3373 上肢康復機器人結構設計
3373 上肢康復機器人結構設計,上肢,康復,痊愈,機器人,結構設計
畢業(yè)設計中期檢查表填表日期 2012 年 5 月 7~11日 迄今已進行 11 周剩余 6 周學生姓名 院系 專業(yè)、班級指導教師姓名 職稱 從事專業(yè) 是否外聘 □是□否題目名稱已完成主要內(nèi)容 待完成主要內(nèi)容畢業(yè)設計工作進度學生填寫存在問題及努力方向?qū)W生簽字: 指導教師意 見畢業(yè)設計進度:超前□ 正?!? 滯后□ 嚴重滯后□指導教師簽字: 年 月 日系意見系主任簽字: 年 月 日本科學生畢業(yè)設計上肢康復機器人結構設計及仿真運動系部名稱: 機電工程學院 專業(yè)班級:機械設計制造及其自動化 08-12學生姓名: 王春生 指導教師: 陳 曦 職 稱: 講師 黑 龍 江 工 程 學 院二○一二年六月The Graduation Design for Bachelor's DegreeThe Design Of upper Limb Rehabilitation RobotStructure And SimulationOf motionCandidate:Wang ChunshengSpecialty:Mechanical Design and Manufacturing&AutomationClass:08-12Supervisor:Lecturer. ChenXiHeilongjiang Institute of Technology2012-06·Harbin1上肢康復機器人結構設計第 1 章 緒論1.1 概述據(jù)報道,我國 60 歲以上的老年人已有 1.43 億,占全國人口的 11%,到 2050 年將達到 4.37 億。在老齡人群眾中有大量的腦血管疾病或神經(jīng)系統(tǒng)疾病患者,這類患者多數(shù)伴有偏癱癥狀 [1]。近年由于患心腦血管疾病使中老年患者出現(xiàn)偏癱的人數(shù)不斷增多,而且在年齡上呈現(xiàn)年輕化趨勢。與此同時,由于交通運輸工具的迅速增長,因交通事故而造成神經(jīng)心痛損傷或者肢體損傷的人數(shù)也越來越多。在我國數(shù)以百萬計的有神經(jīng)科疾病病史和受到過意外傷害的患者需要進行康復治療,僅以中風為例,每年大約有 600,000 中風幸存者,其中的二百萬病人在中風后存在長期的運動障礙。隨著國民經(jīng)濟的發(fā)展,這個特殊群體已得到了更多人的關注,為了提高他們的生活質(zhì)量,治療、康復和服務于他們的產(chǎn)品的技術和質(zhì)量也在相應地提高。隨著機器人技術和康復醫(yī)學的發(fā)展,在歐洲、美國和日本等國家,醫(yī)療康復機器人的市場占有率呈逐年上升的趨勢,僅預測日本未來機器人市場,2005 年醫(yī)療、護理、康復機器人的市場份額約為 250,000 美元,而到 2010 年將上升到 1,050,000 美元,其增長率在機器人的所有應用領域中占據(jù)首位。因此,服務于四肢的康復設備的研究和應用有著廣闊的發(fā)展前景 [2]。 康復機器人是康復設備的一種類型??祻蜋C器人技術早已廣受世界各國科研工作者和醫(yī)療機構的普遍重視,其中以歐美和日本的成果最為顯著。在我國康復醫(yī)學工程雖然得到了普遍的重視,而康復機器人研究仍處于起步階段,一些簡單康復器械遠遠不能滿足市場對智能化、人機工程化的康復機器人的需求,有待進一步的研究和發(fā)展。由于康復訓練機器人要與人體直接相連,來帶動肢體進行康復訓練,所以對驅(qū)動器的安全性、柔性的要求較高。康復肢體運動功能用機械肢體組合系列機器人,是多種同類機器人屬于機器人領域,解決了本人發(fā)明的實用新型專利半身不遂患者康復學步機,只能帶動人的大小臂大小腿康復運動功能,而不能帶動手腳各關節(jié)運動的重大不足,主要技術特征是將半身不遂患者康復學步機略加改進后,在學步機的小臂絞鏈桿上安裝了可以帶動人手腕關節(jié)手指各個關節(jié)都能運動的機械手托板,在小腿鉸鏈桿上安裝了可以帶動人腳踝腳指各個關節(jié)都能運動的機械腳托板后實現(xiàn)的,用途是康復肢體運動功能,帶動患肢的各個關節(jié)、每塊骨骼、每塊肌肉、每個筋鍵、每條神經(jīng)都在作患者2萬分渴望而大腦又支配不了的動作,通過較長時間的被動運動鍛煉,最終使殘疾人患肢的主動運動功能得到康復。本課題的研究目的是設計一種坐式上肢康復訓練機,用于心腦血管疾病致癱或意外事故所造成的上肢體損傷的患者左上肢及相關關節(jié)康復訓練。1.2 康復機器人的國內(nèi)外研究現(xiàn)狀康復機器人是一種自動化醫(yī)療康復設備,它以醫(yī)學理論為依據(jù),幫助患者進行科學而有效的康復訓練,使患者的運動機能得到更快更好的恢復。目前,康復機器人已經(jīng)廣泛地應用到康復護理、假肢和康復治療等方面,這不僅促進了康復醫(yī)學的發(fā)展,也帶動了相關領域的新技術和新理論的發(fā)展??祻蜋C器人有兩種:輔助型康復機器人和康復訓練機器人 [3]。輔助型康復機器人主要是幫助肢體運動有困難的患者完成各種動作,該類產(chǎn)品有機器人輪椅、機器人護士、機器人假肢、機械外骨骼等??祻陀柧殭C器人的主要功能是幫助患者完成各種運動功能的恢復訓練,該類產(chǎn)品有行走訓練、手臂運動訓練、脊椎運動訓練等。康復機器人是康復醫(yī)學和機器人技術的完美結合,康復機器人技術在歐美等國家得到了科研工作者和醫(yī)療機構的普遍重視,許多研究機構都開展了有關的研究工作,近年來取得了一些有價值的成果。對于中風、偏癱、上肢運動機能損傷等患者來說,上肢康復訓練機器人有著很好的治療效果。