高中數(shù)學(xué)知識(shí)筆記大全.doc
《高中數(shù)學(xué)知識(shí)筆記大全.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高中數(shù)學(xué)知識(shí)筆記大全.doc(79頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
關(guān)注www.zuowen84.com有更多更好的資料分享,助你提升學(xué)習(xí)成績(jī) 高中數(shù)學(xué)常用公式及常用結(jié)論 1. 元素與集合的關(guān)系 ,. 2.德摩根公式 . 3.包含關(guān)系 6 4.容斥原理 . 5.集合的子集個(gè)數(shù)共有 個(gè);真子集有–1個(gè);非空子集有 –1個(gè);非空的真子集有–2個(gè). 6.二次函數(shù)的解析式的三種形式 (1)一般式; (2)頂點(diǎn)式; (3)零點(diǎn)式. 7.解連不等式常有以下轉(zhuǎn)化形式 . 8.方程在上有且只有一個(gè)實(shí)根,與不等價(jià),前者是后者的一個(gè)必要而不是充分條件.特別地, 方程有且只有一個(gè)實(shí)根在內(nèi),等價(jià)于,或且,或且. 9.閉區(qū)間上的二次函數(shù)的最值 二次函數(shù)在閉區(qū)間上的最值只能在處及區(qū)間的兩端點(diǎn)處取得,具體如下: (1)當(dāng)a>0時(shí),若,則; ,,. (2)當(dāng)a<0時(shí),若,則,若,則,. 10.一元二次方程的實(shí)根分布 依據(jù):若,則方程在區(qū)間內(nèi)至少有一個(gè)實(shí)根 . 設(shè),則 (1)方程在區(qū)間內(nèi)有根的充要條件為或;(2)方程在區(qū)間內(nèi)有根的充要條件為或或或; (3)方程在區(qū)間內(nèi)有根的充要條件為或 . 11.定區(qū)間上含參數(shù)的二次不等式恒成立的條件依據(jù) (1)在給定區(qū)間的子區(qū)間(形如,,不同)上含參數(shù)的二次不等式(為參數(shù))恒成立的充要條件是. (2)在給定區(qū)間的子區(qū)間上含參數(shù)的二次不等式(為參數(shù))恒成立的充要條件是. (3)恒成立的充要條件是或. 12.真值表 p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假 13.常見(jiàn)結(jié)論的否定形式 原結(jié)論 反設(shè)詞 原結(jié)論 反設(shè)詞 是 不是 至少有一個(gè) 一個(gè)也沒(méi)有 都是 不都是 至多有一個(gè) 至少有兩個(gè) 大于 不大于 至少有個(gè) 至多有()個(gè) 小于 不小于 至多有個(gè) 至少有()個(gè) 對(duì)所有, 成立 存在某, 不成立 或 且 對(duì)任何, 不成立 存在某, 成立 且 或 14.四種命題的相互關(guān)系 原命題 互逆 逆命題 若p則q 若q則p 互 互 互 為 為 互 否 否 逆 逆 否 否 否命題 逆否命題 若非p則非q 互逆 若非q則非p 15.充要條件 (1)充分條件:若,則是充分條件. (2)必要條件:若,則是必要條件. (3)充要條件:若,且,則是充要條件. 注:如果甲是乙的充分條件,則乙是甲的必要條件;反之亦然. 16.函數(shù)的單調(diào)性 (1)設(shè)那么 上是增函數(shù); 上是減函數(shù). (2)設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,則為增函數(shù);如果,則為減函數(shù). 17.如果函數(shù)和都是減函數(shù),則在公共定義域內(nèi),和函數(shù)也是減函數(shù); 如果函數(shù)和在其對(duì)應(yīng)的定義域上都是減函數(shù),則復(fù)合函數(shù)是增函數(shù). 18.奇偶函數(shù)的圖象特征 奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);反過(guò)來(lái),如果一個(gè)函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),那么這個(gè)函數(shù)是奇函數(shù);如果一個(gè)函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng),那么這個(gè)函數(shù)是偶函數(shù). 19.若函數(shù)是偶函數(shù),則;若函數(shù)是偶函數(shù),則. 20.對(duì)于函數(shù)(),恒成立,則函數(shù)的對(duì)稱(chēng)軸是函數(shù);兩個(gè)函數(shù)與 的圖象關(guān)于直線(xiàn)對(duì)稱(chēng). 21.若,則函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng); 若,則函數(shù)為周期為的周期函數(shù). 22.多項(xiàng)式函數(shù)的奇偶性 多項(xiàng)式函數(shù)是奇函數(shù)的偶次項(xiàng)(即奇數(shù)項(xiàng))的系數(shù)全為零. 多項(xiàng)式函數(shù)是偶函數(shù)的奇次項(xiàng)(即偶數(shù)項(xiàng))的系數(shù)全為零. 23.函數(shù)的圖象的對(duì)稱(chēng)性 (1)函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng) . (2)函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng) . 24.兩個(gè)函數(shù)圖象的對(duì)稱(chēng)性 (1)函數(shù)與函數(shù)的圖象關(guān)于直線(xiàn)(即軸)對(duì)稱(chēng). (2)函數(shù)與函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng). (3)函數(shù)和的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng). 25.若將函數(shù)的圖象右移、上移個(gè)單位,得到函數(shù)的圖象;若將曲線(xiàn)的圖象右移、上移個(gè)單位,得到曲線(xiàn)的圖象. 26.互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系 . 27.若函數(shù)存在反函數(shù),則其反函數(shù)為,并不是,而函數(shù)是的反函數(shù). 28.