3686 小型液壓挖掘機工作裝置的設計
3686 小型液壓挖掘機工作裝置的設計,小型,液壓,挖掘機,工作,裝置,設計
機械工程學院畢業(yè)設計i設計(論文)內(nèi)容及要求 一、 設計(論文)內(nèi)容小型液壓挖掘機工作裝置的設計。液壓挖掘機是一個周期性作業(yè)的自行式土方機械,其工作運動包括鏟斗、斗桿和動臂的動作,平臺的回轉及整機的移動。它的基本作業(yè)過程是;鏟斗切削土壤并將土壤裝入斗內(nèi)。鏟斗裝滿后動臂和斗桿動作,將其提升到適當高度,然后平臺回轉至卸土位置進行卸土(轉斗)。鏟斗卸空后再回轉下降到原來的位置進行下次挖掘以此循環(huán)。當完成一段土方后機器行走移位,以便繼續(xù)工作。液壓挖掘機整機可分為:工作裝置、回轉平臺、行走底盤三大部分。工作裝置的主要任務是完成挖掘、提升、卸載等動作。工作裝置設計是否合理,選配是否恰當,直接關系到挖掘機的作業(yè)范圍、挖掘力和生產(chǎn)率。應用最多的是反鏟作業(yè)裝置,其基本結構都是采用三組液壓缸(動臂油缸、斗桿油缸、鏟斗油缸) 。這三組油缸可以單獨動作,也可以同時動作(復合動作)。如斗桿油缸伸出做挖土動作時,鏟斗油缸可做伸出或縮回動作以調(diào)整切削角度,充分發(fā)揮挖掘力,使挖掘動作順利完成。要保證挖掘機動臂、斗桿和鏟斗既可以各自單獨動作,又可以互相配合實現(xiàn)復合動作。工作裝置的動作和轉臺的回轉既可以單獨進行,又能做復合動作,以提高挖掘機的生產(chǎn)率。通過本次設計能達到以綜合訓練為目的,有利于培養(yǎng)學生獨立工作能力,鞏固和提高所學知識,增強學生機械創(chuàng)新的設計能力。二、 小型液壓挖掘機技術參數(shù)最大挖掘深度 3500mm 最大挖掘高度 5800mm最大挖掘半徑 6000mm 最大卸載高度 3600mm鏟斗寬度 800mm 發(fā)動機功率 60KW(80 馬力)整機質量 6000kg 爬坡度 27.8° 標準斗容量 0.25 液壓系統(tǒng)工作壓力 20Mpa3m最小行走速度 3km/h 最大行走速度 5km/h最大牽引力 48KN 最大流量 63×2L/min外形尺寸(長×寬×高)7800×2100×2620mm機械工程學院畢業(yè)設計ii三、 設計要求1、 對小型液壓挖掘機工作裝置的參數(shù)進行詳細設計。2、 對小型液壓挖掘機工作裝置各零部件的結構進行詳細設計。3、 圖紙要求:小型液壓挖掘機工作裝置的安裝圖 0#號 1 張;動臂總圖 0#號 1 張(手工繪制);斗桿總圖 1#號 1 張;鏟斗總圖 1#號 1 張;液壓油缸裝配圖 2#號1 張;連桿總圖 3#號 1 張。4、 畢業(yè)設計說明書的字數(shù)不少于 1.5 萬字,文字通順、語言流暢。譯文 3000 漢字。四、 主要參考文獻[1] 《液壓挖掘機》: 高衡 張全根 同編 中國建筑工業(yè)出版社 1981 年[2] 《單斗液壓挖掘機》 : 同濟大學主編 中國建筑工業(yè)出版社 1986 年[3] 《液壓傳動》: 章宏甲 黃誼 主編 機械工業(yè)出版社 2002 年[4] 《工程機械構造圖冊》;劉希平 主編 機械工業(yè)出版社 1990 年[5] 《液壓元件與系統(tǒng)設計》;李玉琳 主編 北京航空航天大學出版社 1991 年[6] 《工程機械優(yōu)化設計》; 陳育儀 編著 中國鐵道出版社 1987 年[7] 《新編機械設計手冊》; 蔡春源 主編 遼寧科學技術出版社 1993 年[8]《工程機械》、《建筑機械化》等有關學術雜志在近年來發(fā)表的相關文獻。指導老師: 年 月 日機械工程學院畢業(yè)設計iii本科生畢業(yè)設計(論文)開題報告設計(論文)題目 小型液壓挖掘機工作裝置的設計設計(論文)題目來源 自選課題設計(論文)題目類型 工程設計類 起止時間一、設計(論文)依據(jù)及研究意義:小型液壓挖掘機是一種周期作業(yè)的土方工程機械,因為體積小、機動靈活,因而非常適用于各種管道鋪設、基礎施工以及房屋維修等作業(yè)。為節(jié)省人力、物力做出了較大貢獻,施工時對周圍環(huán)境影響小、安全、低污染、回轉半徑小、便于運輸,而且能夠安裝許多輔助作業(yè)裝置如破碎錘、液壓鉗等,具有多功能性。正是由于小型挖掘機具備這些特點,因而有著廣闊的市場前景和巨大的研究價值。本次設計是在對目前市場上小型液壓挖掘機進行詳細分析的基礎上,對挖掘機工作裝置的參數(shù)、各零部件的結構進行詳細設計。要求在滿足挖掘技術參數(shù)的前提下,對于技術性能、作業(yè)功能、作業(yè)效率、安全、環(huán)保、節(jié)能和維護保養(yǎng)等方面較同級產(chǎn)品具有一定的先進性。進行這次研究,有助于掌握進行實際工程設計的流程、方法以及內(nèi)容,是對所學專業(yè)知識的一次綜合的考核和運用。二、設計(論文)主要研究的內(nèi)容、預期目標:(技術方案、路線)設計的主要內(nèi)容是對小型液壓挖掘機工作裝置的參數(shù)以及各零部件的結構進行詳細設計;繪制工作裝置安裝圖及各零部件結構圖。預期目標:1、主要工作尺寸及作業(yè)范圍能滿足使用要求。2、整機挖掘力的大小及其分布情況能滿足使用要求,并具有一定先進性。3、工作裝置結構型式、截面尺寸滿足受力,保證強度、剛度和連接鋼性。4、整機功率利用高,工作循環(huán)時間短,日常檢查方便快捷,益于環(huán)保。采用優(yōu)化設計的方法對工作裝置參數(shù)以及各零部件的結構進行優(yōu)化設計。設計要順應小型挖掘機的技術發(fā)展趨勢,如采用無尾回轉、動臂偏轉技術等。三、設計(論文)的研究重點及難點:對工作裝置參數(shù)以及各零部件結構進行詳細設計是本次設計的重點。機械工程學院畢業(yè)設計iv設計的難點在于對工作裝置進行優(yōu)化設計;鉸接方式的選擇及鉸點布置;該部分對整機的性能影響極大,設計計算相對復雜,并且在專業(yè)基礎課和專業(yè)課中均沒有作為主要或重點內(nèi)容進行學習,因此這是難點之一。整機挖掘力的大小及其分布情況和對整機性能的分析也是一大難點。四、設計(論文)研究方法及步驟(進度安排):1.資料準備 2008.1.8~2008.3.52.設計計算 2008.3.5~2008.3.233.圖紙繪制 完成圖紙的初稿 2008.3.27~2008.4.30完成圖紙的二稿 2008.4.30~2008.5.244.說明書寫作 完成說明書的初稿 2008.3.4~2008.3.27完成說明書的二稿 2008.5.9~2008.5.215.進行專題研究6.定稿完成全部設計任務五、進行設計(論文)所需條件:1、相關的文獻資料,圖紙資料。2、指導老師、圖書館、院閱覽室、電子閱覽室、機房、繪圖工具設備及場所。3、微機一臺,AUTOCAD、SOLIDWORKS 等可用于完成圖紙繪制的繪圖軟件。4、Word 等可用于完成畢業(yè)設計說明書的文字處理軟件。5、學院 CAD/CAM 中心能夠提供上機及打印條件。機械工程學院畢業(yè)設計v六、指導教師意見:簽名: 2008 年 3 月 13 日摘要:工作裝置是液壓挖掘機的主要組成部分之一。因用途不同,工作裝置的種類繁多,其中最主要的有反鏟裝置、正鏟裝置、起重裝置等。液 壓挖掘機工作裝置主要由動臂、動臂油缸、斗桿、斗桿油缸、鏟斗、鏟斗油缸、擺動桿和連桿組成。對工作裝置的性能分析及參數(shù)設計主要包括各鉸點位置的幾何尺寸、各油缸的幾何尺寸、運動參數(shù)、各構件的質量和質量中心坐標、轉動慣量、各油缸的工作 壓力和閉鎖壓力等。 