國內(nèi)外許多研究機構都在這方面取得了不錯的研究結果。目前,康復機器人的研究主要集中在康復機械手和康復治療機器人等幾個方面 [16]。1、康復機械手的研究現(xiàn)狀設計康復機器人最初的一個目的就是在殘疾人和環(huán)境之間放置一個機械臂, 通過這個機械臂來部分或全部的實現(xiàn)操作功能,按機械臂的安裝位置劃分,康復機械手可分為 3 類:(1)基于桌面的機械手 [4]。種機械手安裝在一個徹底結構化的控制平臺上,在固定的空間內(nèi)操作,具有足夠自由度的串聯(lián)機器人再配上適合殘疾人使用的人機界面是這種機器人典型的設計模式。目前此類機器人已經(jīng)達到了實用化,如法國 CEA 公司開發(fā)的 MASTER 系統(tǒng)、美國的 Tolfa Corportion 開發(fā)的 DEVAR 系統(tǒng),以及英國的Oxford Intelligent Machines Ltd.開發(fā)的 RAID 系統(tǒng)等。此種類型的機械手是早期的工業(yè)機器人在康復系統(tǒng)領域內(nèi)的一次成功應用。1987 年,英國人 Mike Topping 研制了Handy1 康復機器人,使一個患有腦癱的 11 歲男孩第一次能夠進行獨立就餐。隨后他3對樣機進行了改造,也使得 Handy1 成為歷史上最成功的康復機器人。圖 1.1 是Handy1 康復機器人原型,圖 1.2 是康復機器人正在對患者進行康復訓練。(2)基于輪椅的機械手。這種機器人是安裝在輪椅上的,是因為輪椅的移動擴大了機械手的工作范圍,同時由于安裝基座的改變致使機械手的剛性下降和抓取精度的降低,這種機械手也只是用于用于輪椅的患者,這是一點不足。這種機械手已經(jīng)成為面向應用的流行設計,KARES [5]系統(tǒng),就是一種基于輪椅的機械手系統(tǒng),在電動輪椅上安裝了一個六自由度的機械手,能夠幫助行動不便的老人和殘疾人獨立的行動。隨著只能輪椅的研究發(fā)展,這種機械手也將會有很廣泛的發(fā)展和應用。圖 1.1 Handy1 圖 1.2 工作中的 Handy1(3)基于移動機器人的機械手。這類機械手是目前最先進的康復機械手,這種機械手安裝在移動的機器人或者半自主的小車上從而適用于更多的患者使用,同時擴大了機械手的活動空間并提高了抓取的精度。S. Tachi 等人在 MIT 日本實驗室研制了一種移動式康復機器人 MELDOG[6] ,作為“倒盲狗”以幫助盲人完成操作和搬運物體的任務。法國 Evry 大學研制了一種移動式康復機器人 ARPH[7],使用者可以從工作站實施遠程控制,使移動機器人實現(xiàn)定位和抓取工作。這種機械手系統(tǒng)都是需要由視覺、靈巧操作、運動、傳感、導航及系統(tǒng)控制等電子系統(tǒng)組成,要求比較高,價格也是相對的比較昂貴。2、康復治療機器人研究現(xiàn)狀康復治療機器人是康復醫(yī)學和機器人技術的完美結合,不再把機器人當作輔助患者的工具,而是把機器人和計算機當作提高臨床康復效率的新型治療工具??祻椭委煓C器人在醫(yī)療實踐上主要是用于恢復患者肢體運動系統(tǒng)的功能。按運動系統(tǒng)的問題可以劃分為 2 類:一類是生物力學或生物物理化學類型的應用,另一類是運動學習 [8]。4當人的肢體受外傷燒傷或做手術后,由于受傷組織的皮膚、韌帶和肌肉失去彈性而導致肢體運動的速度和范圍受到限制 [9]。生物力學或生物物理化學類型的應用就是使用機器人系統(tǒng)來打破受傷肢體的運動范圍。運動技能的學習或再學習,這是一個囊括了競爭運動控制理論、訓練技術和人機接口問題等諸多方面的復雜問題。(1)CPM 機 [10]。CPM 機時利用康復醫(yī)學中連續(xù)被動運動(Continuous Passive Motion\CPM)的基本原理對受傷肢體進行康復治療的機械裝置,是目前前為止唯一的一個機器人生物力學或生物物理化學類型的應用的例證。早在 20 世紀 60 年代初期就有醫(yī)學團體運用 CPM 機進行術后康復治療的醫(yī)學實踐,此后也有用于膝、肩、肘關節(jié)等康復的 CPM 機出現(xiàn)。單手刀技術水平限制,長期停留在“打關節(jié)”康復范圍。目前,市場上已經(jīng)有了用于腕關節(jié)和手指關節(jié)這樣的“小關節(jié)”康復的 CPM 機,但他們還不能像“大關節(jié)”CPM 機那樣實現(xiàn)精確的控制。(2)神經(jīng)運動康復治療機器人 [11]。目前這一類機器人的研究比較活躍,用來康復治療與神經(jīng)運動有關的疾病, 包括中風、帕金森氏病和大腦性麻痹 (Cerebral Palsy) 。美國麻省理工學院研制了一種幫助中風患者康復治療的機器人 MIT-MANUS ,它有 2 個自由度,可以實現(xiàn)病人的肩、肘和手在水平和豎直平面內(nèi)的運動。在治療過程中,把中風病人的手臂固定在一個特制的手臂支撐套中,手臂支撐套固定在機器人臂的末端。病人的手臂按計算機屏幕上規(guī)劃好的特定軌跡運動,屏幕上顯示出虛擬的機器人操作桿的運動軌跡,病人通過調(diào)整手臂的運動可以使兩條曲線盡量重合,從而達到康復治療的目的。如果病人的手臂不能主動運動,機器人臂可以像傳統(tǒng)康復醫(yī)療中臨床醫(yī)生的做法那樣帶動病人的手臂運動。圖 1.3 為 MIT-MANUS [12]在治療中風病人。圖 1.3 中風病人在用 MIT-MANUS 治療(3)基于虛擬環(huán)境的康復醫(yī)療訓練機器人系統(tǒng) [13]。為了鼓勵患者進行康復訓練,提高康復訓練的效果,在訓練過程中吸引患者的興趣是一個主要方面。