幾個(gè)常見(jiàn)的函數(shù)方程 (1)正比例函數(shù),. (2)指數(shù)函數(shù),. (3)對(duì)數(shù)函數(shù),. (4)冪函數(shù),. (5)余弦函數(shù),正弦函數(shù),, . 29.幾個(gè)函數(shù)方程的周期(約定a>0) (1),則的周期T=a; (2), 或, 或, 或,則的周期T=2a; (3),則的周期T=3a; (4)且,則的周期T=4a; (5) ,則的周期T=5a; (6),則的周期T=6a. 30.分?jǐn)?shù)指數(shù)冪 (1)(,且). (2)(,且). 31.根式的性質(zhì) (1). (2)當(dāng)為奇數(shù)時(shí),; 當(dāng)為偶數(shù)時(shí),. 32.有理指數(shù)冪的運(yùn)算性質(zhì) (1) . (2) . (3). 注: 若a>0,p是一個(gè)無(wú)理數(shù),則ap表示一個(gè)確定的實(shí)數(shù).上述有理指數(shù)冪的運(yùn)算性質(zhì),對(duì)于無(wú)理數(shù)指數(shù)冪都適用. 33.指數(shù)式與對(duì)數(shù)式的互化式 . 34.對(duì)數(shù)的換底公式 (,且,,且, ). 推論 (,且,,且,, ). 35.對(duì)數(shù)的四則運(yùn)算法則 若a>0,a≠1,M>0,N>0,則 (1); (2) ; (3). 36.設(shè)函數(shù),記.若的定義域?yàn)?則,且;若的值域?yàn)?則,且.對(duì)于的情形,需要單獨(dú)檢驗(yàn). 37. 對(duì)數(shù)換底不等式及其推廣 若,,,,則函數(shù) (1)當(dāng)時(shí),在和上為增函數(shù). , (2)當(dāng)時(shí),在和上為減函數(shù). 推論:設(shè),,,且,則 (1). (2). 38. 平均增長(zhǎng)率的問(wèn)題 如果原來(lái)產(chǎn)值的基礎(chǔ)數(shù)為N,平均增長(zhǎng)率為,則對(duì)于時(shí)間的總產(chǎn)值,有. 39.數(shù)列的同項(xiàng)公式與前n項(xiàng)的和的關(guān)系 ( 數(shù)列的前n項(xiàng)的和為). 40.等差數(shù)列的通項(xiàng)公式 ; 其前n項(xiàng)和公式為 . 41.等比數(shù)列的通項(xiàng)公式 ; 其前n項(xiàng)的和公式為 或. 42.等比差數(shù)列:的通項(xiàng)公式為 ; 其前n項(xiàng)和公式為 . 43.分期付款(按揭貸款) 每次還款元(貸款元,次還清,每期利率為). 44.常見(jiàn)三角不等式 (1)若,則. (2) 若,則. (3) . 45.同角三角函數(shù)的基本關(guān)系式 ,=,. 46.正弦、余弦的誘導(dǎo)公式(奇變偶不變,符號(hào)看象限) (n為偶數(shù)) (n為奇數(shù)) (n為偶數(shù)) (n為奇數(shù)) 47.和角與差角公式 ; ; . (平方正弦公式); . =(輔助角所在象限由點(diǎn)的象限決定, ). 48.二倍角公式 . . . 49. 三倍角公式 . .. 50.三角函數(shù)的周期公式 函數(shù),x∈R及函數(shù),x∈R(A,ω,為常數(shù),且A≠0,ω>0)的周期;函數(shù),(A,ω,為常數(shù),且A≠0,ω>0)的周期. 51.正弦定理? . 52.余弦定理 ; ; . 53.面積定理 (1)(分別表示a、b、c邊上的高). (2). (3). 54.三角形內(nèi)角和定理 在△ABC中,有 . 55. 簡(jiǎn)單的三角方程的通解 . . . 特別地,有 . . . 56.最簡(jiǎn)單的三角不等式及其解集 . . . . . . 57.實(shí)數(shù)與向量的積的運(yùn)算律 設(shè)λ、μ為實(shí)數(shù),那么 (1) 結(jié)合律:λ(μa)=(λμ)a; (2)第一分配律:(λ+μ)a=λa+μa; (3)第二分配律:λ(a+b)=λa+λb. 58.向量的數(shù)量積的運(yùn)算律: (1) a·b= b·a (交換律); (2)(a)·b= (a·b)=a·b= a·(b); (3)(a+b)·c= a ·c +b·c. 59.平面向量基本定理? 如果e1、e 2是同一平面內(nèi)的兩個(gè)不共線(xiàn)向量,那么對(duì)于這一平面內(nèi)的任一向量,有且只有一對(duì)實(shí)數(shù)λ1、λ2,使得a=λ1e1+λ2e2. 不共線(xiàn)的向量e1、e2叫做表示這一平面內(nèi)所有向量的一組基底. 60.向量平行的坐標(biāo)表示?? 設(shè)a=,b=,且b0,則ab(b0). 53. a與b的數(shù)量積(或內(nèi)積) a·b=|a||b|cosθ. 61. a·b的幾何意義 數(shù)量積a·b等于a的長(zhǎng)度|a|與b在a的方向上的投影|b|cosθ的乘積. 62.平面向量的坐標(biāo)運(yùn)算 (1)設(shè)a=,b=,則a+b=. (2)設(shè)a=,b=,則a-b=. (3)設(shè)A,B,則. (4)設(shè)a=,則a=. (5)設(shè)a=,b=,則a·b=. 63.兩向量的夾角公式 (a=,b=). 64.平面兩點(diǎn)間的距離公式 = (A,B). 65.向量的平行與垂直 設(shè)a=,b=,且b0,則 A||bb=λa . ab(a0)a·b=0. 66.線(xiàn)段的定比分公式 ? 設(shè),,是線(xiàn)段的分點(diǎn),是實(shí)數(shù),且,則 (). 67.三角形的重心坐標(biāo)公式 △ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為、、,則△ABC的重心的坐標(biāo)是. 68.點(diǎn)的平移公式 . 注:圖形F上的任意一點(diǎn)P(x,y)在平移后圖形上的對(duì)應(yīng)點(diǎn)為,且的坐標(biāo)為. 69.“按向量平移”的幾個(gè)結(jié)論 (1)點(diǎn)按向量a=平移后得到點(diǎn). (2) 函數(shù)的圖象按向量a=平移后得到圖象,則的函數(shù)解析式為. (3) 圖象按向量a=平移后得到圖象,若的解析式,則的函數(shù)解析式為. (4)曲線(xiàn):按向量a=平移后得到圖象,則的方程為. (5) 向量m=按向量a=平移后得到的向量仍然為m=. 70. 三角形五“心”向量形式的充要條件 設(shè)為所在平面上一點(diǎn),角所對(duì)邊長(zhǎng)分別為,則 (1)為的外心. (2)為的重心. (3)為的垂心. (4)為的內(nèi)心. (5)為的的旁心. 71.常用不等式: (1)(當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào)). (2)(當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào)). (3) (4)柯西不等式 (5). 