令車上的駕駛員精神緊張,不能有很好地駕駛感受,甚至?xí)a(chǎn)生比較致命的后果,所以本文不采用齒輪齒條式轉(zhuǎn)向器。
圖1-3 齒輪齒條式轉(zhuǎn)向器
齒條齒扇副磨損后可以重新調(diào)整間隙,使之具有合適的轉(zhuǎn)向器傳動(dòng)間隙,從而提高轉(zhuǎn)向器壽命,也是這種轉(zhuǎn)向器的優(yōu)點(diǎn)之一。
循環(huán)球式轉(zhuǎn)向器和齒輪齒條式轉(zhuǎn)向器是如今世界社會(huì)上用的最多的兩種轉(zhuǎn)向器,蝸桿曲柄指銷式轉(zhuǎn)向器和蝸桿式轉(zhuǎn)向器這兩種則由于各種原因正在逐漸被淘汰掉。
循環(huán)球式轉(zhuǎn)向器的優(yōu)點(diǎn)較多,比如效率很高,操縱很方便,布置容易等,特別適合中大型的汽車應(yīng)用。易于傳遞駕駛操縱信息,逆效率也很高,和液壓操縱機(jī)構(gòu)配合的很不錯(cuò)。
循環(huán)球式轉(zhuǎn)向器主要是由螺桿、螺母、轉(zhuǎn)向器殼體以及許多的小鋼球等部件組成,其所謂的循環(huán)球指的就是里面的這些小鋼球,它們被放置于螺母與螺桿之間的密閉管路內(nèi),經(jīng)過管道進(jìn)行無限的循環(huán)流動(dòng),這些鋼球起到將螺母與螺桿之間的滑動(dòng)摩擦轉(zhuǎn)變?yōu)樽枇Ψ浅P〉臐L動(dòng)摩擦的作用,當(dāng)與方向盤轉(zhuǎn)向管柱固定到一塊的螺桿轉(zhuǎn)動(dòng)起來的時(shí)候,螺桿推動(dòng)螺母進(jìn)行上下的運(yùn)動(dòng),螺母在通過齒輪來驅(qū)動(dòng)轉(zhuǎn)向搖臂往復(fù)搖動(dòng)從而實(shí)現(xiàn)了轉(zhuǎn)向輪的轉(zhuǎn)向。
循環(huán)球式轉(zhuǎn)向器的傳動(dòng)效率高、工作安穩(wěn)、牢靠,螺桿及螺母上的螺旋槽是經(jīng)滲碳、淬火以及切削加工,耐磨性極好、壽命很長。齒扇與齒條嚙合間隙的調(diào)整便利容易實(shí)施,這種結(jié)構(gòu)與液力式動(dòng)力轉(zhuǎn)向液壓裝置的匹配布置也極為便利。所以循環(huán)球轉(zhuǎn)向器憑借這些優(yōu)點(diǎn)讓其在汽車中得到了比較廣泛的應(yīng)用[1]。
轉(zhuǎn)向螺桿轉(zhuǎn)動(dòng)時(shí),通過小鋼球?qū)⒆饔昧鹘o了在絲杠上運(yùn)動(dòng)的轉(zhuǎn)向螺母,螺母即沿絲杠進(jìn)行軸向的運(yùn)動(dòng)。同時(shí),在螺桿及螺母與鋼球間的摩擦力偶效果的作用下,所有鋼球便會(huì)在螺旋管狀通道以及管道內(nèi)滾動(dòng),形成循環(huán)的“球流”。在轉(zhuǎn)向器工作時(shí),兩列鋼球只是在各自的封閉流道內(nèi)循環(huán),不會(huì)中途產(chǎn)生脫出。
(3)轉(zhuǎn)向系統(tǒng)傳動(dòng)機(jī)構(gòu)
轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的功用是將轉(zhuǎn)向器輸出的力和運(yùn)動(dòng)傳到轉(zhuǎn)向橋兩側(cè)的轉(zhuǎn)向節(jié)上面,轉(zhuǎn)向節(jié)再使兩側(cè)轉(zhuǎn)向輪發(fā)生偏轉(zhuǎn),且使二個(gè)轉(zhuǎn)向輪的偏轉(zhuǎn)角按照一定的關(guān)系發(fā)生變化,從而確保汽車轉(zhuǎn)向時(shí)車輪與地面的相對(duì)滑動(dòng)能夠盡可能的小。
1.3 國外的研究現(xiàn)狀
國外對(duì)于轉(zhuǎn)向器的研究較早。在韓國Durkhyun Wuh、Seokchan Yun、Changsoo Han [3]的研究中一個(gè)動(dòng)態(tài)模型和控制算法的滾珠絲杠類型MDPS系統(tǒng)推導(dǎo)和分析了使用方法離散建模技術(shù)。改善轉(zhuǎn)向感覺,動(dòng)力轉(zhuǎn)向的特點(diǎn),兩個(gè)衍生品收益被添加到傳統(tǒng)的權(quán)力增加控制算法。通過模擬,影響控制增益的轉(zhuǎn)向角增益在頻域進(jìn)行驗(yàn)證。在中心的方向盤回正性和轉(zhuǎn)向力矩相位滯后處理時(shí)域測(cè)試同時(shí)進(jìn)行。Man Hyung Lee、Seung Ki Ha 、Ju Yong Choi 、Kang Sup Yoon[4]討論了直流電機(jī)加熱器調(diào)節(jié)助力轉(zhuǎn)向系統(tǒng)(EPS)。
2005年法國的Carlos Canudas-de-Wit、 Hubert Bechart、Xavier Claeys、Pietro Dolcini、John-Jairo Martinez[6]研究了電子動(dòng)力轉(zhuǎn)向和輔助離合器同步問題,提出EPS系統(tǒng)旨在生產(chǎn)相同的汽車轉(zhuǎn)向特性無論大小和重量,路況和輪胎特性;拒絕外部干擾,如道路違規(guī)行為和道路狀況的變化;PS系統(tǒng)替代現(xiàn)有的液壓轉(zhuǎn)向系統(tǒng),取代傳統(tǒng)的液壓動(dòng)力裝置的電子。任意設(shè)定預(yù)期的優(yōu)勢(shì)是潛在的能力反應(yīng)方向盤轉(zhuǎn)矩特性,并使這些特征符合道路條件。