虛擬環(huán)境技術的發(fā)展使這種思想得以實現(xiàn),研究者們采用基于虛擬環(huán)境的用戶界面,通過一些小游戲鼓勵患者進行主動訓練?;谔摂M環(huán)境的康復訓練通常與網(wǎng)絡相結合,因此,不僅5具有遠程康復機器人系統(tǒng)的優(yōu)點,還提高了患者進行康復訓練的能動性。圖1.4 遠程康復醫(yī)療訓練機器人系統(tǒng)結構1.3 上肢康復機器人系統(tǒng)的發(fā)展前景目前的康復機器人都能夠在一定程度上向患者提供簡單的訓練方案,研究結果表明機器人輔助治療確有一定療效。從現(xiàn)有文獻及臨床需要來看,今后上肢康復機器人系統(tǒng)的研究可能集中在以下幾個方面:1. 康復醫(yī)療機器人系統(tǒng)設計:機械設計是康復訓練機器人系統(tǒng)的基礎,應盡量簡潔輕巧,具有一定的靈活性,提高訓練動作的種類,增大動作幅度,在三維空間內(nèi)對患肢各個關節(jié)進行訓練;同時發(fā)展“多路復用” 的網(wǎng)絡康復醫(yī)療機器人系統(tǒng),提高資源利用率。2. 控制策略與運動模式的設計由于患者的病情千差萬別,因此,機器人要感知患肢狀態(tài)( 力量和位置) 并采取相應的訓練模式和控制策略,在控制系統(tǒng)適應性和穩(wěn)定性、傳感器技術應用、系統(tǒng)辨識和控制算法設計等方面需要作更深入的研究。3. 力反饋:機器人應該能夠?qū)崟r檢測患者與機器人之間的相互作用力,在患者主動能力不足時提供更大的輔助,而在患者有能力完成動作時,適當減小輔助甚至施加阻力,以便充分發(fā)揮患者殘存的功能。4. 安全機制:安全問題是康復機器人設計過程中的一個重要方面,康復訓練機器人必須根據(jù)臨床康復訓練的基本動作和安全性的要求,在設計中除了考慮機器人的功能實現(xiàn)外,還要防止患肢二次損傷,必須從機構設計(硬件)和控制系統(tǒng)(軟件)兩個方面保證康復機器人系統(tǒng)的安全性。5. 康復效果的評價機制:與肌電信號檢測相結合,探索訓練參數(shù)與康復效果之間的關系,提高訓練效果。大量實驗的基礎上,探索臨床康復的初步規(guī)律,并建立新的康復評估方法,從而對運動功能的康復機制重新評估和理解。 機器人具備許多人類所無法比擬的優(yōu)點,例如:長期、穩(wěn)定地重復訓練,精確、客觀地測定訓練與運動參數(shù),提供實時反饋、遠程訓練等。但是,目前康復訓練機器人的研究仍然處于起步6階段。從近年的發(fā)展看,美國的著名大學如 MIT,Stanford,Northwestern 等對這一領域的研究都十分重視,處于世界領先。國內(nèi)的研究基礎和對這一領域的了解和把握與上述領先單位的差距并不很大,但在經(jīng)費投入方面嚴重不足。由于我國的康復醫(yī)學事業(yè)仍然處于起步階段,但患者數(shù)量多、治療師資源缺乏,據(jù)此現(xiàn)狀,發(fā)展康復訓練醫(yī)療機器人系統(tǒng)更具實際意義。隨著康復醫(yī)療機器人的研究和使用,有望簡化醫(yī)師與患者“一對一 ”的繁重治療過程,推動殘疾人 “人人享有康復服務”這一目標的實現(xiàn),提高殘疾人的生活質(zhì)量。同時,通過臨床上使用積累的大量數(shù)據(jù),將有助于認識訓練參數(shù)與康復效果之間的關系,從而能夠在機器人輔助腦神經(jīng)康復治療上取得更大的突破。因此,康復醫(yī)療訓練機器人技術在現(xiàn)代康復醫(yī)學和神經(jīng)反饋訓練有廣泛的應用前景。1.4 本課題主要研究內(nèi)容本實用“上肢康復機器人”的機身是由放置于地面上的基座、兩根可以伸縮的立柱和上橫梁組成,并在其各組成部分上分別裝配上肢前后擺動機構上肢屈伸機構和上肢分合機構;各運動機構由單獨的電機和減速器驅(qū)動,而傳動機構的主件分別是傳動軸、絲杠螺母副、同步齒形帶。在單片機的控制下,實現(xiàn)患者的上肢前后擺、屈伸、分合運動以及手腕的轉動康復訓練;也可啟動部分電機,完成其中的部分康復訓練 [14]。具體內(nèi)容如下:1、首先對上肢康復訓練機器人進行原理分析,然后選擇合理的設計方案,進行總體結構設計;2、康復機器人上肢前后擺結構設計及康復機器人屈伸機構設計3、分合機構設計及手腕轉動機構設計4、設計出系統(tǒng)的零部件,完成驅(qū)動原件和標準件的選擇和校核,主要包括絲杠、齒輪等機構的設計計算。確定結構尺寸,形狀,材料,動力等參數(shù),對齒輪、主軸、軸承進行必要的校核、驗算;5、手繪和計算機繪制相結合,繪制整體裝配圖及主要零部件的零件圖;7第 2 章 總體結構方案設計本設計的主要工作是設計一個用于上肢康復的機器人,能夠?qū)崿F(xiàn)對上肢的上下、屈伸、分合以及手腕轉動的康復訓練 [14]。就本設計而言,設計的主體是兩根可升降的立柱,放于地面與立柱相連的機座、橫梁、與機座相連的立柱座、同步齒型帶及帶輪等等。本章將對“上肢康復機器人”的結構設計及機械結構作出詳細的分析和設計。2.1 總體方案設計該康復機器人將采用電力驅(qū)動,用電機驅(qū)動來實現(xiàn)各個功能,對上肢進行康復訓練??傮w方案為:機身由平臺上面的機座、兩根可伸縮的立柱、橫梁以及手柄組成,并在其各組成部分上分別裝上上肢前后擺機構、上肢屈伸機構、上肢分合機構和手腕轉動機構;各運動機構有單獨的電機和減速器驅(qū)動;傳動機構的主件分別是傳動軸、絲杠螺母副以及同步帶傳動副。在康復機器人結構設計中,立柱主要由三部分組成,內(nèi)套筒、外套筒和絲杠螺母副,此外還有用于固定絲杠螺母副用的軸承套等附屬結構。立柱的外套筒通過螺栓與立柱軸承套和立柱座連接在一起,絲杠通過裝在軸承套中的兩個角接觸球軸承定位和固定。在立柱套筒的定位中,通過止口來實現(xiàn)精確定位。