72.極值定理 已知都是正數(shù),則有 (1)若積是定值,則當(dāng)時(shí)和有最小值; (2)若和是定值,則當(dāng)時(shí)積有最大值. 推廣 已知,則有 (1)若積是定值,則當(dāng)最大時(shí),最大; 當(dāng)最小時(shí),最小. (2)若和是定值,則當(dāng)最大時(shí), 最??; 當(dāng)最小時(shí), 最大. 73.一元二次不等式,如果與同號(hào),則其解集在兩根之外;如果與異號(hào),則其解集在兩根之間.簡(jiǎn)言之:同號(hào)兩根之外,異號(hào)兩根之間. ; . 74.含有絕對(duì)值的不等式 當(dāng)a> 0時(shí),有 . 或. 75.無(wú)理不等式 (1) . (2). (3). 76.指數(shù)不等式與對(duì)數(shù)不等式 (1)當(dāng)時(shí), ; . (2)當(dāng)時(shí), ; 77.斜率公式 (、). 78.直線(xiàn)的五種方程 (1)點(diǎn)斜式 (直線(xiàn)過(guò)點(diǎn),且斜率為). (2)斜截式 (b為直線(xiàn)在y軸上的截距). (3)兩點(diǎn)式 ()(、 ()). (4)截距式 (分別為直線(xiàn)的橫、縱截距,) (5)一般式 (其中A、B不同時(shí)為0). 79.兩條直線(xiàn)的平行和垂直 (1)若, ①; ②. (2)若,,且A1、A2、B1、B2都不為零, ①; ②; 80.夾角公式 (1). (,,) (2). (,,). 直線(xiàn)時(shí),直線(xiàn)l1與l2的夾角是. 81. 到的角公式 (1). (,,) (2). (,,). 直線(xiàn)時(shí),直線(xiàn)l1到l2的角是. 82.四種常用直線(xiàn)系方程 (1)定點(diǎn)直線(xiàn)系方程:經(jīng)過(guò)定點(diǎn)的直線(xiàn)系方程為(除直線(xiàn)),其中是待定的系數(shù); 經(jīng)過(guò)定點(diǎn)的直線(xiàn)系方程為,其中是待定的系數(shù). (2)共點(diǎn)直線(xiàn)系方程:經(jīng)過(guò)兩直線(xiàn),的交點(diǎn)的直線(xiàn)系方程為(除),其中λ是待定的系數(shù). (3)平行直線(xiàn)系方程:直線(xiàn)中當(dāng)斜率k一定而b變動(dòng)時(shí),表示平行直線(xiàn)系方程.與直線(xiàn)平行的直線(xiàn)系方程是(),λ是參變量. (4)垂直直線(xiàn)系方程:與直線(xiàn) (A≠0,B≠0)垂直的直線(xiàn)系方程是,λ是參變量. 83.點(diǎn)到直線(xiàn)的距離 (點(diǎn),直線(xiàn):). 84. 或所表示的平面區(qū)域 設(shè)直線(xiàn),則或所表示的平面區(qū)域是: 若,當(dāng)與同號(hào)時(shí),表示直線(xiàn)的上方的區(qū)域;當(dāng)與異號(hào)時(shí),表示直線(xiàn)的下方的區(qū)域.簡(jiǎn)言之,同號(hào)在上,異號(hào)在下. 若,當(dāng)與同號(hào)時(shí),表示直線(xiàn)的右方的區(qū)域;當(dāng)與異號(hào)時(shí),表示直線(xiàn)的左方的區(qū)域. 簡(jiǎn)言之,同號(hào)在右,異號(hào)在左. 85. 或所表示的平面區(qū)域 設(shè)曲線(xiàn)(),則 或所表示的平面區(qū)域是: 所表示的平面區(qū)域上下兩部分; 所表示的平面區(qū)域上下兩部分. 86. 圓的四種方程 (1)圓的標(biāo)準(zhǔn)方程 . (2)圓的一般方程 (>0). (3)圓的參數(shù)方程 . (4)圓的直徑式方程 (圓的直徑的端點(diǎn)是、). 87. 圓系方程 (1)過(guò)點(diǎn),的圓系方程是 ,其中是直線(xiàn)的方程,λ是待定的系數(shù). (2)過(guò)直線(xiàn):與圓:的交點(diǎn)的圓系方程是,λ是待定的系數(shù). (3) 過(guò)圓:與圓:的交點(diǎn)的圓系方程是,λ是待定的系數(shù). 88.點(diǎn)與圓的位置關(guān)系 點(diǎn)與圓的位置關(guān)系有三種 若,則 點(diǎn)在圓外;點(diǎn)在圓上;點(diǎn)在圓內(nèi). 89.直線(xiàn)與圓的位置關(guān)系 直線(xiàn)與圓的位置關(guān)系有三種: ; ; . 其中. 90.兩圓位置關(guān)系的判定方法 設(shè)兩圓圓心分別為O1,O2,半徑分別為r1,r2, ; ; ; ; . 91.圓的切線(xiàn)方程 (1)已知圓. ①若已知切點(diǎn)在圓上,則切線(xiàn)只有一條,其方程是 . 當(dāng)圓外時(shí), 表示過(guò)兩個(gè)切點(diǎn)的切點(diǎn)弦方程. ②過(guò)圓外一點(diǎn)的切線(xiàn)方程可設(shè)為,再利用相切條件求k,這時(shí)必有兩條切線(xiàn),注意不要漏掉平行于y軸的切線(xiàn). ③斜率為k的切線(xiàn)方程可設(shè)為,再利用相切條件求b,必有兩條切線(xiàn). (2)已知圓. ①過(guò)圓上的點(diǎn)的切線(xiàn)方程為; ②斜率為的圓的切線(xiàn)方程為. 92.橢圓的參數(shù)方程是. 93.橢圓焦半徑公式 ,. 94.橢圓的的內(nèi)外部 (1)點(diǎn)在橢圓的內(nèi)部. (2)點(diǎn)在橢圓的外部. 95. 橢圓的切線(xiàn)方程 (1)橢圓上一點(diǎn)處的切線(xiàn)方程是. (2)過(guò)橢圓外一點(diǎn)所引兩條切線(xiàn)的切點(diǎn)弦方程是 . (3)橢圓與直線(xiàn)相切的條件是. 96.雙曲線(xiàn)的焦半徑公式 ,. 97.雙曲線(xiàn)的內(nèi)外部 (1)點(diǎn)在雙曲線(xiàn)的內(nèi)部. (2)點(diǎn)在雙曲線(xiàn)的外部. 98.雙曲線(xiàn)的方程與漸近線(xiàn)方程的關(guān)系 (1)若雙曲線(xiàn)方程為漸近線(xiàn)方程:. (2)若漸近線(xiàn)方程為雙曲線(xiàn)可設(shè)為. (3)若雙曲線(xiàn)與有公共漸近線(xiàn),可設(shè)為(,焦點(diǎn)在x軸上,,焦點(diǎn)在y軸上). 99. 雙曲線(xiàn)的切線(xiàn)方程 (1)雙曲線(xiàn)上一點(diǎn)處的切線(xiàn)方程是. (2)過(guò)雙曲線(xiàn)外一點(diǎn)所引兩條切線(xiàn)的切點(diǎn)弦方程是 . (3)雙曲線(xiàn)與直線(xiàn)相切的條件是. 100. 拋物線(xiàn)的焦半徑公式 拋物線(xiàn)焦半徑. 過(guò)焦點(diǎn)弦長(zhǎng). 