2016年Springer國際版中瑞士的Christoph Nippold、Ferit Kuckay、Roman Henze[5]在測(cè)試試驗(yàn)臺(tái)基礎(chǔ)上的應(yīng)用和分析機(jī)電動(dòng)力轉(zhuǎn)向(EPS)。電動(dòng)轉(zhuǎn)向有節(jié)能環(huán)保、安裝方便、效率高、路感好和回正性好等優(yōu)勢(shì)。
1.4 國內(nèi)的研究現(xiàn)狀
為了正常進(jìn)行循環(huán)球式轉(zhuǎn)向器磨損試驗(yàn),2015年中國地質(zhì)大學(xué)伍穎,宋康頓,郭龍飛,吳選杰[7]參照《汽車電動(dòng)助力轉(zhuǎn)向裝置技術(shù)條件與臺(tái)架試驗(yàn)方法》標(biāo)準(zhǔn),采用交流伺服技術(shù)、智能集成技術(shù)與微機(jī)測(cè)控技術(shù),設(shè)計(jì)了雙工位循環(huán)球轉(zhuǎn)向器可靠性磨損試驗(yàn)系統(tǒng)。試驗(yàn)運(yùn)行結(jié)果顯示:該試驗(yàn)系統(tǒng)經(jīng)濟(jì)高效,穩(wěn)定牢靠,滿足循環(huán)球轉(zhuǎn)向器磨損試驗(yàn)標(biāo)準(zhǔn)規(guī)定功能:系統(tǒng)應(yīng)具有實(shí)時(shí)監(jiān)控?cái)?shù)據(jù)、實(shí)時(shí)繪制曲線和檢測(cè)空載性能三大功能,從而進(jìn)一步完成循環(huán)球轉(zhuǎn)向器出廠前的可靠性磨損試驗(yàn),降低由于服役壽命周期內(nèi)的失去效果而導(dǎo)致交通安全事故的概率。
2016年為了解決循環(huán)球變比轉(zhuǎn)向器變比齒輪齒廓設(shè)計(jì)問題,為了解決循環(huán)球變比轉(zhuǎn)向器變比齒輪齒廓設(shè)計(jì)問題胡大偉,牛子孺等[8]提出一種數(shù)字設(shè)計(jì)方法即范成仿真法; 該方法在 CATIA 建模軟件中,基于變傳動(dòng)比運(yùn)動(dòng)規(guī)律建立布爾減運(yùn)算宏程序,模擬變比齒輪齒廓包絡(luò)面范成加 工過程,生成變比齒輪三維模型; 對(duì)齒廓曲面進(jìn)行修補(bǔ),完成變比齒輪副的虛擬裝配后,采用ADAMS軟件對(duì)建立的變比齒輪齒條副進(jìn)行運(yùn)動(dòng)仿真分析,將仿真得到的傳動(dòng)比曲線與設(shè)計(jì)用曲線進(jìn)行對(duì)比分析,驗(yàn)證了該方法的有效性。
為了檢測(cè)循環(huán)球式轉(zhuǎn)向器的疲勞性能,在原有的分析轉(zhuǎn)向器工作原理的基礎(chǔ)上,2016年郭海林,熊麗[9]運(yùn)用電液伺服材料試驗(yàn)機(jī)INSTRON 1251 試驗(yàn)臺(tái)與計(jì)算機(jī)控制單元,設(shè)計(jì)出了轉(zhuǎn)向器疲勞試驗(yàn)系統(tǒng)。研制了轉(zhuǎn)向器疲勞試驗(yàn)工裝夾具,系統(tǒng)加載動(dòng)態(tài)響應(yīng)良好,達(dá)到了規(guī)定的轉(zhuǎn)向器疲勞試驗(yàn)參數(shù)要求。試驗(yàn)運(yùn)行表明:該試驗(yàn)設(shè)計(jì)實(shí)現(xiàn)了轉(zhuǎn)向器疲勞性能測(cè)試,操作簡便,控制精度高,為轉(zhuǎn)向器結(jié)構(gòu)設(shè)計(jì)與強(qiáng)度評(píng)估提供了基礎(chǔ)技術(shù)支持。
我國正在發(fā)展多軸車輛的EPS系統(tǒng):(1)右輪裝半自動(dòng) S-EPS,其雙輪左輪裝手動(dòng),最大負(fù)載6 000 kg,基本上滿足我國的公路重型汽車要求。基本上一般的輕重型汽車都可使用EPS;(2)雙前橋轉(zhuǎn)向同前一條一樣用左輪裝手動(dòng) S-EPS,其余的可采用半自動(dòng) S-EPS,并且由一個(gè)控制器來控制。部分轉(zhuǎn)向桿系保持原拉桿系統(tǒng);(3)分別在三軸車輛電動(dòng)轉(zhuǎn)向系統(tǒng)前后軸上安裝電動(dòng)轉(zhuǎn)向器[10]。
1.5 本課題研究的主要內(nèi)容
本文主要進(jìn)行循環(huán)球的相關(guān)設(shè)計(jì),包括其循環(huán)球式轉(zhuǎn)向器的主要性能參數(shù)的設(shè)計(jì),其中包括轉(zhuǎn)向器的效率以及傳動(dòng)比的變速特性。然后主要尺寸參數(shù)的選擇,包括其螺桿、鋼球、螺母?jìng)鲃?dòng)副的設(shè)計(jì)和齒條、齒扇傳動(dòng)副的設(shè)計(jì)。隨后其零件的強(qiáng)度計(jì)算和轉(zhuǎn)向搖臂的軸直徑的確定,再進(jìn)行三維模型及二維工程圖的設(shè)計(jì)。最后則利用CATIA對(duì)它進(jìn)行受力分析,觀測(cè)它的受力情況。