為了保證整個康復機器人的結構的穩(wěn)定,各個零部件的垂直度,表面粗糙度都一定要達到設計的要求 [15],這樣才能使真?zhèn)€結構在運動的過程總不會出項卡死之類的現(xiàn)象,同時也減小了噪聲。此外,立柱的電機通過加腹板的電機支承架固定,支架通過螺釘固定在立柱座8上圖 2.1 前后擺機構運動簡圖面,這樣,電機和立柱就連接在一起,在前后擺的過程當中,整個立柱就能隨著電機的轉動而一起運動。同時,支承架的垂直度也要達到精度要求,這樣才能使電機軸與傳動軸的同軸度達到所需的要求。1、前后擺機構設(如圖 2.1 所示:)康復機器人前后擺機構主要的功能是對患者的上肢進行前后擺康復訓練。在設計的中,前后擺要滿足一下兩個要求:一是擺動的角度要足夠大,能夠?qū)颊呱现募珀P節(jié)、肘關節(jié)進行充分的康復訓練;二是整個機構的穩(wěn)定性、安全性要好,在對患者進行康復訓練的過程中,能夠在任何位置實現(xiàn)安全的停止。因此,上肢前后擺機構裝在基座上,由直流電機、減速器、渦輪蝸桿、傳動軸、軸承座等組成。其中直流減速電機固定在底座平天上,通過聯(lián)軸器將其與渦輪蝸桿連接在一起,再通過聯(lián)軸器將渦輪蝸桿與傳動軸連接在一起;兩根可伸縮的立柱通過鍵與軸而將其固定于軸承座上。這樣通過單片機控制電機,電機的帶動傳動軸,就可實現(xiàn)對上肢前后擺的康復訓練。在實現(xiàn)前后擺動的過程當中,渦輪蝸桿能夠?qū)C構實現(xiàn)自鎖,使整個結構的穩(wěn)定性、安全性大大的增加。前后擺電機通過滑塊型彈性聯(lián)軸器與蝸桿減速器相連,蝸桿減速器通過 HL 型柱銷彈性聯(lián)軸器與傳動軸相連。前后擺傳動軸通過鍵與立柱座連接,其中立柱座與機座之間用套筒隔開,留有 5mm 的間隙。整體結構較大,但是重量不大,此外軸承處要注意潤滑。2、屈伸機構設計圖 2.2 屈伸機構運動簡圖康復機器人的屈伸機構是實現(xiàn)對患者上肢進行屈伸康復訓練,以達到對患者肩關9節(jié)肘和肘關節(jié)的康復目的。設計時,要使患者的上肢能夠得到足夠充分的空間進行屈伸訓練,因此,上肢屈伸機構借助左右對稱布置的兩根可伸縮的立柱來實現(xiàn)這個目的??缮炜s立柱由立柱座(箱體)、外套筒、內(nèi)套筒組成;而使之伸縮的機構包括直流電機、錐齒輪副、絲杠螺母副。其中絲杠螺母副通過一對角接觸球軸承固定,軸承外圈通過擋圈與立柱座(箱體)和外套筒,借助法蘭盤,用螺栓連接;內(nèi)套筒插裝在外套筒內(nèi),通過螺母與絲杠連接在一起,組成絲杠螺母副。在絲杠的帶動下,在立柱套筒內(nèi)沿軸向滑動。穿過側壁的傳動軸帶動左右的齒輪副,帶動絲杠同步的轉動,從而實現(xiàn)內(nèi)套筒在立柱內(nèi)同步的向上下滑動,實現(xiàn)上肢的屈伸屈伸康復運動。同時,為了使立柱內(nèi)套筒能夠安全的停止在任何一位置,設計絲杠時需讓絲杠具有自鎖的功能,讓患者可以在任何一位置進行其他的康復訓練。在前后擺的機構中,主要有兩個零部件,一個是與立柱連接的立柱座,另一個就是康復機器人的機座。立柱座是將前后擺機構和升降機構連接在一起的關鍵部件,在里面安裝有錐齒輪運動副,其目的是改變傳動鏈的傳動方向,使立柱實現(xiàn)上升下降,實現(xiàn)患者的上肢屈伸康復訓練。與此同時,箱體的下端,通過鍵將其與一根傳動軸相連,在前后擺減速電機的帶動下,通過能夠?qū)崿F(xiàn)自鎖的蝸桿減速器,使整個結構能夠發(fā)生前后擺運動,用以實現(xiàn)患者上肢的前后擺康復訓練。3、分合機構設計圖 2.3 分合機構運動簡圖分合機構是用來對患者進行上肢分合康復訓練而設計的。在設計的過程當中,應當注意減噪的設計,并且要留有足夠大的空對患者的上肢進行分合康復訓練。由于整個康復機器人的結構尺寸比較大,所以分合機構衡梁也需要注意盡量減小重量,所以,衡梁的材料采用硬質(zhì)鋁合金。經(jīng)過充分的考慮,上肢分合運動的機構借助安裝在橫梁上帶傳感器的直流減速電機、同步齒形帶傳動副、光感滑軌和把手來實現(xiàn)。其中橫梁分別與立柱內(nèi)套筒上端通過螺栓連接在一起,直流減速電機借助法蘭盤分別固定在橫梁的左右兩端。通過擋板和螺釘,將同步齒形帶帶輪固定在電機軸上,另一端通過軸和軸承將帶輪固定在橫梁10的中部。這樣就將左右?guī)鲃痈惫潭ㄔ诹藱M梁上。同時,一根光桿滑軌固定于橫梁的左右段機構中。把手貫穿于光桿滑軌,并與同步帶連接在一起,啟動電機,就能夠?qū)崿F(xiàn)上肢的分合康復訓練。在康復訓練中,兩根立柱在升降的過程中,難免會出現(xiàn)細微的傳動誤差,致使左右兩根立柱的升降不同步,從而對整個機構造成破壞,因此,在橫梁的一端,通過圓柱銷的鉸連接,用以消除這種危害。在分合機構的設計中,最主要的就是橫梁的設計以及橫梁支承座的設計,橫梁支承座有兩個作用,一個是支撐橫梁,另一個是固定電機。同時考慮到消除因絲杠傳動不精確帶來的誤差,兩端支承座的設計稍有不同,其中一端采用了鉸接連接。另外,由于分合機構采用的是同步齒形帶傳動,因此需要考慮相應的帶的張緊措施。于是在橫梁的中部開槽,用螺釘對中部軸承套的定位來實現(xiàn)帶的張緊。其中,橫梁支承座由兩部分焊接而成,上部分是一個 C 型槽,下部分是一個圓形的開孔法蘭盤,用螺栓將其與立柱內(nèi)套筒連接在一起,這樣,整個橫梁就與立柱連為一體了。4、手腕轉動機構設計圖 2.4 手腕康復結構運動簡圖手腕康復機構中,主要應當考慮對患者上肢的固定,重點在把手的設計。經(jīng)過查閱文獻充分思考之后,決定把手由手柄、把手支架、小臂護套組成,最后在把手上裝上直流減速電機,組成手腕的康復訓練機構。直流減速電機通過螺釘將其固定于把手支架法蘭盤面上。