這些參數(shù)對挖掘機的工作范圍、挖掘力的大小和分布、作業(yè)循環(huán)時間和功率利用等工作性能有很大的影響。本書從設計的角度,以單斗液壓挖掘機反鏟工作裝置為例,對動臂、斗桿、 鏟斗的結構及運動做了詳盡的分析, 對挖掘力、油缸的 閉鎖壓 力及幾何尺寸均做了詳細的論述。關鍵詞: 挖掘機;反鏟裝置;挖掘力;動臂機構;鏟斗機構機械工程學院畢業(yè)設計viAbstract:The working device is one of the main components of the hydraulic excavator. Because uses are different, working device are various in styles, among them having against the device of the shovel, lifting the device, jack-up device etc. mainly. The hydraulic excavator working device is mainly moved the arm, moved the arm cylinder, struggled against the pole, struggled against cylinder of the pole, scraper bowl, scraper bowl cylinder, swung the pole and connecting rod to make up. Design and include the geometirc size of every hinge point position to analysis of performance and parameter of the working device , every cylinder of geometirc size, movement parameter, every component of quality and mass centre coordinate, rotate inertia, every cylinder of working pressures and lock pressure,etc.ses. Working performance has very great influence on these parameters are utilized to the working range, size, distribution, homework circulation time and power which excavate strength of the excavator,etc..This book regards struggling against the hydraulic excavator the example against the job device of the shovel only as in term of designing, have made exhaustive analysis in moving arm, structure and movement of the pole, scraper bowl of fighting, to excavating locking the pressure and geometirc size and doing the detailed argumentation of strength, every cylinder.機械工程學院畢業(yè)設計viiKey words:excavator; counter-shovel installment; excavation strength;boom agencies; scoop organization 目 錄前言……………………………………………………………………………………… 1一、緒論…………………………………………………………………………………2(一)國內(nèi)外研究狀況………………………………………………………………2(二)論文構成及研究內(nèi)容…………………………………………………………2二、總體方案設計……………………………………………………………………3(一)工作裝置構成…………………………………………………………………3(二)動臂及斗桿的結構形式………………………………………………………5(三)動臂油缸與鏟斗油缸的布置…………………………………………………5(四)鏟斗與鏟斗油缸的連接方式…………………………………………………5(五)鏟斗的結構選擇………………………………………………………………6(六)原始幾何參數(shù)的確定…………………………………………………………7三、工作裝置運動學分析…………………………………………………………8(一)動臂運動分析…………………………………………………………………8(二)斗桿的運動分析………………………………………………………………10機械工程學院畢業(yè)設計viii(三)鏟斗的運動分析………………………………………………………………11(四)特殊工作位置計算……………………………………………………………15四、挖掘阻力分析……………………………………………………………………18(一)轉斗挖掘阻力計算……………………………………………………………18(二)斗桿挖掘阻力計算……………………………………………………………18五、基本尺寸的確定……………………………………………………………… 20(一)斗形參數(shù)的確定………………………………………………………………20(二)動臂機構參數(shù)的選擇…………………………………………………………201、 α1 與 A 點坐標的選取……………………………………………………202、 l1 與 l2 的選擇……………………………………………………………203、 l41 與 l42 的計算…………………………………………………………214、 l5 的計算………………………………………………………………… 21(三)動臂機構基本參數(shù)的校核………………………………………………… 231、 動臂機構閉鎖力的校核……………………………………………………232、 滿斗處于最大挖掘半徑時動臂油缸提升力矩的校核……………………253、 滿斗處于最大高度時,動臂提升力矩的校核…………………………… 26(四)斗桿機構基本參數(shù)的選擇……………………………………………………27(五)鏟斗機構基本參數(shù)的選擇……………………………………………………281、 轉角范圍……………………………………………………………………282、 鏟斗機構其它基本參數(shù)的計算……………………………………………28六、工作裝置結構設計…………………………………………………………… 30(一)斗桿的結構設計………………………………………………………………301、斗桿的受力分析…………………………………………………………… 302、斗桿內(nèi)力圖的繪制………………………………………………………… 353、 結構尺寸的計算……………………………………………………………37(二)動臂結構設計…………………………………………………………………391、危險工況受力分析………………………………………………………… 