本文的設(shè)計(jì)思路有以下8點(diǎn):
(1)研究輕型貨車汽車轉(zhuǎn)向系統(tǒng);
(2)汽車轉(zhuǎn)向系統(tǒng)的設(shè)計(jì)要求;
(3)根據(jù)汽車總體方案的設(shè)計(jì)選擇;
(4)進(jìn)行汽車轉(zhuǎn)向器選型分析并完成總結(jié);
(5)完成轉(zhuǎn)向器各項(xiàng)主要參數(shù)的選擇;
(6)進(jìn)行轉(zhuǎn)向器性能分析;
(7)完成設(shè)計(jì)圖紙;
(8)完成設(shè)計(jì)說明書。
1.6 本章小結(jié)
本章是文章的緒論部分,首先寫的是設(shè)計(jì)此課題的背景,初步介紹了一下轉(zhuǎn)向系,以及它們的功用。國內(nèi)外的研究現(xiàn)狀也是本章的重點(diǎn),詳細(xì)說明近幾年轉(zhuǎn)向器的研究過程。本章也闡明了研究的意義以及目的。文章有各種的設(shè)計(jì)方法以及所有表達(dá)的內(nèi)容,此章介紹研究的方法以及內(nèi)容。之后是對(duì)轉(zhuǎn)向器的詳細(xì)介紹,包括它的工作原理、優(yōu)點(diǎn)等等。也將循環(huán)球式轉(zhuǎn)向器與其它類型的轉(zhuǎn)向器進(jìn)行詳細(xì)的對(duì)比,詳細(xì)說明了研究采用此類型轉(zhuǎn)向器的原因以及意圖。
- 6 -
2 轉(zhuǎn)向器的設(shè)計(jì)與參數(shù)選擇
轉(zhuǎn)向器的設(shè)計(jì)參數(shù)包括主要的性能參數(shù)以及尺寸參數(shù)的設(shè)計(jì)和強(qiáng)度的校核。主要性能的參數(shù)包括效率和傳動(dòng)比。尺寸參數(shù)則包括鋼球的直徑、鋼球數(shù)量、工作圈數(shù)、導(dǎo)管內(nèi)徑等等。強(qiáng)度的校核有鋼球與滾道的接觸應(yīng)力以及彎曲壓力。
2.1 轉(zhuǎn)向器的主要使用性能參數(shù)
轉(zhuǎn)向器的使用性能參數(shù)主要包括循環(huán)球式轉(zhuǎn)向器的正逆效率以及轉(zhuǎn)向系自身的傳動(dòng)比。
2.1.1 循環(huán)球式轉(zhuǎn)向器的正逆效率
手作用在方向盤上的力功率從絲杠的一端輸入到轉(zhuǎn)向搖臂軸,再從轉(zhuǎn)向搖臂軸輸出到轉(zhuǎn)向搖臂軸所得到的效率被稱為正效率,其符號(hào)為,公式為;相反的,從轉(zhuǎn)向輪傳到轉(zhuǎn)向軸的效率,被稱為逆效率,其符號(hào)為,公式為。公式中的是轉(zhuǎn)向器自身所有的摩擦功率。正效率高能使轉(zhuǎn)向便利,而逆功率高能夠保證汽車轉(zhuǎn)向后的回正率更高。但是逆功率太高又會(huì)使汽車在行駛的路上打手情況更加嚴(yán)重,一般要求逆功率盡最大可能的小。轉(zhuǎn)向器的類型、構(gòu)造特征、內(nèi)部結(jié)構(gòu)參數(shù)以及產(chǎn)品的制造質(zhì)量等等都可能是影響轉(zhuǎn)向器正功率的本質(zhì)原因。
(1)轉(zhuǎn)向器種類、構(gòu)造特點(diǎn)與正逆效率
滾針軸承除了滾輪和滾針之間的摩擦損耗之外,滑動(dòng)摩擦消耗在滾輪兩邊與墊片之間也有,所以這種轉(zhuǎn)向器的正效率大約只有53%[14]。齒輪齒條式、循環(huán)球式轉(zhuǎn)向器的正效率相對(duì)與蝸桿指銷式來說則顯得比較高。相同類型的轉(zhuǎn)向器也會(huì)由于它們的構(gòu)造不同,所以它們的正效率也不會(huì)完全的相同。有實(shí)驗(yàn)可以證明選用滾針軸承、圓錐滾子軸的蝸桿滾輪式轉(zhuǎn)向器的滾輪與支持軸之間的軸承的轉(zhuǎn)向器,實(shí)驗(yàn)結(jié)果顯示它們的正效率分別是69%和74%。此外對(duì)它有影響的還有轉(zhuǎn)向搖臂軸軸承的結(jié)構(gòu)種類,用圓錐滾子軸承的正負(fù)效率都比滑動(dòng)軸承的高一些。
(2)轉(zhuǎn)向器結(jié)構(gòu)上的性能參數(shù)計(jì)算
如果我們只考慮到各個(gè)相嚙合零件之間的摩擦消耗時(shí),把軸承其他地方的摩擦損失忽略掉,可用下式計(jì)算蝸桿和螺桿類轉(zhuǎn)向器它的正效率公式為:
(2-1) 式中,是螺桿上螺線的導(dǎo)程角度:是摩擦角度,;為材料摩擦因數(shù)。
查得鋼與鋼的摩擦因數(shù)為0.25,則,=8°。
故 (2-2)
可逆型轉(zhuǎn)向器在遇到凹凸不平的路面時(shí),它會(huì)產(chǎn)生很嚴(yán)重的打手感,這樣會(huì)增加駕駛員的緊張感,不利于汽車行駛。屬于可逆型轉(zhuǎn)向器的有齒輪齒條型轉(zhuǎn)向器和循環(huán)球型轉(zhuǎn)向器這二種。
如果路面給車輪的力基本不能傳回到方向盤,則被稱為不可逆式轉(zhuǎn)向器。由于不能很好的傳到方向盤,所以這些力只能由轉(zhuǎn)向器的零部件去承擔(dān),很容易造成轉(zhuǎn)向器的破壞,所以現(xiàn)代的車輛大部分情況下不應(yīng)用這種類型的轉(zhuǎn)向器。