小臂護套,通過吊環(huán)將其固定在把手支架上面。工作時,啟動電機,在單片機的控制下,帶動手柄繞電機軸旋轉,從而帶動手腕的轉動,實現(xiàn)手腕的康復訓練 [16]。2.2 康復機器人框架造型的設計本次設計的坐式上肢康復機器人,主體結構采用金屬材料,其承受外在的力量主要是患者的上肢,受力相對較小,所以,其各個零部件的大小尺寸應相對較小,用以11減輕整體的重量。在綜合考慮了康復機器人運動空間受力之后,立柱套筒的壁厚設計為 5mm。表 2.1 是《人體主要尺寸表》 [17],根據(jù)其對人群中 18~60 歲成年男子和 18~55 歲成年女子各個主要不為尺寸的統(tǒng)計,本次設計康復機器人的寬度大約 1.5m,整體高度 1.4m~1.7m表2.1 人體主要尺寸表男(18-60 歲)女(18-55 歲)身高(mm) 1583 1604 1678 1754 1775 1814 1449 1484 1503 1570 1640 1659體重(kg) 44 48 50 59 70 75 39 42 44 52 63 66上臂長(mm) 279 289 294 313 333 338 252 262 267 284 303 302前臂長(mm) 206 216 220 237 253 258 185 193 198 213 229 234百分位數(shù) 1 5 10 50 90 95 1 5 10 50 90 952.3 本章小結本章針對康復機器人的設計要求,對其總體結構進行了分析,構建了機器人的運動形式及外形框架。包括驅(qū)動方式的選取、驅(qū)動系和傳動系的設計,康復機器人整體尺寸及外形的設計。本章基本確定了康復機器人的運動方案,在接下來的章節(jié)中,將對所需的電機、聯(lián)軸器以及蝸桿的選擇。12第 3 章 伺服元件選擇本章的主要內(nèi)容是通過估算康復機器人的各個運動參數(shù),計算出所需直流電機的功率和轉矩大小,并對其進行產(chǎn)品選擇,接著對聯(lián)軸器以及蝸輪蝸桿的選擇。 3.1 電機選擇3.1.1 升降機構電機選擇在立柱升降對患者進行上肢屈伸康復訓練的過程中,考慮到患者的承受能力,設定其移動速度為 m/s ,立柱以上整體的質(zhì)量 m=50kg,因此,得到功率0.1v?(3.1)1PFv?代入數(shù)據(jù),得 =50W1P在立柱的傳動鏈中,選擇絲杠的效率 =0.375,滾動軸承的效率 =0.99,齒輪的1?2?傳動效率為 =0.95,因此估算得到電機的功率3?(3.2)123P??代入數(shù)據(jù)得到 P=150W當立柱升降時 ,所受到的垂直方向的阻力 。折算到電動機0.1m/sv?9.5vLcMFTn?軸上的負載轉矩 應滿足折算前后前后的功率不變原則,考慮傳動機構的傳動損耗,LT則有(3.3)9.5LcMFvTn??13式中 ——折算到電機軸上的負載轉矩,N mLTF——工作機構直線運動時運動所受到的阻力, Nv——工作機構的線速度, m/s——電動機的轉速,r/minMn——總的傳動效率c?代入數(shù)據(jù)得N. m50.19..93LT???綜合考慮之后,選擇的是淄博床架電機有限公司的產(chǎn)品,其各參數(shù)見表 3.1。表 3.1 電機參數(shù) 型號 輸出轉矩(N mm) 輸出轉速(r/min) 功率(W) 電壓(V)110SZ61 1043 1500 150 12圖 3.1 110SZ61 電機3.1.2 前后擺機構電機選擇本設計中,康復機器人的總體高度大約為 m,質(zhì)量 kg,轉動角速度1.5h?50?=0.05rad/s,轉動角度 =30°。w?對于旋轉運動,當系統(tǒng)勻速轉動時,機械的負載功率為/ (3.4)gLPTw??式中 ——負載轉矩,N. m gT——旋轉角速度,rad/sLw—— 系統(tǒng)的傳動效率 ?14當 =30°時, 最大,且 =250Nm,折算到電機上的轉矩?gTg= /( )LTg?i得到電機的輸出轉矩 =75Nm,功率 P=40w,轉速 n=30rpm;L綜合考慮之后,選擇的是淄博床架電機有限公司的產(chǎn)品,其各參數(shù)見表 3.2。表 3.2 電機參數(shù)型號 輸出轉矩(N. mm) 輸出轉速(r/min) 功率(W) 電壓(V)110SZ55 83590 40 100 24圖 3.2 110SZ55 減速電機3.1.3 分合機構電機選擇在分合運動的過程中,設計速度 v=0.10m/s,單只手臂的質(zhì)量 kg,把手與光桿5m?滑軌的動摩擦因素 ,得到運動所受到的阻力0.3f?(3.5)FfN?式中 ——摩擦系數(shù)f——正壓力, N代入數(shù)據(jù)得 F=15N因此,分和運動過程當中,所需要的功率(3.6)PFv?代入數(shù)據(jù)得到 P=1.5W綜合各方面的因素,所選擇的電機的功率為 P=5W根據(jù)公式(3.3),可得到轉換在電機軸上的轉矩 =0.6NmLT15根據(jù)以上所算出的數(shù)據(jù),選擇的是寧波儀表電機廠的直流減速伺服電機電機,具體各參數(shù)見表 3.3。 表 3.3 電機參數(shù)型號 輸出轉矩(N. m) 輸出轉速(r/min) 功率(W) 電壓(V)ZYT20-JB60 2.3 250 5 12圖 3.3 ZYT20-JB60 減速電機3.1.4 手腕轉動機構電機的選擇估算手掌的重量 m=1kg,轉動的角度 ,角速度 =0.5rad/s,回轉半徑90o??wr=0.1m,因此最大功率出即為 處,故所需電機的最大功率 1W[18]90o?PM??綜合各方面因素考慮,選擇功率為 2w 的直流伺服減速電機,其廠家為寧波市鄞州易順減速器廠,具體個參數(shù)見表 3.4。