422、內(nèi)力圖和彎矩圖的求解…………………………………………………… 433、 結構尺寸的計算……………………………………………………………45機械工程學院畢業(yè)設計ix(三)鏟斗的設計……………………………………………………………………471、鏟斗斗形尺寸的設計……………………………………………………… 472、鏟斗斗齒的結構計算……………………………………………………… 473、 鏟斗的繪制…………………………………………………………………48七、銷軸與襯套的設計…………………………………………………………… 4 9(一)銷軸的設計……………………………………………………………………49(二)銷軸用螺栓的設計……………………………………………………………49(三)襯套的設計……………………………………………………………………49八、總結…………………………………………………………………………………50九、參考文獻………………………………………………………………………… 51十、致謝…………………………………………………………………………………52附件一 外文翻譯…………………………………………………………………… 53第 1 頁 共 55 頁小型液壓挖掘機工作裝置的設計引 言挖掘機在國民經(jīng)濟建設的許多行業(yè)被廣泛地采用,如工業(yè)與民用建筑、交通運輸、水利電氣工程、農(nóng)田改造、礦山采掘以及現(xiàn)代化軍事工程等等行業(yè)的機械化施工中。據(jù)統(tǒng)計,一般工程施工中約有 60%的土方量、露天礦山中 80%的剝離量和采掘量是用挖掘機完成的。隨著我國基礎設施建設的深入和在建設中挖掘機的廣泛應用,挖掘機市場有著廣闊的發(fā)展空間,因此發(fā)展?jié)M足我國國情所需要的挖掘機是十分必要的。而工作裝置作為挖掘機的重要組成部分,對其研究和控制是對整機開發(fā)的基礎。反鏟式單斗液壓挖掘機工作裝置是一個較復雜的空間機構,國內(nèi)外對其運動分析、機構和結構參數(shù)優(yōu)化設計方面都作了較深入的研究,具體的設計特別是中型挖掘機的設計已經(jīng)趨于成熟。關于反鏟式單斗液壓挖掘機的相關文獻也很多,這些文獻從不同側面對工作裝置的設計進行了論述。而筆者的設計知識和水平還只是一個學步的孩子,進行本課題的設計是為對挖掘機的工作裝置設計有一些大體的認識,掌握實際工程設計的流程、方法,鞏固所學的知識和提高設計能力。第 2 頁 共 55 頁一、緒論(一)國內(nèi)外研究狀況當前,國際上挖掘機的生產(chǎn)正向大型化、微型化、多能化和專用化的方向發(fā)展。國外挖掘機行業(yè)重視采用新技術、新工藝、新結構和新材料,加快了向標準化、系列化、通用化發(fā)展的步伐。我國己經(jīng)形成了挖掘機的系列化生產(chǎn),近年來還開發(fā)了許多新產(chǎn)品,引進了國外的一些先進的生產(chǎn)率較高的挖掘機型號。由于使用性能、技術指標和經(jīng)濟指標上的優(yōu)越,世界上許多國家,特別是工業(yè)發(fā)達國家,都在大力發(fā)展單斗液壓挖掘機。目前,單斗液壓挖掘機的發(fā)展著眼于動力和傳動系統(tǒng)的改進以達到高效節(jié)能;應用范圍不斷擴大,成本不斷降低,向標準化、模塊化發(fā)展,以提高零部件、配件的可靠性,從而保證整機的可靠性;電子計算機監(jiān)測與控制,實現(xiàn)機電一體化;提高機械作業(yè)性能,降低噪音,減少停機維修時間,提高適應能力,消除公害,縱觀未來,單斗液壓挖掘機有以下的趨勢:1、向大型化發(fā)展的同時向微型化發(fā)展。2、更為普遍地采用節(jié)能技術。3、不斷提高可靠性和使用壽命。4、工作裝置結構不斷改進,工作范圍不斷擴大。5、由內(nèi)燃機驅動向電力驅動發(fā)展。6、液壓系統(tǒng)不斷改進,液壓元件不斷更新。7、應用微電子、氣、液等機電一體化綜合技術。8、增大鏟斗容量,加大功率,提高生產(chǎn)效率。9、人機工程學在設計中的充分利用。(二)論文構成及研究內(nèi)容本論文主要對由動臂、斗桿、鏟斗、銷軸、連桿機構組成挖掘機工作裝置進行設計。具體內(nèi)容包括以下五部分:1、 挖機工作裝置的總體設計。2、 挖掘機的工作裝置詳細的機構運動學分析。第 3 頁 共 55 頁3、 工作裝置各部分的基本尺寸的計算和驗證。4、 工作裝置主要部件的結構設計。5、 銷軸的設計及螺栓等標準件進行選型。二、總體方案設計(一)工作裝置構成1-斗桿油缸;2- 動臂; 3-油管; 4-動臂油缸; 5-鏟斗; 6-斗齒; 7-側板;8-連桿; 9-曲柄: 10-鏟斗油缸; 11-斗桿圖 2.1 工作裝置組成圖 圖 2.1 為液壓挖掘機工作裝置基本組成及傳動示意圖,如圖所示反鏟工作裝置由鏟斗 5、連桿 9、斗桿 11、動臂 2、相應的三組液壓缸 1, 4,10 等組成。動臂下鉸點鉸接在轉臺上,通過動臂缸的伸縮,使動臂連同整個工作裝置繞動臂下鉸點轉動。依靠斗桿缸使斗桿繞動臂的上鉸點轉動,而鏟斗鉸接于斗桿前端,通過鏟斗缸和連桿則使鏟斗繞斗桿前鉸點轉動。挖掘作業(yè)時,接通回轉馬達、轉動轉臺,使工作裝置轉到挖掘位置,同時操縱動臂缸小腔進油使液壓缸回縮,動臂下降至鏟斗觸地后再操縱斗桿缸或鏟斗缸,液壓缸大腔進油而伸長,使鏟斗進行挖掘和裝載工作。鏟斗裝滿后,鏟斗缸和斗桿缸停動并操縱動臂缸大腔進油,使動臂抬起,隨即接通回轉馬達,使工作裝置轉到卸載位置,再操縱鏟斗缸或斗桿缸回縮,使鏟斗翻轉進行卸土。卸完后,工作裝置再轉至挖掘位置進行第二次挖掘循環(huán)。第 4 頁 共 55 頁在實際挖掘作業(yè)中,由于土質情況、挖掘面條件以及挖掘機液壓系統(tǒng)的不同,反鏟裝置三種液壓缸在挖掘循環(huán)中的動作配合可以是多樣的、隨機的。上述過程僅為一般的理想過程。挖掘機工作裝置的大臂與斗桿是變截面的箱梁結構,鏟斗是由厚度薄的鋼板焊接而成。各油缸可看作是只承受拉壓載荷的桿。根據(jù)以上特征,可以對工作裝置進行適當簡化處理。則可知單斗液壓挖掘機的工作裝置可以看成是由動臂、斗桿、鏟斗、動臂油缸、斗桿油缸、鏟斗油缸及連桿機構組成的具有三自由度的六桿機構,處理的具體簡圖如 2.2 所示。進一步簡化得圖如 2.3 所示。圖 2.2 工作裝置結構簡圖第 5 頁 共 55 頁1-鏟斗;2-連桿;3-斗桿;4- 動臂;5-鏟斗油缸; 6-斗桿油缸圖 2.3 工作裝置結構簡化圖挖掘機的工作裝置經(jīng)上面的簡化后實質是一組平面連桿機構,自由度是 3,即工作裝置的幾何位置由動臂油缸長度 L1、斗桿油缸長度 L2、鏟斗油缸長度 L3決定,當L1、L 2、L 3為某一確定的值時,工作裝置的位置也就能夠確定。(二)動臂及斗桿的結構形式動臂采用整體式彎動臂,這種結構形式在小型挖掘機中應用較為廣泛。其結構簡單、價廉,剛度相同時結構重量較組合式動臂輕,且有利于得到較大的挖掘深度。斗桿也有整體式和組合式兩種,大多數(shù)挖掘機采用整體式斗桿。在本設計中由于不需要調(diào)節(jié)斗桿的長度,故也采用整體式斗桿。(三)動臂油缸與鏟斗油缸的布置動臂油缸裝在動臂的前下方,動臂的下支承點(即動臂與轉臺的鉸點)設在轉臺回轉中心之前并稍高于轉臺平面,這樣的布置有利于反鏟的挖掘深度。大部分中小型液壓挖掘機以反鏟作業(yè)為主,常采用動臂支點靠前布置的方案。油缸活塞桿端部與動臂的鉸點設在動臂箱體下底板的凸緣上,雖然這樣會影響動臂的下降幅度,但不會削弱動臂的結構強度,而且使動臂的受力更加合理。