101.拋物線(xiàn)上的動(dòng)點(diǎn)可設(shè)為P或 P,其中 . 102.二次函數(shù)的圖象是拋物線(xiàn):(1)頂點(diǎn)坐標(biāo)為;(2)焦點(diǎn)的坐標(biāo)為;(3)準(zhǔn)線(xiàn)方程是. 103.拋物線(xiàn)的內(nèi)外部 (1)點(diǎn)在拋物線(xiàn)的內(nèi)部. 點(diǎn)在拋物線(xiàn)的外部. (2)點(diǎn)在拋物線(xiàn)的內(nèi)部. 點(diǎn)在拋物線(xiàn)的外部. (3)點(diǎn)在拋物線(xiàn)的內(nèi)部. 點(diǎn)在拋物線(xiàn)的外部. (4) 點(diǎn)在拋物線(xiàn)的內(nèi)部. 點(diǎn)在拋物線(xiàn)的外部. 104. 拋物線(xiàn)的切線(xiàn)方程 (1)拋物線(xiàn)上一點(diǎn)處的切線(xiàn)方程是. (2)過(guò)拋物線(xiàn)外一點(diǎn)所引兩條切線(xiàn)的切點(diǎn)弦方程是. (3)拋物線(xiàn)與直線(xiàn)相切的條件是. 105.兩個(gè)常見(jiàn)的曲線(xiàn)系方程 (1)過(guò)曲線(xiàn),的交點(diǎn)的曲線(xiàn)系方程是 (為參數(shù)). (2)共焦點(diǎn)的有心圓錐曲線(xiàn)系方程,其中.當(dāng)時(shí),表示橢圓; 當(dāng)時(shí),表示雙曲線(xiàn). 106.直線(xiàn)與圓錐曲線(xiàn)相交的弦長(zhǎng)公式 或 (弦端點(diǎn)A,由方程 消去y得到,,為直線(xiàn)的傾斜角,為直線(xiàn)的斜率). 107.圓錐曲線(xiàn)的兩類(lèi)對(duì)稱(chēng)問(wèn)題 (1)曲線(xiàn)關(guān)于點(diǎn)成中心對(duì)稱(chēng)的曲線(xiàn)是. (2)曲線(xiàn)關(guān)于直線(xiàn)成軸對(duì)稱(chēng)的曲線(xiàn)是 . 108.“四線(xiàn)”一方程 對(duì)于一般的二次曲線(xiàn),用代,用代,用代,用代,用代即得方程 ,曲線(xiàn)的切線(xiàn),切點(diǎn)弦,中點(diǎn)弦,弦中點(diǎn)方程均是此方程得到. 109.證明直線(xiàn)與直線(xiàn)的平行的思考途徑 (1)轉(zhuǎn)化為判定共面二直線(xiàn)無(wú)交點(diǎn); (2)轉(zhuǎn)化為二直線(xiàn)同與第三條直線(xiàn)平行; (3)轉(zhuǎn)化為線(xiàn)面平行; (4)轉(zhuǎn)化為線(xiàn)面垂直; (5)轉(zhuǎn)化為面面平行. 110.證明直線(xiàn)與平面的平行的思考途徑 (1)轉(zhuǎn)化為直線(xiàn)與平面無(wú)公共點(diǎn); (2)轉(zhuǎn)化為線(xiàn)線(xiàn)平行; (3)轉(zhuǎn)化為面面平行. 111.證明平面與平面平行的思考途徑 (1)轉(zhuǎn)化為判定二平面無(wú)公共點(diǎn); (2)轉(zhuǎn)化為線(xiàn)面平行; (3)轉(zhuǎn)化為線(xiàn)面垂直. 112.證明直線(xiàn)與直線(xiàn)的垂直的思考途徑 (1)轉(zhuǎn)化為相交垂直; (2)轉(zhuǎn)化為線(xiàn)面垂直; (3)轉(zhuǎn)化為線(xiàn)與另一線(xiàn)的射影垂直; (4)轉(zhuǎn)化為線(xiàn)與形成射影的斜線(xiàn)垂直. 113.證明直線(xiàn)與平面垂直的思考途徑 (1)轉(zhuǎn)化為該直線(xiàn)與平面內(nèi)任一直線(xiàn)垂直; (2)轉(zhuǎn)化為該直線(xiàn)與平面內(nèi)相交二直線(xiàn)垂直; (3)轉(zhuǎn)化為該直線(xiàn)與平面的一條垂線(xiàn)平行; (4)轉(zhuǎn)化為該直線(xiàn)垂直于另一個(gè)平行平面; (5)轉(zhuǎn)化為該直線(xiàn)與兩個(gè)垂直平面的交線(xiàn)垂直. 114.證明平面與平面的垂直的思考途徑 (1)轉(zhuǎn)化為判斷二面角是直二面角; (2)轉(zhuǎn)化為線(xiàn)面垂直. 115.空間向量的加法與數(shù)乘向量運(yùn)算的運(yùn)算律 (1)加法交換律:a+b=b+a. (2)加法結(jié)合律:(a+b)+c=a+(b+c). (3)數(shù)乘分配律:λ(a+b)=λa+λb. 116.平面向量加法的平行四邊形法則向空間的推廣 始點(diǎn)相同且不在同一個(gè)平面內(nèi)的三個(gè)向量之和,等于以這三個(gè)向量為棱的平行六面體的以公共始點(diǎn)為始點(diǎn)的對(duì)角線(xiàn)所表示的向量. 117.共線(xiàn)向量定理 對(duì)空間任意兩個(gè)向量a、b(b≠0 ),a∥b存在實(shí)數(shù)λ使a=λb. 三點(diǎn)共線(xiàn). 、共線(xiàn)且不共線(xiàn)且不共線(xiàn). 118.共面向量定理 向量p與兩個(gè)不共線(xiàn)的向量a、b共面的存在實(shí)數(shù)對(duì),使. 推論 空間一點(diǎn)P位于平面MAB內(nèi)的存在有序?qū)崝?shù)對(duì),使, 或?qū)臻g任一定點(diǎn)O,有序?qū)崝?shù)對(duì),使. 119.對(duì)空間任一點(diǎn)和不共線(xiàn)的三點(diǎn)A、B、C,滿(mǎn)足(),則當(dāng)時(shí),對(duì)于空間任一點(diǎn),總有P、A、B、C四點(diǎn)共面;當(dāng)時(shí),若平面ABC,則P、A、B、C四點(diǎn)共面;若平面ABC,則P、A、B、C四點(diǎn)不共面. 四點(diǎn)共面與、共面 (平面ABC). 120.空間向量基本定理 如果三個(gè)向量a、b、c不共面,那么對(duì)空間任一向量p,存在一個(gè)唯一的有序?qū)崝?shù)組x,y,z,使p=xa+yb+zc. 推論 設(shè)O、A、B、C是不共面的四點(diǎn),則對(duì)空間任一點(diǎn)P,都存在唯一的三個(gè)有序?qū)崝?shù)x,y,z,使. 121.射影公式 已知向量=a和軸,e是上與同方向的單位向量.作A點(diǎn)在上的射影,作B點(diǎn)在上的射影,則 〈a,e〉=a·e 122.向量的直角坐標(biāo)運(yùn)算 設(shè)a=,b=則 (1)a+b=; (2)a-b=; (3)λa= (λ∈R); (4)a·b=; 123.設(shè)A,B,則 = . 124.空間的線(xiàn)線(xiàn)平行或垂直 設(shè),,則 ; . 125.夾角公式 設(shè)a=,b=,則 cos〈a,b〉=. 推論 ,此即三維柯西不等式. 126. 四面體的對(duì)棱所成的角 四面體中, 與所成的角為,則 . 127.