表 3.4 電機參數(shù)減速比 輸出轉矩(Kg. cm) 輸出轉速(r/min) 功率(W) 電壓(V)1:37~1:388 5 5~500 2 616圖 3.4 手柄處電機3.2 聯(lián)軸器選擇在升降與前后擺機構的聯(lián)軸器選擇中,選擇的是十字滑塊性頂絲式彈性聯(lián)軸器。這種聯(lián)軸器有著許多的優(yōu)點①結構簡單,容易安裝②電器絕緣性能好③高扭矩、偏心反作用力小、震動吸收性優(yōu)④軸套與滑塊的移動作用、可容許大的偏心與偏角⑤順時針與逆時針回轉特性完全相同。升降機構中,聯(lián)軸器為 G4-25T;前后擺動機構總電機與渦輪蝸桿連接的減速器是 G4-63T,都是廣州鉅人自動化設備有限公司的產(chǎn)品,具體各參數(shù)見表 3.5。在蝸輪蝸桿與前后擺傳動的聯(lián)軸器選擇中,由于其傳動的轉矩非常大,故選擇的是 HL 型柱銷彈性聯(lián)軸器,型號是 HL1,其廠家是上海聯(lián)軸器車墩業(yè)務部。表 3.5 聯(lián)軸器規(guī)格型號最大孔徑mm容許扭矩N m容許偏角(°)容許偏心 mm慣性力矩 2kg.m質(zhì)量g經(jīng)彈性系數(shù)Nm/rad最高回轉系數(shù)rpmG4-25T 10 3 3 1.9 6.810??24 125 6000G4-63T 25 33 3 3.8 42318 1200 25003.3 蝸輪蝸桿減速器的選擇在實現(xiàn)康復機器人前后擺運動的過程當中,為了使患者上肢停在任一位置,本次設計選擇了用蝸輪蝸桿減速器實現(xiàn)機械自鎖。蝸輪蝸桿具有良好的特性:①零件數(shù)目少,結構緊湊;②在蝸桿傳動中,由于蝸桿齒是連續(xù)不斷的螺旋齒,它和蝸輪齒是逐漸進入及逐漸推出嚙合的,同時嚙合的齒對又比較多,故沖擊載荷小,傳動平穩(wěn),噪聲??;17③當蝸桿的螺旋線升角小于嚙合面的當量摩擦角時,蝸桿傳動變具有自鎖性。在本次設計中選擇的蝸桿減速器型號是 WD60,廠家是河北橋興減速機制造有限公司。3.4 本章小結本章的主要內(nèi)容是對伺服元件進行選擇。在選擇之前,對所需電機的功率、輸出轉矩、轉速等參數(shù)進行了計算,并根據(jù)其結果進行了相應的產(chǎn)品選擇,為下一步的零件設計奠定了堅實的基礎。第 4 章 機械機構設計與計算本章對康復機器人屈伸機構中絲杠螺母副、錐齒輪副以及分合運動中同步齒形帶進行了設計計,并對關鍵的、受力受扭矩較大的結構進行了相應的校核計算。4.1 絲杠設計(1)耐磨性計算假定作用于螺桿的軸向力 =250N,螺紋的程艷面積為 A(單位 ) ,螺紋中Fa 2m徑 (單位為 mm) ,螺紋工作高度 h(單位 mm) ,螺母高度 H(單位 mm) ,螺紋2d工作圈數(shù) ,則螺紋工作表面上的耐磨性條件為 HuP?(4.1)??22aaHFPPAdh????令 則 ,對于梯形螺紋 h=0.5P,帶入得2d??2?(4.2) ??2aFd???18則 ,取 =25kg 10N/kg=250N, 經(jīng)查表取 =2,材料為鋼-鑄鐵,??20.8aFPd????速度 =6~12m/s, =4~7MPa,取 =6MPa v??Pmm250.83.76d????根據(jù)實際情況,查表選取絲杠公稱直徑 =16mm, =14mm,P =4mm2d螺紋升角 = =5.2°?24arctnarct3.1Pd???取摩察系數(shù) =0.14f當量摩擦角 = '?0.4arctnarctn8.2osos3?????2mm 時, 62m?nz?mn?此時, = 4,滿足要求nz1068?????????(9)圓周力 P( ,千瓦) (4.5)12jNPv?j(4.6)123jK??式中 ——張緊輪影響系數(shù),查表,取 =11K——工作情況系數(shù),查表,取 =12 2——增速傳動系數(shù),經(jīng)查表,取 =13 3K代入數(shù)據(jù)得 102.5.1kgP??22(10)確定齒帶寬 b ??9.5mPT??式中 T 為齒形帶單位寬度離心力= = kg2qvTg?42310.98??6310??(11)齒形帶前切應力 ?= =0.008 Kg / < =0.05~0.08 Kg/ ,其中41.nPKmbz??5.1396?2m???2m小輪嚙合齒數(shù)系數(shù),取 =14 4(12)齒壓比 P=0.0186<0.12 45.10.60396nKmbz??4.4 軸設計與校核在整個結構當中,受力最大的是前后擺運動機構當中的傳動軸,因此,對此軸進行相應的校核計算Ⅰ Ⅱ Ⅲ Ⅳ圖4.1 前后擺傳動軸根據(jù)軸向定位的要求確定軸的各段直徑和長度Ⅰ段與軸承相連接 ,直徑為18mm,長度為22mmⅡ段與立柱下端連接,直徑為20mm,長度為58mmⅢ段直徑為18mm,長度為550mmⅣ段通過聯(lián)軸器與渦輪蝸桿連接,其直徑為17mm,長度為30mm(1)判斷危險截面由于只有Ⅱ截面處受的載荷,且受扭矩,所以對此進行校核。23截面的應力(4.7)WMmb??式中 Mm——彎矩,NmW——抗彎截面模量代入數(shù)據(jù)計算得到 =3.125Mpa。b?截面上的轉切應力為(4.8)2TW??式中 T2——轉矩,NmWT——抗扭截面模量代入數(shù)據(jù)計算的截面上的轉切應力為156.25MPa。MPa7825.16??Tmb?由于軸選用40cr,調(diào)質(zhì)處理,所以MPa, MPa, MPa735B?361??2601??受力如圖4.2所示。軸徑 ??3min1<0.ebMdd??(2)綜合系數(shù)的計算由經(jīng)直線插入,知道因軸肩而形成的理論應力集中為 , ,23.???81.?