對于斗容量為 0.25 m3的小型液壓挖掘機,單只動臂液壓缸即可滿足工作要求。具體結構如圖 2.2 所示。(四)鏟斗與鏟斗油缸的連接方式本方案中采用六連桿的布置方式,相比四連桿布置方式而言在相同的鏟斗油缸行程下能得到較大的鏟斗轉角,改善了機構的傳動特性。該布置中 1 桿與 2 桿的鉸接位第 6 頁 共 55 頁置雖然使鏟斗的轉角減少但保證能得到足夠大的鏟斗平均挖掘力。如圖 2.4 所示。1-斗桿; 2-連桿機構; 3-鏟斗圖 2.4 鏟斗連接布置示意圖(五)鏟斗的結構選擇鏟斗結構形狀和參數(shù)的合理選擇對挖掘機的作業(yè)效果影響很大,合適的鏟斗應滿足以下要求:1、有利于物料的自由流動。鏟斗內(nèi)壁不宜設置橫向凸緣、棱角等。斗底的縱向剖面形狀要適合于各種物料的運動規(guī)律。2、要使物料易于卸盡。3、為使裝進鏟斗的物料不易于卸出,鏟斗的寬度與物料的粒徑之比應大于 4,大于 50 時,顆粒尺寸不考慮,視物料為均質。綜上考慮,選用小型挖掘機常用的鏟斗結構,基本結構如圖 2.5 所示。圖 2.5 鏟斗斗齒的安裝連接采用橡膠卡銷式,結構示意圖如 2.6 所示。323第 7 頁 共 55 頁1-卡銷 ;2 –橡膠卡銷;3 –齒座; 4–斗齒圖 2.6 卡銷式斗齒結構示意圖(六) 原始幾何參數(shù)的確定1、動臂與斗桿的長度比 K1由于所設計的挖掘機適用性較強,作業(yè)對象明確,一般不替換工作裝置,故取中間比例方案,K 1 取在 1.5~2.0 之間??紤]到 K1 值大,工作裝置結構重心離機體近。初步選取 K1=2,即 l1 / l2=2。2、鏟斗斗容與主參數(shù)的選擇斗容量在任務書中已經(jīng)給出:q =0.25 m 3按經(jīng)驗公式和比擬法初選:l 3=900mm,鏟斗平均寬度 B=800mm,鏟斗切削半徑 R= l3=900mm,鏟斗裝滿轉角 。??65.92?3、工作裝置液壓系統(tǒng)主參數(shù)的初步選擇各工作油缸的缸徑選擇要考慮到液壓系統(tǒng)的工作壓力和“三化“要求。初選動臂油缸內(nèi)徑 D1=125mm,活塞桿的直徑 d1=80mm。斗桿油缸的內(nèi)徑 D2=90mm,活塞桿的直徑 d2=63mm。鏟斗油缸的內(nèi)徑 D3=100mm,活塞桿的直徑 d3=70mm。按經(jīng)驗公式初選各油缸全伸長度與全縮長度之比:λ 1=λ2=λ3=1.6。參照任務書的要求選擇工作裝置液壓系統(tǒng)的工作壓力 P=20MPa,閉鎖壓力 Pg=21MPa。三、工作裝置運動學分析第 8 頁 共 55 頁(一) 動臂運動分析動臂油缸的最短長度; 動臂油缸的伸出的最大長度;:min1L:max1LA:動臂油缸的下鉸點;B:動臂油缸的上鉸點;C:動臂的下鉸點.圖 3.1 動臂擺角范圍計算簡圖動臂擺角 φ 1是 L1 的函數(shù)。動臂上任意一點在任一時刻的坐標值也都是 L1 的函數(shù)。如圖 3.1 所示,圖中 動臂油缸的最短長度; 動臂油缸的伸出的最大長度;:minL:max1L動臂油缸兩鉸點分別與動臂下鉸點連線夾角的最小值; 動臂油缸兩鉸點分:min1? :max1?別與動臂下鉸點連線夾角的最大值;A:動臂油缸的下鉸點;B:動臂油缸的上鉸點;C:動臂的下鉸點。則有:在三角形 ABC 中:15725721 cos)(?????llL(3-1))arcos57211lL?第 9 頁 共 55 頁圖 3.2 F、C 點坐標計算簡圖在三角形 BCF 中:20172172 cos)(?????lll(3-2))arcos17220l?由圖 3.2 所示的幾何關系,可得到 α 21 的表達式:(3-3)1212????當 F 點在水平線 CU 之下時 α 21 為負,否則為正。F 點的坐標為XF = l30+l1×cosα21YF = l30+l1×sinα21 (3-4)C 點的坐標為3015cosllXAC?????YC = YA+l5×sinα11 (3-5)動臂油缸的力臂 e1(3-6)157sinLl???顯然動臂油缸的最大作用力臂 e1max= l5第 10 頁 共 55 頁(二)斗桿的運動分析如下圖 3.3 所示, D 點為斗桿油缸與動臂的鉸點點, F 點為動臂與斗桿的鉸點, E點為斗桿油缸與斗桿的鉸點。斗桿的位置參數(shù)是 l2,這里只討論斗桿相對于動臂的運動,即只考慮 L2的影響。D-斗桿油缸與動臂的鉸點點; F-動臂與斗桿的鉸點;E-斗桿油缸與斗桿的鉸點; θ 2-斗桿擺角.圖 3.3 斗桿機構擺角計算簡圖在三角形 DEF 中2982982 cos)(?????llL(3-7))arcos9822lL?由上圖的幾何關系知斗桿相對于動臂的擺角范圍 φ2maxφ2max =θ2 max-θ2min (3-8)則斗桿的作用力臂(3-9)2982sinLle???顯然斗桿的最大作用力臂 e2max = l9,此時 。892arcosl??第 11 頁 共 55 頁(三)鏟斗的運動分析鏟斗相對于 XOY 坐標系的運動是 L1、 L2、 L3 的函數(shù),現(xiàn)討論鏟斗相對于斗桿的運動,如圖 3-4 所示,G 點為鏟斗油缸與斗桿的鉸點, F 點為斗桿與動臂的鉸點 Q 點為鏟斗與斗桿的鉸點,v 點為鏟斗的斗齒尖點 , K 點為連桿與鏟斗的餃點,N 點為曲柄與斗桿的鉸點,M 點為鏟斗油缸與曲柄的鉸點,H 點為曲柄與連桿的鉸點。圖 3.4 鏟斗連桿機構傳動比計算簡圖1、鏟斗連桿機構傳動比 i利用圖 3.4,可以求得以下參數(shù):在三角形 HGN 中 )2arcos(1452312 lLlHNG??????)r(153230 lα32 = ∠ GMN = π - ∠ MNG - ∠ MGN =π -α22-α30 (3-10)第 12 頁 共 55 頁在三角形 HNQ 中2321321427 cos)( ?????lll(3-11))arcos(2714lNHQ?在三角形 QHK 中(3-12))2arcos(279427 llK?????在四邊形 KHNQ 中∠ NHK=∠ NHQ+∠ QHK (3-13)鏟斗油缸對 N 點的作用力臂 r1(3-14))sin(30213?????l連桿 HK 對 N 點的作用力臂 r2r2 = l13×Sin ∠ NHK 連桿 HK 對 Q 點的作用力臂 r3(3-15)29243sin????l連桿機構的總傳動比 i(3-16)321iL?顯然 3-17 式中可知,i 是鏟斗油缸長度 L3 的函數(shù),用 L3min 代入可得初傳動比i0,L 3max 代入可得終傳動比 iz。2、鏟斗相對于斗桿的擺角 φ 3鏟斗的瞬時位置轉角為(3-17)1026473 ??????FQV其中,在三角形 NFQ 中(3-18))arcos(21627 llN??當鏟斗油缸長度 L3 分別取 L3max 和 L3min 時,可分別求得鏟斗的最大和最小轉角θ3max 和 θ3min,于是得鏟斗的擺角范圍: φ3 = θ3max-θ3min (3-19)第 13 頁 共 55 頁3、斗齒尖運動分析見圖 3.5 所示,斗齒尖 V 點的坐標值 XV 和 YV,是 L1 、L 2、L 3 的函數(shù)只要推導出XV 和 YV 的函數(shù)表達式,那么整機作業(yè)范圍就可以確定,現(xiàn)推導如下:由 F 點知:α32= ∠ CFQ= 2 π – α3 – α4 – α6 – θ2 (3-20)在三角形 CDF 中:∠DCF 由后面的設計確定,在∠DCF 確定后則有:(3-21)DCFlll ?????cos)(1621628(3-22)38?