效率處于兩者之間的還有種類型的轉(zhuǎn)向器,由于在路面不平時(shí)它接受路面的沖擊力比較小,所以逆效率低,稱為極限轉(zhuǎn)向器。打手感也不是特別大,駕駛員也不會(huì)感到過分的緊張,轉(zhuǎn)向器內(nèi)部零部件的沖擊力也不高,損傷也就不高。
如果我們只考慮相嚙合零件之間的摩擦消耗時(shí),略去軸承以及其它地方因?yàn)槟Σ猎斐傻南模衫孟旅娴墓接?jì)算出蝸桿和螺桿類轉(zhuǎn)向器的逆效率公式為 :
故 (2-3)
式()表明:隨著的增大,它的也會(huì)變大。
2.1.2轉(zhuǎn)向系的傳動(dòng)比
轉(zhuǎn)向系的傳動(dòng)比包括角傳動(dòng)比和力傳動(dòng)比。力傳動(dòng)比的公式為:
角傳動(dòng)比的公式為:
(2-5)
式(2-5)中的即轉(zhuǎn)向盤的轉(zhuǎn)角增量;即轉(zhuǎn)向節(jié)轉(zhuǎn)角增量;它所表述的是時(shí)間增量。它里面包括的有轉(zhuǎn)向器角傳動(dòng)比和轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)角傳動(dòng)比,即。
當(dāng)今車輛轉(zhuǎn)向部分的角傳動(dòng)比一般取0.8~51之間,此處取1.0。轎車的一般取,14~22,此處取17。所以:
2.2 主要尺寸參數(shù)的選擇
根據(jù)表2-1可知BJ2020的前軸載荷為780kg,再根據(jù)表2-2得到它的齒扇模數(shù)為。在轉(zhuǎn)向器齒扇模數(shù)得到確定后,循環(huán)式轉(zhuǎn)向器的各級(jí)數(shù)據(jù)可以通過表和表來進(jìn)行選擇。
根據(jù)以下表格,確定的齒扇模數(shù)查表2-2和2-4可得:
螺距:9.525mm 工作圈數(shù):1.5 鋼球直徑:6.350mm
螺桿外徑:25mm 齒扇壓力角:2230′ 齒扇寬:45mm
環(huán)流行數(shù):2 螺母長度:80mm 齒扇齒數(shù):4 切削角:630
表2-1
尺寸參數(shù)
質(zhì)量參數(shù)
使用參數(shù)
表2-2
數(shù)值
4
表2-3
表2-4 mm
()
)
()
()
()
()
()
()
()
()
3
()
()
2.2.1鋼球、絲杠與螺母?jìng)鲃?dòng)副的設(shè)計(jì)
(1)如圖2-1所示絲杠外徑鋼球中心距螺母管道的直徑以及尺寸、、。
圖2-1 螺桿、螺母?jìng)鲃?dòng)副鋼球
一般取得越小越好。隨著齒扇模數(shù)的增加,鋼球的中心距也會(huì)相應(yīng)的逐漸增加,絲杠外徑在19到31mm之間變化,螺母內(nèi)徑一般要求大于,并且一般要求=(6%~11%)D,再由表2-2得:=27mm,=25mm,。
(2)鋼球的個(gè)數(shù)及直徑
鋼球直徑一般取~mm,由表2-2得鋼球直徑為6.350mm,故每個(gè)路線的鋼球個(gè)數(shù)可由以下公式得出:
(2-6)
式中,為一個(gè)環(huán)形路線中的鋼球圈數(shù);D為鋼球中心之間的距離;為包括環(huán)流管道中的鋼球個(gè)數(shù);為螺線導(dǎo)程角,一般取=5°~8°,cos≈1;將上述各數(shù)值代入得=18.55。
(3)接觸角
為了使徑向力與軸向力分布更加均勻,一般取45°。
(4)滾道截面
絲杠與螺母由二條弧型線構(gòu)成,如圖2-2,從而形成四個(gè)分段類型的弧型軌道斷面,鋼球與滾道就會(huì)有四處接觸,此時(shí)傳動(dòng)軸軸向的間隔不是很大,可以滿足所有的標(biāo)準(zhǔn)。
圖2-2中各處間隙除了可以用來儲(chǔ)存油外,也會(huì)存雜質(zhì),使部件磨損。為了減小磨損,螺桿與螺母的溝槽半徑常取=(0.51~0.53)。在這里我們?nèi)?.239mm,符合之前的要求。
圖2-2 鋼球軌道斷面
(5)螺旋線導(dǎo)程角和螺線間距離
轉(zhuǎn)向盤旋轉(zhuǎn)角度,其相對(duì)應(yīng)的螺母位移為:
(2-7)
式中,為。常取8~11mm之間。由表2-2得; 取6°,又;
(2-8)
式中,為齒扇節(jié)圓半徑。由前式得,可得轉(zhuǎn)向器角傳動(dòng)比公式:
(2-9)
由此可得,螺距對(duì)轉(zhuǎn)向器傳動(dòng)比有影響。
由表2-2得,,,故可得≈17
由上式可得若螺距不變,則隨著的增加,圖2-2中的不會(huì)越來越大,且設(shè)計(jì)合理。
(6)鋼球工作圈數(shù)
鋼球工作圈數(shù)有1.5和2.5二種。由表2-2得=1.5。
(7)導(dǎo)管內(nèi)徑
裝得下所有鋼珠并且能夠讓鋼珠在它的內(nèi)部管道里面滾動(dòng)的管道直徑,一般應(yīng)該盡量取很小,推薦=0.4~0.8mm,此處為了方便取0.5mm,導(dǎo)管壁的厚度取1mm。
2.2.2變厚齒扇機(jī)構(gòu)的設(shè)計(jì)
變厚齒扇的齒頂與根的輪廓面只是圓錐的一部分,它的分度圓的齒的厚度會(huì)一直進(jìn)行改變,如圖2-3所示,被稱之為變厚齒扇。
圖2-3 變厚齒扇的截面