軸的材料敏感系數(shù)為 , ,85.0??q7.?故有效應力集中系數(shù)為: 05.2)1(??????qk7???查得尺寸系數(shù)為 ,扭轉尺寸系數(shù)為 ,軸采用磨削加工,表面72.0?? 6.??質(zhì)量系數(shù)為 ,軸表面未經(jīng)強化處理,即 ,則綜合系數(shù)值為9???? 1?q?2493.21????????kK.??圖4.2 前后擺傳動軸受力示意圖(3)碳鋼系數(shù)的確定碳鋼的特性系數(shù)取為 , 。1.0???05.?安全系數(shù)的計算:軸的疲勞安全系數(shù)為(4.9)maKS??????1(4.10)1a???(4.11)2cS????式中 ——只考慮彎矩時的安全系數(shù)?S——只考慮轉矩時的安全系數(shù)?——材料對稱循環(huán)的彎曲疲勞極限1?——材料對稱循環(huán)的扭轉疲勞極限?25——彎曲時軸的有效應力集中系數(shù)?K——扭轉時軸的有效應力集中系數(shù)?——扭轉剪應力的應力幅,MPaa——扭轉剪應力的平均應力,MPa m?——彎曲應力的應力幅,MPaa?——彎曲應力的平均應力,MPam——計算疲勞強度的安全系數(shù)caS——疲勞強度的安全系數(shù)代入數(shù)據(jù)計算得 =5, =10, =4 1.5=S,所以該軸的選用安全 [20]。?S?ca?4.5 軸承校核固定絲杠軸軸承 7202AC 的校核。其所受徑向力 =65N,軸向力 =250NrFaF(1)計算內(nèi)部軸向力查表得知:7202AC 型軸承( )0.68e?(4.12)r??代入數(shù)據(jù)得 = =44N1F?2(2)計算單個軸承軸向載荷 12aF??因此軸承 1 放松,軸承 2 壓緊= =441a?= + =44+250=294N2aF?(3)當量載荷由于 , ,eFra??1era?6.2所以 , , , 。AX0Y1?BX0Y26因此 140P???24?(4)軸承壽命的校核基本額定壽命為:(4.13)?)(601AhPCrnL?式中 ——基本額定動載荷rC——軸承轉速,r/min1n——壽命指數(shù),對于球軸承? 3??代入數(shù)據(jù)計算得到軸承壽命為 = h,因此軸承壽命足夠大,滿足 要求 [20]。hL6102.?4.6 鍵選擇及校核計算康復機器人結構中立柱座與軸兩部分連接用到鍵連接,并且所受到的扭矩非常大。在本設計中鍵起到了傳遞力和運動的作用,因此鍵的選擇要達到一定的強度,防止因鍵連接的強度不夠?qū)е碌逆I斷裂,影響康復機器人整個結構的正常運行,甚至發(fā)生事故。表 4.1 鍵的規(guī)格名稱 規(guī)格 直徑(mm)工作長度(mm)工作高度( mm)轉矩(Nm)極限應力(MPa )平鍵 6×6×50 20 44 3 125 100平鍵強度條件為= ≤[ ] (4.14)p?kldT3102?p?式中 T——傳遞的轉矩, N.mk——鍵與輪轂鍵槽的接觸高度,k=0.5h ,此處 h 為鍵的高度,mml——鍵的工作長度,圓頭平鍵 l=L-b,平頭平鍵 l=L,這里 L 為鍵的公稱長度,mmb——為鍵的寬度,mm27d——軸的直徑,mm[ ]——鍵、軸、輪轂三者中最弱材料的許用擠壓應力。一般 45#鋼的[ ]p? p?為 100~120MPa所以曲軸上的鍵的校核計算為= =95MPa≤120MPap?204315?經(jīng)過校核,滿足條件 [22]。4.7 本章小結本章是在前一章對結構伺服元件的計算選擇基礎上,根據(jù)第 2 章總體結構方案,主要設計和校核了各個部分的零件以及連接件。主要設計校核的零件有:絲杠、錐齒輪、同步齒型帶、軸、鍵、支撐連接件等。28結 論本論文綜合了各種上肢康復機器人的結構特點,根據(jù)實際應用的基礎上,通過對上肢的各種運動原理的分析之后,設計出了這種坐式上肢康復訓練機器人,采用電機驅(qū)動,用單片機進行控制的方式。本設計通過實際的設計計算,結構緊湊、重量較輕、噪聲小、運動靈活,能夠完成對患者上肢的康復訓練。本文主要完成了一下的工作:1、對上肢康復訓練機器人進行原理分析,并且了解國內(nèi)外發(fā)展現(xiàn)狀。根據(jù)實際情況,選擇合理的設計方案,比如總體尺寸大小、材料以及驅(qū)動方式,完成對康復機器人總體結構設計;2、設計出系統(tǒng)的零部件,完成驅(qū)動原件和標準件的選擇和校核,主要包括絲杠、齒輪、同步齒形帶等機構的設計計算。確定結構尺寸,形狀,材料,動力等參數(shù),對齒輪、主軸、軸承進行必要的校核、驗算;3、手繪和計算機繪制相結合,繪制整體裝配圖及主要零部件的零件圖;設計出的康復機器人能夠?qū)崿F(xiàn)對患者上肢的康復訓練,安全的、靈活的完成各項康復動作。但是,要實現(xiàn)對其更加完美的設計,還有一些工作需要進行,對一些地方進行進一步的完善:(1)對手臂的固定還有待進一步完善,使得對手臂的固定能是患者感覺更加的舒適;(2)在整體框架結構的設計方面還有空間進一步的完善、進一步減小整體結構的重量。29參考文獻[1] 杜志江,孫立寧.外科機器人技術發(fā)展現(xiàn)狀及關鍵技術分析[J].哈爾濱工業(yè)大學學報,2003,35(7) .[2] 呂廣明,孫立寧,彭龍剛.康復機器人現(xiàn)狀及關鍵技術分析[J].哈爾濱工業(yè)大學學報,2004,36(9) .[3] Song W K,Lee ,Bien Z,Kares.Intelligent wheel-chair-mounted robotic arm system using vision and force senor[J].Robotics and Autonomous System,1999,(28).