《高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 三角函數(shù)與平面向量 第2講 三角恒等變換與解三角形課件 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)二輪復(fù)習(xí) 專題二 三角函數(shù)與平面向量 第2講 三角恒等變換與解三角形課件 理(36頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第2講三角恒等變換與解三角形,高考定位1.三角函數(shù)的化簡與求值是高考的命題熱點(diǎn),其中同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式是解決計(jì)算問題的工具,三角恒等變換是利用三角恒等式(兩角和與差、二倍角的正弦、余弦、正切公式)進(jìn)行變換,“角”的變換是三角恒等變換的核心;2.正弦定理與余弦定理以及解三角形問題是高考的必考內(nèi)容,主要考查邊、角、面積的計(jì)算及有關(guān)的范圍問題.,真 題 感 悟,答案A,3.(2015全國卷)在平面四邊形ABCD中,ABC75,BC2,則AB的取值范圍是________.,4.(2016全國卷)ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2cos C(acos Bbcos A)c.
2、,考 點(diǎn) 整 合,1.三角函數(shù)公式,2.正、余弦定理、三角形面積公式,熱點(diǎn)一三角恒等變換及應(yīng)用,探究提高1.解決三角函數(shù)的化簡求值問題的關(guān)鍵是把“所求角”用“已知角”表示 (1)當(dāng)已知角有兩個(gè)時(shí),“所求角”一般表示為“兩個(gè)已知角”的和或差的形式; (2)當(dāng)“已知角”有一個(gè)時(shí),此時(shí)應(yīng)著眼于“所求角”的和或差的關(guān)系,然后應(yīng)用誘導(dǎo)公式把“所求角”變成“已知角”. 2.求角問題要注意角的范圍,要根據(jù)已知條件將所求角的范圍盡量縮小,避免產(chǎn)生增解.,熱點(diǎn)二正、余弦定理的應(yīng)用,微題型1三角形基本量的求解,探究提高1.解三角形時(shí),如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果式子中含有角的正弦或邊
3、的一次式時(shí),則考慮用正弦定理;以上特征都不明顯時(shí),則考慮兩個(gè)定理都有可能用到. 2.關(guān)于解三角形問題,一般要用到三角形的內(nèi)角和定理,正弦、余弦定理及有關(guān)三角形的性質(zhì),常見的三角恒等變換方法和原則都適用,同時(shí)要注意“三統(tǒng)一”,即“統(tǒng)一角、統(tǒng)一函數(shù)、統(tǒng)一結(jié)構(gòu)”.,微題型2求解三角形中的最值問題,探究提高求解三角形中的最值問題常用如下方法: (1)將要求的量轉(zhuǎn)化為某一角的三角函數(shù),借助于三角函數(shù)的值域求最值.(2)將要求的量轉(zhuǎn)化為邊的形式,借助于基本不等式求最值.,微題型3解三角形與三角函數(shù)的綜合問題,探究提高解三角形與三角函數(shù)的綜合題,其中,解決與三角恒等變換有關(guān)的問題,優(yōu)先考慮角與角之間的關(guān)系;
4、解決與三角形有關(guān)的問題,優(yōu)先考慮正弦、余弦定理.,【訓(xùn)練2】 (2016浙江卷)在ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知bc2acos B.,1.對(duì)于三角函數(shù)的求值,需關(guān)注:,(1)尋求角與角關(guān)系的特殊性,化非特殊角為特殊角,熟練準(zhǔn)確地應(yīng)用公式; (2)注意切化弦、異角化同角、異名化同名、角的變換等常規(guī)技巧的運(yùn)用; (3)對(duì)于條件求值問題,要認(rèn)真尋找條件和結(jié)論的關(guān)系,尋找解題的突破口,對(duì)于很難入手的問題,可利用分析法.,2.三角形中判斷邊、角關(guān)系的具體方法:,(1)通過正弦定理實(shí)施邊角轉(zhuǎn)換;(2)通過余弦定理實(shí)施邊角轉(zhuǎn)換;(3)通過三角變換找出角之間的關(guān)系;(4)通過三角函數(shù)值符號(hào)的判斷以及正、余弦函數(shù)的有界性進(jìn)行討論; (5)若涉及兩個(gè)(或兩個(gè)以上)三角形,這時(shí)需作出這些三角形,先解條件多的三角形,再逐步求出其他三角形的邊和角,其中往往用到三角形內(nèi)角和定理,有時(shí)需設(shè)出未知量,從幾個(gè)三角形中列出方程(組)求解.,