異面直線(xiàn)所成角 = (其中()為異面直線(xiàn)所成角,分別表示異面直線(xiàn)的方向向量) 128.直線(xiàn)與平面所成角 (為平面的法向量). 129.若所在平面若與過(guò)若的平面成的角,另兩邊,與平面成的角分別是、,為的兩個(gè)內(nèi)角,則 . 特別地,當(dāng)時(shí),有 . 130.若所在平面若與過(guò)若的平面成的角,另兩邊,與平面成的角分別是、,為的兩個(gè)內(nèi)角,則 . 特別地,當(dāng)時(shí),有 . 131.二面角的平面角 或(,為平面,的法向量). 132.三余弦定理 設(shè)AC是α內(nèi)的任一條直線(xiàn),且BC⊥AC,垂足為C,又設(shè)AO與AB所成的角為,AB與AC所成的角為,AO與AC所成的角為.則. 133. 三射線(xiàn)定理 若夾在平面角為的二面角間的線(xiàn)段與二面角的兩個(gè)半平面所成的角是,,與二面角的棱所成的角是θ,則有 ; (當(dāng)且僅當(dāng)時(shí)等號(hào)成立). 134.空間兩點(diǎn)間的距離公式 若A,B,則 =. 135.點(diǎn)到直線(xiàn)距離 (點(diǎn)在直線(xiàn)上,直線(xiàn)的方向向量a=,向量b=). 136.異面直線(xiàn)間的距離 (是兩異面直線(xiàn),其公垂向量為,分別是上任一點(diǎn),為間的距離). 137.點(diǎn)到平面的距離 (為平面的法向量,是經(jīng)過(guò)面的一條斜線(xiàn),). 138.異面直線(xiàn)上兩點(diǎn)距離公式 . . (). (兩條異面直線(xiàn)a、b所成的角為θ,其公垂線(xiàn)段的長(zhǎng)度為h.在直線(xiàn)a、b上分別取兩點(diǎn)E、F,,,). 139.三個(gè)向量和的平方公式 140. 長(zhǎng)度為的線(xiàn)段在三條兩兩互相垂直的直線(xiàn)上的射影長(zhǎng)分別為,夾角分別為,則有 . (立體幾何中長(zhǎng)方體對(duì)角線(xiàn)長(zhǎng)的公式是其特例). 141. 面積射影定理 . (平面多邊形及其射影的面積分別是、,它們所在平面所成銳二面角的為). 142. 斜棱柱的直截面 已知斜棱柱的側(cè)棱長(zhǎng)是,側(cè)面積和體積分別是和,它的直截面的周長(zhǎng)和面積分別是和,則 ①. ②. 143.作截面的依據(jù) 三個(gè)平面兩兩相交,有三條交線(xiàn),則這三條交線(xiàn)交于一點(diǎn)或互相平行. 144.棱錐的平行截面的性質(zhì) 如果棱錐被平行于底面的平面所截,那么所得的截面與底面相似,截面面積與底面面積的比等于頂點(diǎn)到截面距離與棱錐高的平方比(對(duì)應(yīng)角相等,對(duì)應(yīng)邊對(duì)應(yīng)成比例的多邊形是相似多邊形,相似多邊形面積的比等于對(duì)應(yīng)邊的比的平方);相應(yīng)小棱錐與小棱錐的側(cè)面積的比等于頂點(diǎn)到截面距離與棱錐高的平方比. 145.歐拉定理(歐拉公式) (簡(jiǎn)單多面體的頂點(diǎn)數(shù)V、棱數(shù)E和面數(shù)F). (1)=各面多邊形邊數(shù)和的一半.特別地,若每個(gè)面的邊數(shù)為的多邊形,則面數(shù)F與棱數(shù)E的關(guān)系:; (2)若每個(gè)頂點(diǎn)引出的棱數(shù)為,則頂點(diǎn)數(shù)V與棱數(shù)E的關(guān)系:. 146.球的半徑是R,則 其體積, 其表面積. 147.球的組合體 (1)球與長(zhǎng)方體的組合體: 長(zhǎng)方體的外接球的直徑是長(zhǎng)方體的體對(duì)角線(xiàn)長(zhǎng). (2)球與正方體的組合體: 正方體的內(nèi)切球的直徑是正方體的棱長(zhǎng), 正方體的棱切球的直徑是正方體的面對(duì)角線(xiàn)長(zhǎng), 正方體的外接球的直徑是正方體的體對(duì)角線(xiàn)長(zhǎng). (3) 球與正四面體的組合體: 棱長(zhǎng)為的正四面體的內(nèi)切球的半徑為,外接球的半徑為. 148.柱體、錐體的體積 (是柱體的底面積、是柱體的高). (是錐體的底面積、是錐體的高). 149.分類(lèi)計(jì)數(shù)原理(加法原理) . 150.分步計(jì)數(shù)原理(乘法原理) . 151.排列數(shù)公式 ==.(,∈N*,且). 注:規(guī)定. 152.排列恒等式 (1); (2); (3); (4); (5). (6) . 153.組合數(shù)公式 ===(∈N*,,且). 154.組合數(shù)的兩個(gè)性質(zhì) (1)= ; (2) +=. 注:規(guī)定. 155.組合恒等式 (1); (2); (3); (4)=; (5). (6). (7). (8). (9). (10). 156.排列數(shù)與組合數(shù)的關(guān)系 . 157.單條件排列 以下各條的大前提是從個(gè)元素中取個(gè)元素的排列. (1)“在位”與“不在位” ①某(特)元必在某位有種;②某(特)元不在某位有(補(bǔ)集思想)(著眼位置)(著眼元素)種. (2)緊貼與插空(即相鄰與不相鄰) ①定位緊貼:個(gè)元在固定位的排列有種. ②浮動(dòng)緊貼:個(gè)元素的全排列把k個(gè)元排在一起的排法有種.注:此類(lèi)問(wèn)題常用捆綁法; ③插空:兩組元素分別有k、h個(gè)(),把它們合在一起來(lái)作全排列,k個(gè)的一組互不能挨近的所有排列數(shù)有種. (3)兩組元素各相同的插空 個(gè)大球個(gè)小球排成一列,小球必分開(kāi),問(wèn)有多少種排法? 當(dāng)時(shí),無(wú)解;當(dāng)時(shí),有種排法. (4)兩組相同元素的排列:兩組元素有m個(gè)和n個(gè),各組元素分別相同的排列數(shù)為. 158.分配問(wèn)題 (1)(平均分組有歸屬問(wèn)題)將相異的、個(gè)物件等分給個(gè)人,各得件,其分配方法數(shù)共有. (2)(平均分組無(wú)歸屬問(wèn)題)將相異的·個(gè)物體等分為無(wú)記號(hào)或無(wú)順序的堆,其分配方法數(shù)共有 . (3)(非平均分組有歸屬問(wèn)題)將相異的個(gè)物體分給個(gè)人,物件必須被分完,分別得到,,…,件,且,,…,這個(gè)數(shù)彼此不相等,則其分配方法數(shù)共有. (4)(非完全平均分組有歸屬問(wèn)題)將相異的個(gè)物體分給個(gè)人,物件必須被分完,分別得到,,…,件,且,,…,這個(gè)數(shù)中分別有a、b、c、…個(gè)相等,則其分配方法數(shù)有 . (5)(非平均分組無(wú)歸屬問(wèn)題)將相異的個(gè)物體分為任意的,,…,件無(wú)記號(hào)的堆,且,,…,這個(gè)數(shù)彼此不相等,則其分配方法數(shù)有. (6)(非完全平均分組無(wú)歸屬問(wèn)題)將相異的個(gè)物體分為任意的,,…,件無(wú)記號(hào)的堆,且,,…,這個(gè)數(shù)中分別有a、b、c、…個(gè)相等,則其分配方法數(shù)有. (7)(限定分組有歸屬問(wèn)題)將相異的()個(gè)物體分給甲、乙、丙,……等個(gè)人,物體必須被分完,如果指定甲得件,乙得件,丙得件,…時(shí),則無(wú)論,,…,等個(gè)數(shù)是否全相異或不全相異其分配方法數(shù)恒有 . 