(3-23))2arcos(18263 llDFC?????在三角形 DEF 中2982982 cs)(????llL圖 3.5 齒尖坐標方程推導簡圖 1第 14 頁 共 55 頁則可以得斗桿瞬間轉角 θ2 (3-24))arcos(9822lLl?????α4、α 6 在設計畫圖中確定。由三角形 CFN 知:l28 = Sqr( l162 + l12 - 2×cosα32×l16×l1) (3-25)由三角形 CFQ 知:l23 = Sqr( l22 + l12 - 2×cosα32×l2×l1) (3-26)由 Q 點知:α35= ∠ CQV= 2π – α33 – α24 – α10 (3-27)在三角形 CFQ 中:3322321 cos)(?????lll(3-28))arcos1323l?在三角形 NHQ 中:24217217213 cos)( ?????lll(3-29))ar(217324 lNQH????在三角形 HKQ 中:2624724729 cos)( ?????lll(3-30))ar(247924 lHQK????在四邊形 HNQK:∠NQH =α 24 + α26 (3-31)α20 = ∠ KQV,其在后面的設計中確定。在列出以上的各線段的長度和角度之間的關系后,利用矢量坐標我們就可以得到各坐標點的值。第 15 頁 共 55 頁(四) 特殊工作位置計算1、最大挖掘深度 H1maxNH-搖臂; HK-連桿;C -動臂下鉸點;A -動臂油缸下鉸點;B-動臂與動臂油缸鉸點;F-動臂上鉸點;D-斗桿油缸上鉸點;E-斗桿下鉸點;G-鏟斗油缸下鉸點;Q-鏟斗下鉸點;K-鏟斗上鉸點;V-鏟斗斗齒尖.圖 3.6 最大挖掘深度計算簡圖如圖 3.6 示,當動臂全縮時,F(xiàn), Q, V 三點共線且處于垂直位置時,得最大挖掘深度為: H1max = YV = YFmin– l2 – l3 = YC + L1 Sinα2 1min – l2 – l3= YC + l1 Sin( θ1 – α20 – α11) – l2 – l3 (3-32)第 16 頁 共 55 頁2、最大卸載高度 H3maxNH-搖臂; HK-連桿;C -動臂下鉸點;A -動臂油缸下鉸點;B-動臂與動臂油缸鉸點;F-動臂上鉸點;D-斗桿油缸上鉸點;E-斗桿下鉸點;G-鏟斗油缸下鉸點;Q-鏟斗下鉸點;K-鏟斗上鉸點;V-鏟斗斗齒尖圖3.7 最大卸載高度計算簡圖如圖 3.7 所示,當斗桿油缸全縮,動臂油缸全伸時,QV 連線處于垂直狀態(tài)時,得最大卸載高度為:(3-33))sin()sin( 12132121max3 ?????? ?????? MAXMAXCQllYH3、水平面最大挖掘半徑 R1maxNH-搖臂; HK-連桿;C -動臂下鉸點;A -動臂油缸下鉸點;B-動臂與動臂油缸鉸點;F-動臂上鉸點;D-斗桿第 17 頁 共 55 頁油缸上鉸點;E-斗桿下鉸點;G-鏟斗油缸下鉸點;Q-鏟斗下鉸點;K-鏟斗上鉸點;V-鏟斗斗齒尖圖 3.8 停機面最大挖掘半徑計算簡圖如圖 3.8 所示,當斗桿油缸全縮時,F(xiàn) 、 Q、 V 三點共線,且斗齒尖 v 和鉸點 C在同一水平線上,即 YC = YV,得到最大挖掘半徑 R1max 為:R1max=XC+L40 (3-34)式中:L40 = Sqr[(L 1+L2+L3) 2 – 2×(L 2+L3)×L 1×COSα32max] (3-35)4、最大挖掘半徑 R2maxNH-搖臂;HK-連桿;C-動臂下鉸點; A -動臂油缸下鉸點;B -動臂與動臂油缸鉸點;F -動臂上鉸點;D-斗桿油缸上鉸點;E-斗桿下鉸點; G-鏟斗油缸下鉸點;Q-鏟斗下鉸點;K-鏟斗上鉸點;V-鏟斗斗齒尖圖 5.1 最大挖掘半徑時工作裝置結構簡圖最大挖掘半徑時的工況是水平面最大挖掘半徑工況下 C、 V 連線繞 C 點轉到水平面而成的。通過兩者的幾何關系,我們可計算得到:l 30 = 350mm ;l 40 = 5650mm。5、最大挖掘高度 H2max最大挖掘高度工況是最大卸載高度工況中鏟斗繞 Q 點旋轉直到鏟斗油缸全縮而形成的。具體分析方法和最大卸載高度工況的分析類似。第 18 頁 共 55 頁四、 挖掘阻力分析(一)轉斗挖掘阻力計算挖掘阻力可分為切向分力 與法向分力 ,其中法向分力相對很小,一般為1F2(4-1)2).0~(F?(4-2)DBAZXRC??35.1max1]}cos[{?在式(4-2)中,F(xiàn) 1—— 切削阻力的切向分力;C——土壤的硬度系數(shù),對不同的土壤條件取值不同,這里設挖機用于Ⅲ級土壤的挖掘,取值為 90;R——鏟斗與斗桿鉸點到斗齒尖距離,即轉斗切削半徑其在前面已經(jīng)初步確定,取值為 90 cm;ψmax——挖掘過程中鏟斗總轉角的一半;現(xiàn)初定總轉角為 110°,則 ψmax = 55°ψ——某一挖掘位置處轉斗的瞬時轉角,B——切削刃寬度影響系數(shù),B = 1 + 2.6b = 1 + 2.6×0.8 = 3.08;A——切削角變化影響系數(shù),取 A = 1.3.;Z——帶有斗齒的系數(shù),取 Z =0.75;X——斗側壁厚影響系數(shù),X = 1+0.03S,其中 S 為側壁厚度,單位為 cm 。初步設計時取 X = 1.15 ;D——切削刃擠壓土壤的力,根據(jù)經(jīng)驗統(tǒng)計和斗容量的大小選取 D = 0.8 × 104N。當 時,出現(xiàn)轉斗挖掘最大切向分力 ,其值為:max??max1F(4-3)DBAZXRCF??35.1max1]}cos[{?將各參數(shù)代入式(4-3)得第 19 頁 共 55 頁NFmxa 407815.703.8)]5cos1(90[3.11 ????????轉斗平均挖掘阻力按平均挖掘深度下的阻力計算,平均切削厚度為(4-4)??sin180)2(??Rh平均挖掘阻力為(4-5) DBAZXCFp ??????35.11 ])sin80416.3(29[將各參數(shù)代入上式得 NFp7?(二)斗桿挖掘阻力計算斗桿在挖掘過程中總轉角一般為 ,現(xiàn)取 。斗齒尖的行程實際上?80~6??65S?是斗桿轉角 所對應的弧長 ,根據(jù)經(jīng)驗公式有S?Sl(4-6)Rl01745.?—斗桿挖掘時切削半徑,斗桿與動臂鉸點至斗齒尖距離,單位 mSR斗桿挖掘時切削厚度按如下公式計算(4-7)SBlqh?q—鏟斗容量 ,B—鏟斗切削寬度 m3m斗桿挖掘阻力計算公式如下:(4-8)SdRKqhKF??00218???式(4-8)中 為挖掘阻力比,由附表 0—10 查得,對于Ⅲ級土取0,對于 ,初步設計時取 ,將各參數(shù)代入式2501cmNK??S mlS34.290)(32????(4-8)得NFd 1846534.210802???取整為 ,斗桿挖掘阻力比轉斗挖掘阻力要小一些,這是由于斗桿挖Nd2?第 20 頁 共 55 頁掘行程較長,切削厚度較小的緣故。五、基本尺寸的確定(一)斗形參數(shù)的確定斗容量 q :在設計任務書中已給出 q = 0.25 m3平均斗寬 B:在設計任務書中已給出 B = 0.8 m挖掘半徑 R:按經(jīng)驗統(tǒng)計和參考同斗容的其它型號的機械,初選 R = 900mm 轉斗挖掘裝滿轉角(2φ):R、B 及 2φ 三者與 q 之間有以幾何關系q = 0.5 × R2B( 2φ-Sin2φ) KS在上式中:K S 為土壤的松散系數(shù),近似取值為 1.25。