對(duì)于變厚齒扇齒型的計(jì)算,我們一般最中間的剖面作為基準(zhǔn)面,如圖2-4。由基準(zhǔn)面向左時(shí),變位系數(shù)依次由正值變零再變負(fù)值。由某一剖面至基準(zhǔn)面的距離為,則它的值為,是切削角,一般的有6°30′和7°30′二種,此處取6°30′。當(dāng)不變時(shí),變位系數(shù)由決定。
圖2-4 變厚齒扇計(jì)算說明圖
以上已經(jīng)確定;,,;,,;,;,,;,,。
2.3 循環(huán)球式轉(zhuǎn)向器的強(qiáng)度校核
2.3.1鋼球與滾道的接觸應(yīng)力σ
在進(jìn)行強(qiáng)度計(jì)算前,我們應(yīng)該首先確定其計(jì)算載荷。由之前的對(duì)應(yīng)螺母移動(dòng)的距離s的公式得轉(zhuǎn)向阻力矩,原地轉(zhuǎn)向阻力矩的公式為:
(2-10)
此處的;是汽車前軸載荷(N);是輪胎大氣壓力(MPa)。又BJ2020前軸重量為780kg,因此;
故 ; (2-11)
轉(zhuǎn)向系的公式是:
(2-12)
由之前的計(jì)算得≈≈17
式中此處我們?nèi)?35mm;為主銷偏移距,常?。?.4~0.6)倍輪胎寬度,此處我們?nèi)?.5倍,即=107.5mm,故
(2-13)
又 (2-14)
在方向盤上作用的手力是:
(2-15)
所以這次所有設(shè)計(jì)符合該標(biāo)準(zhǔn)。
σ計(jì)算公式為
≤ (2-16)
式中,為滾道截面半徑,取=3.239mm;為系數(shù),根據(jù)的值由表2-5可得,;為鋼球半徑;故可得=0.072 =0.229 =0.314 =0.600;為螺桿外半徑;為材料彈性模量,=2.1×105MPa;是鋼球的直徑=6.35mm。
表2-5
0.05
每個(gè)鋼球與螺桿滾道之間的正壓力 :
(2-17)
式中轉(zhuǎn)向盤圓周力:半徑:螺桿螺線導(dǎo)程角:鋼球與軌道的接觸角:鋼球數(shù) :,。
求得 (2-18)
故符合設(shè)計(jì)要求。
2.3.2齒的彎曲壓力
因?yàn)?,且許用彎曲壓力為。
式中,是齒的齒高;是作用在齒上的周向力;是齒的寬度;是基圓的齒的厚度。
齒的高度;相咬合的半徑為;基圓的齒的厚度為;此處的取38mm。
得 (2-19)
2.4 轉(zhuǎn)向搖臂軸直徑的確定
轉(zhuǎn)向搖臂軸直徑的公式:
(2-20)
式中,為安全系數(shù)一般在2.5~3.5之間取,此處取=2;由上式可得=315046.57Nm2;。
所以
轉(zhuǎn)向搖臂軸的制造材料一般是22CrMnMo,并且其表面必須要經(jīng)過滲碳處理且深度大約是0.7~1.3mm,但前軸負(fù)荷比較大的汽車,一般為1.06~1.46mm。淬火過程后表面的硬度一般是58~63HRC。轉(zhuǎn)向器殼體這里采用型號(hào)為QT401—18的球墨鑄鐵對(duì)它進(jìn)行鑄造。
2.5 本章小結(jié)
本章主要是轉(zhuǎn)向器的性能以及尺寸的參數(shù)的設(shè)計(jì),然后開始對(duì)其主要的性能參數(shù)進(jìn)行設(shè)計(jì),先是轉(zhuǎn)向系的逆效率設(shè)計(jì),算出為83.5%,再是計(jì)算出轉(zhuǎn)向系的傳動(dòng)比為15。再來就是主要的尺寸參數(shù)的設(shè)計(jì),其中包括齒扇的模數(shù)m=4,螺距齒扇壓力角為22°30′、齒扇寬為38mm等等的設(shè)計(jì)。經(jīng)過這些設(shè)計(jì)之后,又是鋼球、螺桿以及傳動(dòng)副的設(shè)計(jì)。包括鋼球的數(shù)量n=18.55以及直徑d=6.35mm還有齒數(shù)z=14、螺桿的外徑D=29mm、接觸角θ=45°等等的設(shè)計(jì)。然后就是齒條齒扇傳動(dòng)副的設(shè)計(jì),包括之前已經(jīng)選擇好了的模數(shù)等等設(shè)計(jì)。
最后是強(qiáng)度的計(jì)算部分,其中包括了鋼球和滾道的接觸應(yīng)力為1708MPa小于2500MPa以及齒的彎曲應(yīng)力為405MPa小于540MPa,完成了強(qiáng)度的校核。之后是轉(zhuǎn)向搖臂軸的直徑的確定,計(jì)算出轉(zhuǎn)向搖臂軸的直徑=18mm,再進(jìn)行軸的材料的選擇,最后選的是22CrMnMo,殼體材料為QT400-18。至此處,轉(zhuǎn)向器的計(jì)算基本結(jié)束,轉(zhuǎn)向器的性能以及尺寸參數(shù)也設(shè)計(jì)完畢,可以進(jìn)行它的三維圖的繪制。
3 建模及受力分析
對(duì)零件進(jìn)行三維建模以及用CATIA對(duì)它進(jìn)行受力分析。
3.1 二維工程圖
主要是一些主要零件的二維圖紙的繪制,包括轉(zhuǎn)向搖臂軸、絲杠、螺母以及裝配圖等二維圖的繪制。
3.1.1 零件圖的繪制
繪制圖層,設(shè)置顏色,根據(jù)所需要的線以及各自的圖形尺寸畫圖。
(1)轉(zhuǎn)向搖臂軸
轉(zhuǎn)向搖臂軸上有齒扇,并且它與轉(zhuǎn)向搖臂相連,其結(jié)構(gòu)尺寸如圖3-1所示。