159.“錯(cuò)位問(wèn)題”及其推廣 貝努利裝錯(cuò)箋問(wèn)題:信封信與個(gè)信封全部錯(cuò)位的組合數(shù)為 . 推廣: 個(gè)元素與個(gè)位置,其中至少有個(gè)元素錯(cuò)位的不同組合總數(shù)為 . 160.不定方程的解的個(gè)數(shù) (1)方程()的正整數(shù)解有個(gè). (2) 方程()的非負(fù)整數(shù)解有 個(gè). (3) 方程()滿(mǎn)足條件(,)的非負(fù)整數(shù)解有個(gè). (4) 方程()滿(mǎn)足條件(,)的正整數(shù)解有個(gè). 161.二項(xiàng)式定理 ; 二項(xiàng)展開(kāi)式的通項(xiàng)公式 . 162.等可能性事件的概率 . 163.互斥事件A,B分別發(fā)生的概率的和 P(A+B)=P(A)+P(B). 164.個(gè)互斥事件分別發(fā)生的概率的和 P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An). 165.獨(dú)立事件A,B同時(shí)發(fā)生的概率 P(A·B)= P(A)·P(B). 166.n個(gè)獨(dú)立事件同時(shí)發(fā)生的概率 P(A1· A2·…· An)=P(A1)· P(A2)·…· P(An). 167.n次獨(dú)立重復(fù)試驗(yàn)中某事件恰好發(fā)生k次的概率 168.離散型隨機(jī)變量的分布列的兩個(gè)性質(zhì) (1); (2). 169.數(shù)學(xué)期望 170.數(shù)學(xué)期望的性質(zhì) (1). (2)若~,則. (3) 若服從幾何分布,且,則. 171.方差 172.標(biāo)準(zhǔn)差 =. 173.方差的性質(zhì) (1); (2)若~,則. (3) 若服從幾何分布,且,則. 174.方差與期望的關(guān)系 . 175.正態(tài)分布密度函數(shù) ,式中的實(shí)數(shù)μ,(>0)是參數(shù),分別表示個(gè)體的平均數(shù)與標(biāo)準(zhǔn)差. 176.標(biāo)準(zhǔn)正態(tài)分布密度函數(shù) . 177.對(duì)于,取值小于x的概率 . . 178.回歸直線(xiàn)方程 ,其中. 179.相關(guān)系數(shù) . |r|≤1,且|r|越接近于1,相關(guān)程度越大;|r|越接近于0,相關(guān)程度越小. 180.特殊數(shù)列的極限 (1). (2). (3)(無(wú)窮等比數(shù)列 ()的和). 181. 函數(shù)的極限定理 . 182.函數(shù)的夾逼性定理 如果函數(shù)f(x),g(x),h(x)在點(diǎn)x0的附近滿(mǎn)足: (1); (2)(常數(shù)), 則. 本定理對(duì)于單側(cè)極限和的情況仍然成立. 183.幾個(gè)常用極限 (1),(); (2),. 184.兩個(gè)重要的極限 (1); (2)(e=2.718281845…). 185.函數(shù)極限的四則運(yùn)算法則 若,,則 (1); (2); (3). 186.數(shù)列極限的四則運(yùn)算法則 若,則 (1); (2); (3) (4)( c是常數(shù)). 187.在處的導(dǎo)數(shù)(或變化率或微商) . 188.瞬時(shí)速度 . 189.瞬時(shí)加速度 . 190.在的導(dǎo)數(shù) . 191. 函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義 函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線(xiàn)在處的切線(xiàn)的斜率,相應(yīng)的切線(xiàn)方程是. 192.幾種常見(jiàn)函數(shù)的導(dǎo)數(shù) (1) (C為常數(shù)). (2) . (3) . (4) . (5) ;. (6) ; . 193.導(dǎo)數(shù)的運(yùn)算法則 (1). (2). (3). 194.復(fù)合函數(shù)的求導(dǎo)法則 設(shè)函數(shù)在點(diǎn)處有導(dǎo)數(shù),函數(shù)在點(diǎn)處的對(duì)應(yīng)點(diǎn)U處有導(dǎo)數(shù),則復(fù)合函數(shù)在點(diǎn)處有導(dǎo)數(shù),且,或?qū)懽? 195.常用的近似計(jì)算公式(當(dāng)充小時(shí)) (1);; (2); ; (3); (4); (5)(為弧度); (6)(為弧度); (7)(為弧度) 196.判別是極大(?。┲档姆椒? 當(dāng)函數(shù)在點(diǎn)處連續(xù)時(shí), (1)如果在附近的左側(cè),右側(cè),則是極大值; (2)如果在附近的左側(cè),右側(cè),則是極小值. 197.復(fù)數(shù)的相等 .() 198.復(fù)數(shù)的模(或絕對(duì)值) ==. 199.復(fù)數(shù)的四則運(yùn)算法則 (1); (2); (3); (4). 200.復(fù)數(shù)的乘法的運(yùn)算律 對(duì)于任何,有 交換律:. 結(jié)合律:. 分配律: . 201.復(fù)平面上的兩點(diǎn)間的距離公式 (,). 202.向量的垂直 非零復(fù)數(shù),對(duì)應(yīng)的向量分別是,,則 的實(shí)部為零為純虛數(shù) (λ為非零實(shí)數(shù)). 203.實(shí)系數(shù)一元二次方程的解 實(shí)系數(shù)一元二次方程, ①若,則; ②若,則; ③若,它在實(shí)數(shù)集內(nèi)沒(méi)有實(shí)數(shù)根;在復(fù)數(shù)集內(nèi)有且僅有兩個(gè)共軛復(fù)數(shù)根. 高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 1. 對(duì)于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無(wú)序性”。 中元素各表示什么? 注重借助于數(shù)軸和文氏圖解集合問(wèn)題。 空集是一切集合的子集,是一切非空集合的真子集。 3. 注意下列性質(zhì): (3)德摩根定律: 4. 