將 q = 0.25 m3 和 B = 0.8m 代入上式有: ???325.46.92?鏟斗兩個鉸點 K、Q 之間的間距 l24 和 l3 的比值 k2 的選?。簂24 太大將影響機構的傳動特性,太小則影響鏟斗的結構剛度 [3],一般取特性參數(shù)。初選特性參數(shù) k2 = 0.3。38.0~324??一般取 。由于鏟斗的轉角較大,而 k2 的取值較小,故初????15~91KV?選 。?10Q(二)動臂機構參數(shù)的選擇1、α1 與 A 點坐標的選取初選動臂彎角 。??130?由經(jīng)驗統(tǒng)計和參考其它同斗容機型,初選特性參數(shù) k3 = 1.65(k 3 = L42/L41)鉸點 A 坐標的選擇:第 21 頁 共 55 頁由底盤和轉臺結構,并結合同斗容其它機型的測繪,初選:XA = 560 mm ;Y A = 700mm 2、 l1 與 l 2 的選擇 經(jīng)統(tǒng)計分析,最大挖掘半徑 R1值與 l1+l2+l3 的值很接近,由已給定的最大挖掘半徑 R1、已初步選定的 l3 和 k1,結合如下經(jīng)驗公式:; 12Kl???21l?式中: l1 為動臂長, l 2 為斗桿長,k 1 為動臂斗桿長度比將各參數(shù)代入上式得:;ml702?ml340721???3、 l 41與 l42的計算如圖 5.1 所示,在三角形 CZF 中:NH-搖臂;HK-連桿;C-動臂下鉸點;A -動臂油缸下鉸點;B-動臂與動臂油缸鉸點;F -動臂上鉸點;D-斗桿油缸上鉸點;E-斗桿下鉸點;G-鏟斗油缸下鉸點;Q-鏟斗下鉸點; K-鏟斗上鉸點;V-鏟斗斗齒尖圖 5.1 最大挖掘半徑時工作裝置結構簡圖mkl1407130cos65.2.3314??????l42 = k3×l41 = 1.65×1407 = 2321 mm第 22 頁 共 55 頁???????5.18)2arcos(42129 llZFC?4、l 5 的計算對于以反鏟為主的通用挖掘機要適當考慮其他的換用裝置(如正鏟、起重等) ,而且要求在地面以上作業(yè)時能有足夠的提升力矩,故初取 k4 = 0.85α11 的取值對特性參數(shù) k4、最大挖掘深度 H1max 和最大挖高 H2max 均有影響,增大α11 會使 k4 減少或使 H1max 增大,這符合反鏟作業(yè)的要求,初選 。??601?斗桿液壓油缸全縮時, ∠CFQ =α32 – α8 最大,根據(jù)經(jīng)驗統(tǒng)計和便于計算,初選(α 32 – α8)max = 。?160由于采用單動臂液壓缸,因此∠BCZ 的取值較大,初取 ∠ BCZ = ?5.1如上圖 5.1 所示,在三角形 CZF 中:∠ ZCF = π – α1 – α39 = - - = ?80?13?5.8?.3∠ BCF = α2 =∠ ZCF -∠ ZCB ??????20.由式(3-33)和式(3-34)有H3max = YC+ l1 Sin(θ 1 – α20 – α11)– l 2 – l3 (5-1)= YA+ l5 Sinα11+ l1 Sin(θ 1max– α2– α11)+ l 2 Sin(θ 1max+α32 max – α11 – α8 – α2 – 180)– l3 H1max = l2 + l3 + l1 Sin(α 11 – θ1min+ α2) – l5 Sinα11 – YA ) (5-2)由式(5-1) 、 (5-2)有:H1max + H3max = l1 Sin(θ 1max – α2 – α11)+ l2 Sin(θ 1max+ α32 max – α11– α8– α2– 180)+ l1 Sin(α 11 – θ1min+ α2)+ l 2 (5-3)令 A = α 2+ α11 = + = ?0?6?80B = A + ( α32 – α8) max = +( )=???17?90將 A、B 的值代入式(5-3)中有H1max + H3max –l1 [ Sin(θ 1max – )– Sin(θ 1min – )] + l2 Sin [(θ 1max + )–?0?8?901]=0 又由第 23 頁 共 55 頁特性參數(shù) (5-4)min1ax4s???K則有 Sinθ 1min = Sinθ1max ÷λ1 k4 = Sinθ1max÷1.36 (5-5)(5-6)2max1in1in)36.s(co???將式(5-5) 、式(5-6)代入到式(5-4)中得3500+3600-3400×[Sin(θ 1max – )– Sin(θ 1min – )]+l 2[Sin(θ 1max + )–1] = ?80?80?900 解之: θ 1max = ; θ 1min = ?1?5.4由式(5-2)有H1max = l2 + l3 + l1 Sin(α 11- θ1min +α 2)- l 5 Sinα11- YA l5 = [l2 + l3 + l1 Sin(α 11- θ1min + α2)- Y A - H1max ] ÷ Sinα11 = [1700 + 900 + 3400×Sin( )- 800- 3500] ÷ Sin???.408 ?60= 534.3mmθ1min 與 θ1max 需要滿足以下條件(5-7))21arcos(min1??????(5-8))r(21ax1 ?將 θ1max 、θ 1min 的值代入式(5-7) 、式(5-8)中得:ρ = 0.482 σ = 1.316而 (5-9))6.1(798.142.036.1????????(5-10)3??ρ、σ 滿足 5-9、5-10 兩個經(jīng)驗條件,說明 ρ、σ 的取值是可行的。(5-11)mlL109482.53min1 ???(5-12)76inax??第 24 頁 共 55 頁(5-13)mLl 1459036.1min7 ????至此,動臂機構的各主要基本參數(shù)已初步確定。(三) 動臂機構基本參數(shù)的校核1、動臂機構閉鎖力的校核由第四章的計算可知,轉斗的平均挖掘力 NFp 511032.57???由圖 5-2 知,最大挖掘深度時的挖掘阻力力矩 M1J:M1J = ( H1max + YC) (5-14)pF1式中,Y C 為 C 點的 Y 軸坐標值 mlA 7.1620sin3.5470sin15 ????????將各參數(shù)代入式(5-14)得M1J = 0.312× 105×(3.5+1.162)= 1.45×10 5 N.m 動臂油缸的閉鎖力 F1′F1′ = Pg×S1′ (S 1′:動臂油缸小腔的作用面積)=2.1×107×π×(62.5 2 – 402)×10 -6= 1.5×105 N 最大挖掘深度工作裝置自身重力所產(chǎn)生的力矩 MG :要求力矩,首先應該需要知道作用力和作用力臂。在此處,則是先要求出工作裝置各部分的重量,由經(jīng)驗統(tǒng)計,初步估計工作裝置的各部分重量如下:動臂 G1 = 223kg 斗桿 G2 = 179kg鏟斗 G3 = 86kg 斗桿缸 G4 = 55kg鏟斗缸 G5 = 51kg 連桿機構 G6 = 17kg動臂缸 G7 = 55kg 第 25 頁 共 55 頁圖 5.2 最大挖掘深度計算簡圖當處于最大挖掘深度時:θ1 = θ1min = ?.40???????5.396025122??由圖 5.2 有MG ≈(G 1/2 +G2 +G3 +G4 +G5 +G6+ G7)×10 ×l 1 ×cos (5-15))5.39(??