圖3-1 轉(zhuǎn)向搖臂軸的二維圖紙
先畫出軸,根據(jù)圖中尺寸,然后畫齒扇,在根據(jù)之前計(jì)算的齒數(shù)畫出齒。
(2)螺桿
螺桿通過鋼球與螺母連接,傳遞手作用在方向盤上的力給轉(zhuǎn)向搖臂軸,其結(jié)構(gòu)以及尺寸如圖3-2所示。
圖3-2 螺桿的二維圖紙
(3)螺母
螺母通過鋼球與絲杠連接,并且通過齒與轉(zhuǎn)向搖臂軸連接,是轉(zhuǎn)向器的二個(gè)傳動(dòng)副的組成之一,其結(jié)構(gòu)尺寸如圖3-3所示。
圖3-3 螺母的二維圖
3.1.2裝配圖的繪制
裝配圖詳細(xì)的畫出了零件的位置,以及零件之間的配合關(guān)系,其結(jié)構(gòu)如圖3-4所示。
圖3-4 循環(huán)球式轉(zhuǎn)向器的裝配圖
1-螺釘2-軸承蓋3-殼體4-圓錐滾子軸承5-絲杠6-管道7-螺母8-油栓
3.2 三維零件圖
對(duì)一些主要零件三維圖紙的繪制,包括殼體、螺栓、轉(zhuǎn)向搖臂軸、軸承蓋、絲杠、總裝圖以及爆炸圖的三維圖繪制。
(1)殼體
殼體主要是起保護(hù)以及固定其它零部件的作用,其三維圖如圖3-5所示。
圖3-5 循環(huán)球式轉(zhuǎn)向器殼體
(2)螺栓
螺栓用于加緊固連接兩個(gè)帶有孔的零件的作用,三維圖如圖3-6所示。
圖3-6 螺栓
(3)轉(zhuǎn)向搖臂軸
轉(zhuǎn)向搖臂軸上可安裝轉(zhuǎn)向搖臂,并且軸上還有齒扇,其三維圖如圖3-7所示,是轉(zhuǎn)向器的重要零件之一,軸上的齒扇可用于調(diào)節(jié)其自由行程。
圖3-7 轉(zhuǎn)向搖臂軸
(4)螺母
螺母里面有很多槽,是鋼球的軌道,鋼球在內(nèi)滾道,形成球流,圖3-8所示是螺母的三維圖形。
圖3-8 螺母
齒扇和殼體的設(shè)計(jì)主要是利用拉伸的方法,來完成齒扇的設(shè)計(jì)。
(5)軸承蓋
軸承蓋用于阻止灰塵等衣物進(jìn)入鋼球的軌道,以及保障潤滑劑僅僅對(duì)滾道以及鋼球起作用,其三維空間如圖3-9所示。
圖3-9 軸承蓋
軸承蓋主要是通過拉伸、鉆孔以及開槽等方法來完成的。
(6)絲杠
絲杠一端是用來接受手作用在方向盤上的力,螺母通過鋼球與螺桿連接在一起,其三維圖形如圖3-10所示。
圖3-10 絲杠
絲杠的設(shè)計(jì)主要也是用到了掃掠的處理,也是在中心線畫出螺紋螺旋線,然后在中心線掃一圈,最后得到螺桿的三維設(shè)計(jì)模型。
(7)總裝圖
轉(zhuǎn)向器總裝圖是各零件組合,如圖3-11所示,而轉(zhuǎn)向器的爆炸圖則展示了各零件的位置,如圖3-12所示。
圖3-11 循環(huán)球式轉(zhuǎn)向器總裝圖
圖3-12 循環(huán)球式轉(zhuǎn)向器爆炸圖
打開裝配圖,進(jìn)入裝配模式,點(diǎn)移動(dòng)選項(xiàng)下面的分解按鈕,爆炸圖生成。
3.3 受力分析
受力分析主要是對(duì)轉(zhuǎn)向器很重要的零部件進(jìn)行力的分析,其中包括螺母、齒扇以及絲杠的受力分析。
受力分析作圖的步驟:先打開受力分析模塊,之后選擇材料庫,再圖形屬性板塊選固定,選定需要固定的面,進(jìn)入力的參數(shù)設(shè)計(jì),輸入力的參數(shù)以及受力點(diǎn),最終,進(jìn)行計(jì)算,得出受力分析圖,對(duì)材料進(jìn)行著色。
(1)螺母的受力分析
螺母與鋼球接觸,鋼球運(yùn)行的軌道之間存在的力的受到的力的分析如圖3-13所示,對(duì)螺母造成的變形量的分析如圖3-14所示。
圖3-13 螺母的受力圖
從圖中得其最大應(yīng)力為1.2e+007Nm2,最小為3.97e+003Nm2,其受力點(diǎn)為鋼球軌道,故其受力合理,設(shè)計(jì)合理。
(2)轉(zhuǎn)向搖臂軸的受力分析
轉(zhuǎn)向搖臂軸與螺母有齒的接觸,其受力分析如圖3-15所示,其變形量分析如圖3-16所示。
圖3-14 轉(zhuǎn)向搖臂軸的受力圖
圖中的紅色區(qū)域代表受力最大區(qū)域,從圖中可以看出最中間的齒受力最嚴(yán)重,最大應(yīng)力為1.53e+006Nm2,最小為0Nm2,并且齒輪也有變形,其主要受力點(diǎn)為最中間的齒輪,所以綜上設(shè)計(jì)較合理。
(3)絲杠的受力分析
絲杠是轉(zhuǎn)向器的重要零件,絲杠與螺母通過鋼球連接,鋼球與絲杠上的鋼球軌道有接觸,其受力分析如圖3-17所示,力產(chǎn)生的變形量如圖3-18所示。
圖3-15 絲杠的受力圖
從圖中著色的顏色來看,圖中最大的受力為二邊,其最大應(yīng)力為2.12e+008Nm2,其受力點(diǎn)為鋼球的軌道,故受力合理,設(shè)計(jì)合理。
3.4 本章小結(jié)
本章是三維模型以及受力分析章節(jié),其中主要有殼體的三維圖;齒扇軸、螺母以及絲杠的三維圖和二維圖以及受力分析圖;零件的裝配圖以及三維總裝圖等等。殼體的長寬高分別為151mm、100mm、152mm;絲杠的長和直徑為206mm和25mm;螺母的長寬高為80mm、35mm、47mm;齒扇軸的長和直徑為234mm和30mm。