[4] Dario P, Gugielmelli E, Allotta B,etal .Robotics for medical application [J].IEEE Robotics and Automation Magazine,1996,3(3)::44-56.[5] Hoppenotp,Collee .Localization and control of a rehabilitation mobile robot by close human-machine cooperation [J].IEEE Transactions on Neurl Systems and Rehabilitation Engineering, 2001,(9);181-190.[6] Hashino, Atoshi.Aiding robots[J].Advanced Robotics,1993,(7);97-103.[7] Mathieup. EM Gand Kinematics of normal subject performing trunk flexion/ extensions freely in space [J].Journal of Electromyography and Kinesiology,2000,10(3).[8] Kermanimz.EMG feature selection for movement control of a cybernetic arm.Cybernetics and Systems [J].An International Journal,1995,26:189-210.[9]YANAETAL K. Surface electro my gram recruitment analysis using higher order spectrum [J].IEEE - EM2 BC and CMBEC,1995,2:1345-1346 .[10]Ahedie. Graphical simulation of artificial hand motion with fuzzy EMG pattern recognition[A].ProceedingsRCIEEE-EMBC&14THBMESI[C].[s.l]:[s .n],1995.[11]Ell Yetalmn.The application of neural networks to myoelectric signal analysis:a preliminary study[J].IEEE Trans Biomed Eng,1990,37:221-229.[12]Putnametal W.Real time computer control using pattern recognition of the electro myogram [J].Annual International Conference of the IEEE Engineering in Medicine & Biology Society Proceedings,1993,15:1236-1237.[13]Konxr.Classification of multifunction surface EMG using advanced AR model 30representation. Bio engineering [A].Proceedings of the Northeast Conference [C].[s.l.]:[s.n], 1994.96–98.[14]張今瑜,張立勛,王克義.坐式上肢康復訓練機[P]. 中華人民共和國:Z L 200520021461.3,2005.[15] 劉珊.人體上肢與上肢康復機器人運動控制研究[D].華中科技大學,2008.[16] 胡宇川,季林紅 .一種偏癱上肢復合運動韻康復動訓練機器人[J].機械設計與制造,2004.[17] 乎昊.3DOF可穿戴式上肢康復機器人結構設計及仿真研究[D] .哈爾濱工程大學,2008.[18] 楊恩霞. 機械設計[M]. 哈爾濱:哈爾濱工程大學出版社,2006.[19] 歐寶貴. 材料力學[M]. 哈爾濱:哈爾濱工程大學出版社,1996.[20] 路敦民,王克義 .機電傳動及控制[M].哈爾濱:哈爾濱工程大學出版社,2005.[21] 梁林,張浩 .UG基礎教程[M].北京:清華大學出版社,2009.[22] 孫玉琴,孟兆新 .機械精度設計[M].北京:科學出版社,2003.31致 謝本論文是在陳曦老師的悉心指導與親切關懷下完成的。在整個課題設計過程中,老師在課題方向的正確把握,對課題前沿研究成果的密切追蹤,避免了我走很多彎路。老師嚴謹求實、誨人不倦的治學態(tài)度、以及敏銳的思維和一絲不茍的科研精神,使我受益匪淺。老師在課題研究的過程中對我的耐心的指導,更令我終身難忘。值此論文完成之際,謹向老師致以誠摯的感謝!在此還要熱情的感謝所有的代課老師們,你們認真細心的教導使我掌握了論文設計的基礎知識??傊?,感謝所有幫助、關心和支持我的老師們、同學們和朋友們!
收藏
編號:162476
類型:共享資源
大?。?span id="ievbyqtbdd" class="font-tahoma">1.67MB
格式:RAR
上傳時間:2017-10-27
50
積分
- 關 鍵 詞:
-
上肢
康復
痊愈
機器人
結構設計
- 資源描述:
-
3373 上肢康復機器人結構設計,上肢,康復,痊愈,機器人,結構設計
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。