你會(huì)用補(bǔ)集思想解決問(wèn)題嗎?(排除法、間接法) 的取值范圍。 6. 命題的四種形式及其相互關(guān)系是什么? (互為逆否關(guān)系的命題是等價(jià)命題。) 原命題與逆否命題同真、同假;逆命題與否命題同真同假。 7. 對(duì)映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對(duì)應(yīng)元素的唯一性,哪幾種對(duì)應(yīng)能構(gòu)成映射? (一對(duì)一,多對(duì)一,允許B中有元素?zé)o原象。) 8. 函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同? (定義域、對(duì)應(yīng)法則、值域) 9. 求函數(shù)的定義域有哪些常見(jiàn)類(lèi)型? 10. 如何求復(fù)合函數(shù)的定義域? 義域是_____________。 11. 求一個(gè)函數(shù)的解析式或一個(gè)函數(shù)的反函數(shù)時(shí),注明函數(shù)的定義域了嗎? 12. 反函數(shù)存在的條件是什么? (一一對(duì)應(yīng)函數(shù)) 求反函數(shù)的步驟掌握了嗎? (①反解x;②互換x、y;③注明定義域) 13. 反函數(shù)的性質(zhì)有哪些? ①互為反函數(shù)的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng); ②保存了原來(lái)函數(shù)的單調(diào)性、奇函數(shù)性; 14. 如何用定義證明函數(shù)的單調(diào)性? (取值、作差、判正負(fù)) 如何判斷復(fù)合函數(shù)的單調(diào)性? ∴……) 15. 如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性? 值是( ) A. 0 B. 1 C. 2 D. 3 ∴a的最大值為3) 16. 函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么? (f(x)定義域關(guān)于原點(diǎn)對(duì)稱(chēng)) 注意如下結(jié)論: (1)在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶函數(shù);兩個(gè)偶函數(shù)的乘積是偶函數(shù);一個(gè)偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。 17. 你熟悉周期函數(shù)的定義嗎? 函數(shù),T是一個(gè)周期。) 如: 18. 你掌握常用的圖象變換了嗎? 注意如下“翻折”變換: 19. 你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎? 的雙曲線(xiàn)。 應(yīng)用:①“三個(gè)二次”(二次函數(shù)、二次方程、二次不等式)的關(guān)系——二次方程 ②求閉區(qū)間[m,n]上的最值。 ③求區(qū)間定(動(dòng)),對(duì)稱(chēng)軸動(dòng)(定)的最值問(wèn)題。 ④一元二次方程根的分布問(wèn)題。 由圖象記性質(zhì)! (注意底數(shù)的限定?。? 利用它的單調(diào)性求最值與利用均值不等式求最值的區(qū)別是什么? 20. 你在基本運(yùn)算上常出現(xiàn)錯(cuò)誤嗎? 21. 如何解抽象函數(shù)問(wèn)題? (賦值法、結(jié)構(gòu)變換法) 22. 掌握求函數(shù)值域的常用方法了嗎? (二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調(diào)性法,導(dǎo)數(shù)法等。) 如求下列函數(shù)的最值: 23. 你記得弧度的定義嗎?能寫(xiě)出圓心角為α,半徑為R的弧長(zhǎng)公式和扇形面積公式嗎? 24. 熟記三角函數(shù)的定義,單位圓中三角函數(shù)線(xiàn)的定義 25. 你能迅速畫(huà)出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫(xiě)出單調(diào)區(qū)間、對(duì)稱(chēng)點(diǎn)、對(duì)稱(chēng)軸嗎? (x,y)作圖象。 27. 在三角函數(shù)中求一個(gè)角時(shí)要注意兩個(gè)方面——先求出某一個(gè)三角函數(shù)值,再判定角的范圍。 28. 在解含有正、余弦函數(shù)的問(wèn)題時(shí),你注意(到)運(yùn)用函數(shù)的有界性了嗎? 29. 熟練掌握三角函數(shù)圖象變換了嗎? (平移變換、伸縮變換) 平移公式: 圖象? 30. 熟練掌握同角三角函數(shù)關(guān)系和誘導(dǎo)公式了嗎? “奇”、“偶”指k取奇、偶數(shù)。 A. 正值或負(fù)值 B. 負(fù)值 C. 非負(fù)值 D. 正值 31. 熟練掌握兩角和、差、倍、降冪公式及其逆向應(yīng)用了嗎? 理解公式之間的聯(lián)系: 應(yīng)用以上公式對(duì)三角函數(shù)式化簡(jiǎn)。(化簡(jiǎn)要求:項(xiàng)數(shù)最少、函數(shù)種類(lèi)最少,分母中不含三角函數(shù),能求值,盡可能求值。) 具體方法: (2)名的變換:化弦或化切 (3)次數(shù)的變換:升、降冪公式 (4)形的變換:統(tǒng)一函數(shù)形式,注意運(yùn)用代數(shù)運(yùn)算。 32. 正、余弦定理的各種表達(dá)形式你還記得嗎?如何實(shí)現(xiàn)邊、角轉(zhuǎn)化,而解斜三角形? (應(yīng)用:已知兩邊一夾角求第三邊;已知三邊求角。) 33. 用反三角函數(shù)表示角時(shí)要注意角的范圍。 34. 不等式的性質(zhì)有哪些? 答案:C 35. 利用均值不等式: 值?(一正、二定、三相等) 注意如下結(jié)論: 36. 不等式證明的基本方法都掌握了嗎? (比較法、分析法、綜合法、數(shù)學(xué)歸納法等) 并注意簡(jiǎn)單放縮法的應(yīng)用。 (移項(xiàng)通分,分子分母因式分解,x的系數(shù)變?yōu)?,穿軸法解得結(jié)果。) 38. 用“穿軸法”解高次不等式——“奇穿,偶切”,從最大根的右上方開(kāi)始 39. 解含有參數(shù)的不等式要注意對(duì)字母參數(shù)的討論 40. 對(duì)含有兩個(gè)絕對(duì)值的不等式如何去解? (找零點(diǎn),分段討論,去掉絕對(duì)值符號(hào),最后取各段的并集。) 證明: (按不等號(hào)方向放縮) 42. 不等式恒成立問(wèn)題,常用的處理方式是什么?(可轉(zhuǎn)化為最值問(wèn)題,或“△”問(wèn)題) 43. 