最后是受力分析,受力分析是用CATIA對(duì)它進(jìn)行力學(xué)的仿真,就是模仿它的受力情況來校核它的可行性,齒扇軸最中間的齒受力最嚴(yán)重,最大楊氏模量為1.53e+006Nm2,最小為0Nm2,并且齒輪也有變形,螺母的最大楊氏模量為1.2e+007Nm2,最小為3.97e+003Nm2,絲杠的最大楊氏模量為2.12e+008Nm2,最小為1.41e+006Nm2,三個(gè)主要零件的受力均在合理范圍內(nèi),所以設(shè)計(jì)合理。至此,轉(zhuǎn)向器的設(shè)計(jì)基本完成。
4 結(jié) 論
根據(jù)現(xiàn)在使用的汽車參數(shù)設(shè)計(jì)準(zhǔn)則以及參照類似車型的技術(shù)參數(shù),本文主要是參照BJ2020型汽車的相關(guān)參數(shù)進(jìn)行了轉(zhuǎn)向器的設(shè)計(jì),設(shè)計(jì)結(jié)果滿足現(xiàn)代輕型貨車循環(huán)球式轉(zhuǎn)向器的設(shè)計(jì)。應(yīng)用CATIA軟件繪制了循環(huán)球轉(zhuǎn)向器的裝配圖以及各個(gè)零件的三維圖紙,還應(yīng)用AUTO CAD繪制出了各個(gè)零件的零件圖以及裝配圖的二維圖紙,使得圖紙更加詳細(xì)和準(zhǔn)確。
首先通過查資料對(duì)部分參數(shù)進(jìn)行一個(gè)預(yù)選,螺距為9.525mm、工作圈數(shù)為1.5、鋼球直徑為6.350mm,螺桿外徑為25mm,齒扇壓力角為22°30′,齒扇寬為38mm,環(huán)流行數(shù)為2,螺母長度為80mm ,齒扇模數(shù)為4 以及切削角為6°30′。
又通過計(jì)算,算出來了轉(zhuǎn)向器的尺寸,包括齒扇,螺桿等各個(gè)零件的尺寸,齒扇寬為38mm,鋼球的直徑d=6.35mm,螺桿的外徑D=29mm,轉(zhuǎn)向搖臂軸的直徑為18mm,齒扇的齒高為9mm。同時(shí)計(jì)算了鋼球與滾道的接觸應(yīng)力為1708MPa小于2500MPa,齒的彎曲壓力為405MPa小于540MPa。上述設(shè)計(jì)均合理。
最后本文利用CATIA軟件對(duì)其一些主要零部件如齒扇、螺母以及絲杠進(jìn)行了受力分析,齒扇軸最中間的齒受力最嚴(yán)重,最大應(yīng)力為1.53e+006Nm2,最小為0Nm2并且齒輪也有變形,但變形量最大為0.00044mm,螺母的最大應(yīng)力為1.2e+007Nm2,最小為3.97e+003Nm2,其最大位移量為0.000551mm,絲杠的最大應(yīng)力為2.12e+008Nm2,最小為1.41e+006Nm2,其最大的變形量為0.00337mm,三個(gè)零件的變形量以及受力情況均在合理范圍內(nèi),驗(yàn)證了它的力學(xué)的合理性,最終完成了循環(huán)球式轉(zhuǎn)向器的設(shè)計(jì)。
參考文獻(xiàn)
[1]楊越,王猛猛,吳明濤.汽車轉(zhuǎn)向技術(shù)發(fā)展綜述[J].北京汽車,2012,04:35-37.
[2] Hui Jing,Rongrong Wang?Mohammed Chadli?,?Chuan Hu??Fengjun Yan,et al .Fault-Tolerant Control of
Four-Wheel Independently Actuated Electric Vehicles with Active Steering Systems IFAC-Papers On
Line , Issue 21, 2015, Pages 1165-1172.
[3]Vivan Govender?,?Steffen Müller Modelling and Position Control of an Electric Power Steering System
IFAC-PapersOnLine, Issue 11, 2016, Pages 312–318.
[4]Li Zhai,Hong Huang,Tianmin Sun,et al. Investigation of Energy Efficient Power Coupling Steering
System for Dual Motors Drive High Speed Tracked VehicleEnergy Procedia Volume 104, December
2016, Pages 372–377.
[5]Christoph Nippold、Ferit Kuchay、Roman Henze Analysis and application of steering systems on a Stee-
ring test bench Automot.Engine Technol. (2016) 1:3–13.
[6] Rabiatuladawiyah Abu Hanifah,Siti Fauziah Toha,Mohd Khair Hassan,Salmiah Ahmad Powerreduction
optimization with swarm based technique in electric power assist steering system Energy 102, 1 May
2016, Pages 444–452.