=(111.5+179 +86 +55 +51 +17+55)×10×3.4 × cos .?= 1.5×104N.m 動臂油缸的閉鎖力與工作裝置重力所產(chǎn)生的力矩(對 C 點的矩):M3 = F1′×l7 × l5 Sinθ1min ÷ l1min + MG (5-16)= 2×1.5×1.459×105 ×0.5343×Sin40.5°÷1.109 + 1.5×104 = 1.67×105 N.m >M1J = 1.45×105 N.m 在式(5-16)中說明動臂油缸的閉鎖力與工作裝置重力所產(chǎn)生的力矩略大于平均挖掘阻力力矩,滿足工作要求。2、滿斗處于最大挖掘半徑時動臂油缸提升力矩的校核第 26 頁 共 55 頁NH-搖臂; HK-連桿;C -動臂下鉸點;A -動臂油缸下鉸點;B- 動臂與動臂油缸鉸點;F-動臂上鉸點;D-斗桿油缸上鉸點;E-斗桿下鉸點;G-鏟斗油缸下鉸點;Q-鏟斗下鉸點;K-鏟斗上鉸點;V-鏟斗斗齒尖圖 5.3 最大挖掘半徑時工作裝置結構簡圖為方便計算,現(xiàn)將工作裝置劃分為二個部分,動臂、動臂液壓缸和斗桿液壓缸作為一部分,該部分重量以表示 GB 表示;其余的工作裝置構件作為第二部分,重量以GG+D 表示,于是有:GB=G1 +G4 +G7 =223 + 55 + 55 = 333kgGG+D =G2 +G3 +G5 +G6 = 179 + 86 + 51 + 17=333kg按經(jīng)驗公式取土的重量:GT = (1.6 ~ 1.8) ×q×103 = 1.8×0.25 ×103 = 450kg當處于最大挖掘半徑時,工作裝置簡圖如圖 5.3 所示,則有:MZ = 9.8×[GB ×l1 /2 + GG+D(l 1 + 0.7×l2)+ G T (l 1 + l2 + l3 /2)]= 9.8×[333×3.4÷2+ 333×(3.4+0.7 ×1.7)+ 450×(3.4+1.7-0.9 ÷2)]= 0.45×105 N.m 動臂油缸的推力: F 1 = P1 S1 = 2×107×π×62.5 2×10- 6 = 2.45×105 N在如圖 5.3 所示,在三角形 CAB 中:(5-17))2(arcos(123121CVlll?????∠ ACB =α2 +α11 +α21 (5-18)1?第 27 頁 共 55 頁將各參數(shù)分別代入式(5-17)和式(5-18)得??7.821??1??7.8mll BCABCAL35.2.cos752752???????L1=1.542mL1 e1 = AC×BC×Sin∠ACB (5-19) ml 4.50.542.17.8sin309.sin157 ???????則此時動臂油缸提升力矩:MT = F1 e1= 2.45×105×0.5054 =1.24×105 N.m >M Z = 0.45×105 N.m 故鏟斗處于最大挖掘半徑時動臂油缸提升力矩滿足工作要求。3、滿斗處于最大高度時,動臂提升力矩的校核當斗桿在最大高度時的工況類似于圖 3.7,此時動臂油缸全伸,斗桿油缸全縮。θ1 =θ1max = α32 =α32max = α2 = ?8?160?0α21 = θ1-(α 2 + α11) ???????38)2(8α37 = α32 -(π- α 21) ???則工作裝置所受重力和土的重力所產(chǎn)生的載荷力矩 MZ′:MZ′= )]2coss()2coss(2cos[8.9 372137211 lllGllGl TDB ????? ???(5-20)mN.10298. )]9.08cos7.13cos4(5 8.43..5?????? ??? ???此時對于動臂油缸而言:L1 = L1max =1774 mm θ 1 =θ1max = ?8同式(5-19)的計算可求得此時的動臂油缸的力臂mle 3.074.1sin5309.sinmax1572 ???????第 28 頁 共 55 頁此時動臂油缸的提升力矩 MT 可參考式(5-20)求得:MT = F1 e1 = 20×106×π× 502×10-6×0.388= 0.61×105 N.m >M Z′ = 0.298×105 N.m 說明滿斗處于最大高度時,動臂提升力矩滿足工作要求。(四)斗桿機構基本參數(shù)的選擇D:斗桿油缸的下鉸點;E:鏟斗油缸的上鉸點;F 動臂的上鉸點; ψ2:斗桿的擺角;l 9:斗桿油缸的最大作用力臂.圖 5.4 斗桿機構基本參數(shù)計算簡圖取整個斗桿為研究對象,可得斗桿油缸最大作用力臂的表達式:e2max = l9 = F2d(l 2 + l3 )/ P 2= 2×104 ×(1700+900)×10 -3/20×106×π×45 2×10-6= 409 mm (5-21)如圖 5.4 所示圖中,D:斗桿油缸的下鉸點;E:斗桿油缸的上鉸點;F 動臂的上鉸點;ψ 2:斗桿的擺角;l 9:斗桿油缸的最大作用力臂。斗桿油缸的初始位置力臂 e20與最大力臂 e2max 有以下關系:e20 /e2max = l9 cos(ψ2max /2)/l9 = cos (ψ2max /2) (5-22)由 5-22 可知, ψ2max 越大,則 e20 越小,即平均挖掘阻力越小.要得到較大的平均挖掘力,就要盡量減少 ψ2max,初取 ψ2max = 110°由上圖 5.43 的幾何關系有:L2min = 2×l9cSin (ψ2max/2)/(λ2-1)= 2×409×Sin 55°/(1.6 -1)= 1116.8 mm (5-23)DFE2Zl8l9ψ 2maxE20第 29 頁 共 55 頁L2max = L2min ×λ2= 1116.8×1.6= 1787 mm (5-24)l82 = L22min + l29 -2×L2min×l9×cos[(π +ψ2max)/2]= 1116.82+ 4092 + 2×1116.8×409×cos145° (5-25) l8 = 1470.6 mm∠ EFQ 取決于結構因素和工作范圍,一般在 130°~170°之間,初定∠ EFQ=160°,動臂上 ∠ DFZ 也是結構尺寸,按結構因素分析,可初選 ∠ DFZ=10°。(五)鏟斗機構基本參數(shù)的選擇1、轉角范圍由最大挖掘高度 H2max 和最大卸載高度 H3max 的分析,可以得到初始轉角 :0d?H2max-H3max = l3(Sin + 1.6) (5-26)0d?將各參數(shù)代入式(5-26)得:5800-3600 = 900 ×(Sin + 1.6) , = 53°0d0d?最大轉角 φ3max =∠ V0QVZ,值太大會使斗齒平均挖掘力降低,常在 150°~180°之間選取,初選 φ3max = 163°。2、鏟斗機構其它基本參數(shù)的計算l12:搖臂的長度;l 29:連桿的長度;l 3:鏟斗的長度;l 2:斗桿的長度;F:斗桿的下鉸點;G:鏟斗油缸的下鉸點;N:搖臂與斗桿的鉸接點;K:鏟斗的上鉸點;Q:鏟斗的下鉸點.圖 5.5 鏟斗機構計算簡圖在圖 5.5 中有:GFKVL3l3l2 l21l29l24l12QNM第 30 頁 共 55 頁l24 = KQ = k2 l3 = 0.3×900 = 270mmL3max 與 L3min 的確定:由第四章的計算可知轉斗平均挖掘阻力 NFp 511032.57??挖掘阻力 F1P 所做的 W1p(5-27) mlPp .8.69.032. 55max31 ???????