等差數(shù)列的定義與性質(zhì) 0的二次函數(shù)) 項(xiàng),即: 44. 等比數(shù)列的定義與性質(zhì) 46. 你熟悉求數(shù)列通項(xiàng)公式的常用方法嗎? 例如:(1)求差(商)法 解: [練習(xí)] (2)疊乘法 解: (3)等差型遞推公式 [練習(xí)] (4)等比型遞推公式 [練習(xí)] (5)倒數(shù)法 47. 你熟悉求數(shù)列前n項(xiàng)和的常用方法嗎? 例如:(1)裂項(xiàng)法:把數(shù)列各項(xiàng)拆成兩項(xiàng)或多項(xiàng)之和,使之出現(xiàn)成對(duì)互為相反數(shù)的項(xiàng)。 解: [練習(xí)] (2)錯(cuò)位相減法: (3)倒序相加法:把數(shù)列的各項(xiàng)順序倒寫(xiě),再與原來(lái)順序的數(shù)列相加。 [練習(xí)] 48. 你知道儲(chǔ)蓄、貸款問(wèn)題嗎? △零存整取儲(chǔ)蓄(單利)本利和計(jì)算模型: 若每期存入本金p元,每期利率為r,n期后,本利和為: △若按復(fù)利,如貸款問(wèn)題——按揭貸款的每期還款計(jì)算模型(按揭貸款——分期等額歸還本息的借款種類(lèi)) 若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復(fù)利),那么每期應(yīng)還x元,滿(mǎn)足 p——貸款數(shù),r——利率,n——還款期數(shù) 49. 解排列、組合問(wèn)題的依據(jù)是:分類(lèi)相加,分步相乘,有序排列,無(wú)序組合。 (2)排列:從n個(gè)不同元素中,任取m(m≤n)個(gè)元素,按照一定的順序排成一 (3)組合:從n個(gè)不同元素中任取m(m≤n)個(gè)元素并組成一組,叫做從n個(gè)不 50. 解排列與組合問(wèn)題的規(guī)律是: 相鄰問(wèn)題捆綁法;相間隔問(wèn)題插空法;定位問(wèn)題優(yōu)先法;多元問(wèn)題分類(lèi)法;至多至少問(wèn)題間接法;相同元素分組可采用隔板法,數(shù)量不大時(shí)可以逐一排出結(jié)果。 如:學(xué)號(hào)為1,2,3,4的四名學(xué)生的考試成績(jī) 則這四位同學(xué)考試成績(jī)的所有可能情況是( ) A. 24 B. 15 C. 12 D. 10 解析:可分成兩類(lèi): (2)中間兩個(gè)分?jǐn)?shù)相等 相同兩數(shù)分別取90,91,92,對(duì)應(yīng)的排列可以數(shù)出來(lái),分別有3,4,3種,∴有10種。 ∴共有5+10=15(種)情況 51. 二項(xiàng)式定理 性質(zhì): (3)最值:n為偶數(shù)時(shí),n+1為奇數(shù),中間一項(xiàng)的二項(xiàng)式系數(shù)最大且為第 表示) 52. 你對(duì)隨機(jī)事件之間的關(guān)系熟悉嗎? 的和(并)。 (5)互斥事件(互不相容事件):“A與B不能同時(shí)發(fā)生”叫做A、B互斥。 (6)對(duì)立事件(互逆事件): (7)獨(dú)立事件:A發(fā)生與否對(duì)B發(fā)生的概率沒(méi)有影響,這樣的兩個(gè)事件叫做相互獨(dú)立事件。 53. 對(duì)某一事件概率的求法: 分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即 (5)如果在一次試驗(yàn)中A發(fā)生的概率是p,那么在n次獨(dú)立重復(fù)試驗(yàn)中A恰好發(fā)生 如:設(shè)10件產(chǎn)品中有4件次品,6件正品,求下列事件的概率。 (1)從中任取2件都是次品; (2)從中任取5件恰有2件次品; (3)從中有放回地任取3件至少有2件次品; 解析:有放回地抽取3次(每次抽1件),∴n=103 而至少有2件次品為“恰有2次品”和“三件都是次品” (4)從中依次取5件恰有2件次品。 解析:∵一件一件抽取(有順序) 分清(1)、(2)是組合問(wèn)題,(3)是可重復(fù)排列問(wèn)題,(4)是無(wú)重復(fù)排列問(wèn)題。 54. 抽樣方法主要有:簡(jiǎn)單隨機(jī)抽樣(抽簽法、隨機(jī)數(shù)表法)常常用于總體個(gè)數(shù)較少時(shí),它的特征是從總體中逐個(gè)抽?。幌到y(tǒng)抽樣,常用于總體個(gè)數(shù)較多時(shí),它的主要特征是均衡成若干部分,每部分只取一個(gè);分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個(gè)個(gè)體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。 55. 對(duì)總體分布的估計(jì)——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計(jì)總體的期望和方差。 要熟悉樣本頻率直方圖的作法: (2)決定組距和組數(shù); (3)決定分點(diǎn); (4)列頻率分布表; (5)畫(huà)頻率直方圖。 如:從10名女生與5名男生中選6名學(xué)生參加比賽,如果按性別分層隨機(jī)抽樣,則組成此參賽隊(duì)的概率為_(kāi)___________。 56. 你對(duì)向量的有關(guān)概念清楚嗎? (1)向量——既有大小又有方向的量。 在此規(guī)定下向量可以在平面(或空間)平行移動(dòng)而不改變。 (6)并線(xiàn)向量(平行向量)——方向相同或相反的向量。 規(guī)定零向量與任意向量平行。 (7)向量的加、減法如圖: (8)平面向量基本定理(向量的分解定理) 的一組基底。 (9)向量的坐標(biāo)表示 表示。 57. 平面向量的數(shù)量積 數(shù)量積的幾何意義: (2)數(shù)量積的運(yùn)算法則 [練習(xí)] 答案: 答案:2 答案: 58. 線(xiàn)段的定比分點(diǎn) ※. 你能分清三角形的重心、垂心、外心、內(nèi)心及其性質(zhì)嗎? 59. 立體幾何中平行、垂直關(guān)系證明的思路清楚嗎? 平行垂直的證明主要利用線(xiàn)面關(guān)系的轉(zhuǎn)化: 線(xiàn)面平行的判定: 線(xiàn)面平行的性質(zhì): 三垂線(xiàn)定理(及逆定理): 線(xiàn)面垂直: 面面垂直: 60. 三類(lèi)角的定義及求法 (1)異面直線(xiàn)所成的角θ,0°<θ≤90° (2)直線(xiàn)與平面所成的角θ,0°≤θ≤90°- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
32 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中 數(shù)學(xué)知識(shí) 筆記 大全
鏈接地址:http://www.820124.com/p-1602422.html