[7]伍穎,宋康頓,郭龍飛等.循環(huán)球轉(zhuǎn)向器可靠性磨損試驗(yàn)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J].機(jī)械設(shè)計(jì)與制造,20
15,(7):208-210.
[8]郭海林,熊麗.循環(huán)球式轉(zhuǎn)向器疲勞性能試驗(yàn)設(shè)計(jì)[J].科學(xué)技術(shù)與工程,2016,16(20):286-289.
[9]胡大偉,牛子孺,涂鳴等.循環(huán)球變比轉(zhuǎn)向器變比齒廓的數(shù)字設(shè)計(jì)方法[J].機(jī)械傳動(dòng),2016,01:87-90.
[10]畢大寧,康富生,馬慧.循環(huán)球電動(dòng)轉(zhuǎn)向器的研制[J].汽車零部件,2012,01:52-55+59.
[11]游專,李仁和,劉瓊瓊,許強(qiáng).循環(huán)球動(dòng)力轉(zhuǎn)向器性能測(cè)試系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J].汽車實(shí)用技術(shù)2016,03:1
38-140.
[12]黃永榮.一種新型微卡循環(huán)球曲柄指銷式轉(zhuǎn)向器總成設(shè)計(jì)[J].農(nóng)業(yè)裝備與車輛工程,2013,05:71-73
[13]畢大寧,康富生,馬慧.循環(huán)球電動(dòng)轉(zhuǎn)向器的研制[J].汽車零部件,2012,01:52-55+59.
[14]袁振濤,李仁強(qiáng),張健等.某型號(hào)轉(zhuǎn)向器直滾道軸承點(diǎn)蝕失效原因分析及改進(jìn)[C].//第十二屆河南
省汽車工程科技學(xué)術(shù)研討會(huì)論文集.
[15]王望予.汽車設(shè)計(jì).北京.機(jī)械工業(yè)出版社.2004.
附錄1:外文翻譯
主動(dòng)轉(zhuǎn)向系統(tǒng)的基于神經(jīng)網(wǎng)絡(luò)的控制系統(tǒng)的設(shè)計(jì)
Ikbal Eski Ali Temürlenk
斯普林格科學(xué)和多德雷赫特商業(yè)媒體
摘要:如今,道路車輛的安全是一個(gè)重要問題,由于增加的道路車輛事故。對(duì)客運(yùn)車輛的被動(dòng)安全系統(tǒng)是在事故發(fā)生過程中盡量減少對(duì)司機(jī)和乘客的道路車輛的損壞。而主動(dòng)轉(zhuǎn)向系統(tǒng)是提高甚至在不利情況的車輛駕駛員輸入的響應(yīng),從而避免事故的發(fā)生。本文提出了一種基于神經(jīng)網(wǎng)絡(luò)的魯棒控制系統(tǒng)設(shè)計(jì)的主動(dòng)轉(zhuǎn)向系統(tǒng)。主要是雙齒輪轉(zhuǎn)向系統(tǒng)的主動(dòng)轉(zhuǎn)向系統(tǒng)建模。然后,四個(gè)控制結(jié)構(gòu)用于控制主動(dòng)轉(zhuǎn)向系統(tǒng)的控制規(guī)定的隨機(jī)軌跡。這些控制結(jié)構(gòu)是經(jīng)典的PID控制器,基于神經(jīng)網(wǎng)絡(luò)的控制器模型、神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)控制和魯棒神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)控制系統(tǒng)。模擬的結(jié)果表明,本文提出的基于神經(jīng)網(wǎng)絡(luò)的魯棒控制系統(tǒng)的優(yōu)越性表現(xiàn)在適應(yīng)大隨機(jī)擾動(dòng)。
關(guān)鍵詞:主動(dòng)轉(zhuǎn)向系統(tǒng) 人工神經(jīng)網(wǎng)絡(luò) 魯棒控制 隨機(jī)道路輸入信號(hào)
1.介紹
主動(dòng)轉(zhuǎn)向系統(tǒng)起著重要的作用,提高車輛操縱穩(wěn)定性。在幾篇文章中有一些提出如下,已發(fā)表在該地區(qū)的車輛轉(zhuǎn)向控制系統(tǒng),車輛穩(wěn)定性和一些論文如下。
鄭和Anwar研究了車輛主動(dòng)前輪轉(zhuǎn)向控制的偏航穩(wěn)定性控制算法[1]。橫擺穩(wěn)定性控制算法得到的解耦的橫向和偏航車輛和車輛的偏航阻尼同時(shí)以橫擺角速度和前輪轉(zhuǎn)向角反饋運(yùn)動(dòng)。此外,控制系統(tǒng)施加在線控轉(zhuǎn)向車輛,并做了實(shí)驗(yàn)說明該系統(tǒng)的好處。一種無人地面車輛軌跡生成方法是主動(dòng)轉(zhuǎn)向模型利用Yoon等人的發(fā)展[2]。提出了一種約束條件下的最小費(fèi)用跟蹤問題。仿真結(jié)果表明,該機(jī)制障礙的車輛考慮車輛的尺寸和狀態(tài)變量的威脅反映修正視差法。一個(gè)集成的控制策略提出了個(gè)人最佳配合即剎車和前/后轉(zhuǎn)向子系統(tǒng)[3].。一個(gè)低級(jí)的滑移率控制器被設(shè)計(jì)來產(chǎn)生所需的縱向力較小的縱滑移率,同時(shí)避免車輪抱死滑移率最大。通過計(jì)算機(jī)模擬并證明所提出方法的效率。
用于控制車輛的橫向動(dòng)態(tài)反饋線性化的方法,是由Liaw和鐘[4]應(yīng)用。反饋線性化的方法,是用于構(gòu)建穩(wěn)定的控制律的標(biāo)準(zhǔn)模型。在鞍結(jié)分岔的整車動(dòng)力學(xué)穩(wěn)定性然后保利用Lyapunov穩(wěn)定性判據(jù)。車輛的動(dòng)力學(xué)包含方向控制