由圖 5-5,鏟斗油缸推力所做的功 W3:W3 = F3 (λ 3-1)L 3min= 20×106×π×50 2×10-6×0.6×L3min (5-28)由功的守恒知鏟斗油缸推力所做的功 W3 應該等于鏟斗挖掘阻力所做的功 W1p:即 W3 = W1p (5-29)將 5-27、5-28 式代入 5-29 中計算可得:L3min = 849mm 圓整為 850mm則 L3max =λ3 L3min =1360mm剩余未選定的基本尺寸大部分為連桿機構尺寸,其應滿足以下幾個條件:1)挖掘力的要求:鏟斗油缸的挖掘力應與轉斗最大挖掘阻力相適應,當斗齒尖處于 V1 時,斗桿油缸的理論挖掘力應不低于最大挖掘阻力的 80% 。 即 PD0≥80% PD0max;當處于最大理論挖掘力位置時∠V 1QV 應為 30°。2)幾何相容。必須保證鏟斗六連桿機構在 l3 全行程中任一瞬時都不會被破壞,即保證△GFN 、 △GHN 以及四邊形 HNQK 在任何瞬時皆成立。3)l 3 全行程中機構都不應出現(xiàn)死點,且傳動角應當在允許的范圍內(nèi)。根據(jù)以上三個方面的要求,通過經(jīng)驗公式和同斗容的其它機型的測繪對照,初步選定剩余的基本尺寸如下:HK = 352mm; HN = 407mm;NQ = 300mm; FN = l 2-NQ = 1400mm; GF =432mm;預選∠GFN = 60°則 GN 2 = FN 2 + GF 2 – 2×COS∠ GFN×FN×GFGN = 1242mm第 31 頁 共 55 頁至此,工作裝置的基本尺寸均已初步確定。六、 工作裝置結構設計整個工作裝置由動臂、斗桿、鏟斗及油缸和連桿機構組成,要確定這些構件的結構尺寸,必須要對其結構進行受力分析。要進行受力分析,首先要確定構件最不利的工況,并找到在該工況下的危險截面,以作為受力分析的依據(jù)。但構件在不利的工況下危險截面往往不止一個,這就需要分別計算出各危險截面尺寸再綜合考慮,取其中的最大值作為最終的尺寸。(一)斗桿的結構設計1、斗桿的受力分析斗桿主要受到彎矩的作用,因此要找出斗桿中的最大彎矩進行設計計算。根據(jù)受力分析和以往的實驗表明,在鏟斗進行挖掘時,產(chǎn)生最大彎矩的工況滿足以下條件:1)動臂處于最低位置。即動臂油缸全縮。2)斗桿油缸的力臂最大。3)鏟斗齒尖在動臂與斗桿鉸點和斗桿與鏟斗鉸點的連線上。4)側齒挖掘時受到側向力 Wk 的作用。在這個工況下斗桿會存在最大彎矩,受到的應力也會最大。該工況的具體簡圖如圖 6.1 所示。取工作裝置為研究對象,如圖 6.2 所示。在該工況下存在的力有:工作裝置各部件所受到的重力 Gi;作用在鏟斗上的挖掘阻力,包括切向阻力 W1、法向阻力 W2、側向阻力 W3。NH-搖臂;HK-連桿;C-動臂下鉸點;A -動臂油缸下鉸點;B -動臂與動臂油缸鉸點; F-動臂上鉸點;D-斗桿油缸上鉸點;E-斗桿下鉸點;G-鏟斗油缸下鉸點;Q-鏟斗下鉸點;K-鏟斗上鉸點;V-鏟斗斗齒尖V第 32 頁 共 55 頁圖 6.1 斗桿危險工況時的工作裝置簡圖HK-連桿 HN-搖臂N-搖臂與斗桿的鉸接點 Q-斗桿與鏟斗的鉸接點圖 6.2 鏟斗受力分析簡圖當動臂油缸全縮時,通過前面的章節(jié)可以得出 α21 = 45°,由圖 6.1 可知 CF 的向量可以表示為:FC = 3400[COS(180-45)+Sin(180-45)]= 3400(COS135+Sin135)由前面的章節(jié)計算結果知:∠ZFC =27°,并初選 DF = 1470mm。在△DEF 中∠DEF = 90°COS∠EFD = EF/DF = 409/1470解得∠EFD = 73.8°在□CDEF 中∠EFC = ∠ZFC+∠DFZ +∠ EFD= 27°+10°+73.8° = 110.8°∠EFQ 在前一章節(jié)已經(jīng)初定為 160°由以上的角度關系知:FV = 2600[Cos(360°-110.8°-160°)+Sin(360°-110.8°-160°)] = 2600(Cos 89.2°+Sin89.2°) (6-1)FPdNHQKW1W2G3第 33 頁 共 55 頁OV = OC + CF + FV (6-2)= 1777(Cos 87°+Sin87°)+3400(Cos -45°+Sin-45°)+2600(Cos 89.2°+Sin89.2°) 則 XV = 1777Cos87° + 3400Cos(-45°) + 2600 Cos(-89.2°)= 1542 mm (6-3)由(3-16)式可 i= 0.336則可得此時鏟斗的理論挖掘力: F0D =F D i =1.65×105×0.61 =1.0×105 N切向阻力 W1:初選該工況下鏟斗重心到鉸點 Q 的水平距離 r2′= l3 Cos(-89.2°)/2=148mm取鏟斗為研究對象,如圖 6.2 所示,并對 Q 點取矩,則有∑MQ = 0(F 0D - W1)l 3 –G3 r2′ = 0(10 5- W1)×0.9-860×0.148 = 0W1 = 105 N法向阻力 W2 的求解:工作裝置所受重力對 C 點取矩有∑MC( Gi) = G1×X1 +( G2 +G5) ×X2 + G3×X3+G4×0.7XF+ G6×X2=2.23×103×1.513 +(179+51)×10×3.068+860×2.837+550×0.7×3.157 +170×3.068= 0.76×105 N (6-4)W1 到 C 點的距離 r0r0 = l2 + l3–CFCos∠CFV (6-5)= 1700+900-3400×Cos(360°-110.8°-160°)= 1481mm W2 到 C 點的距離 r1第 34 頁 共 55 頁r1 = CFSin∠CFV = 3400×Sin89.2° = 3210mm (6-6)法向阻力 W2 決定于動臂油缸的閉鎖力 F1′ ,取整個工作裝置為研究對象,則有∑MC = 0F1′ e1+ ∑MC( Gi ) - W1 r0 - W2 r1 = 0 (6-7)將式(6-4) 、 (6-5) 、 (6-6)代入式(6-7)中解之得W2 = 0.32×105 N 斗桿油缸作用力 P2g′的求解:FQ 向量在 X 軸上的模值:XFN = FQ COS(-89.2°) =1700×0.3291 = 560mm如圖 6.1 所示,取斗桿(鏟斗和連桿機構)為研究對象,則有:∑M C = 0P2g′×EF- W1 ( l2+l3) - G3( XFN +r2′) - G2XFN /2 = 0P2g′×0.41 -105×2.6-860×(0.56+0.148)-1790×0.56/2=0P2g′=1.31×105 N (6-8)而此時的斗桿閉鎖力 P2′=21×π×(45) 2=1.34×105 N,略大于 P2g′,說明閉鎖力足夠。橫向挖掘阻力 WK 的求解:橫向挖掘力 WK 由回轉機構的制動器所承受,即 WK 的最大值決定于回轉平臺的制動力矩。故要先計算出制動力矩。地面附著力矩 Mφ: Mφ = 6000×φ×G4/3 (其中 φ = 0.5)= 6000×0.55×64/3 = 1.26×105 N (6-9)在所設計的液壓挖掘機中采用的是液壓制動,由經(jīng)驗公式可求得回轉機構的最大制動力矩 MB:MB= 0.6×Mφ=0.756×105 NWK = MB / XV = 0.756×105/2.875 = 0.26×105 N (6-10)Q 點作用力與作用力矩 RQx 、 RQy、 MQx、 MQy 的求解:取連桿機構
收藏