喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有請放心下載,.dwg格式文件為原稿CAD圖紙,可自行編輯修改【QQ:1304139763可咨詢交流】====================
喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有請放心下載,.dwg格式文件為原稿CAD圖紙,可自行編輯修改【QQ:1304139763可咨詢交流】====================
題目:盒蓋連體零件注塑模具設(shè)計
系 別: 機電信息系
專 業(yè): 機械設(shè)計制造及自動化
班 級:
學(xué) 生:
學(xué) 號:
指導(dǎo)老師:
2013年5月
盒蓋連體零件注塑模具設(shè)計
摘 要
從分析塑料零件注射模具設(shè)計的全過程,并從其加工工藝性出發(fā),選取了較為合理的設(shè)計方案,經(jīng)工藝計算并初步確定模具結(jié)構(gòu)方案,最后進行模具各個部分零件的設(shè)計。由于本產(chǎn)品結(jié)構(gòu)比較復(fù)雜,模具結(jié)構(gòu)及制造工藝相對較為復(fù)雜,生產(chǎn)批量為大批量,精度為IT14,則成本會比較高。且模具采用的是一模兩腔的設(shè)計,所以增加了結(jié)構(gòu)的復(fù)雜性,通過對抽芯機構(gòu)的計算和設(shè)計,同時把握模具相關(guān)運動部件的設(shè)計,其中包括定位零件和成型零件尺寸的計算和校核。該模具采用了一次分型,使制件的主流道凝料和分流道凝料從模具的成型板中脫出,最后利用推桿推出作用,使制件脫離型芯,達到制件的生產(chǎn)。同時,本模具的亮點和難點在于有兩個帶角度的內(nèi)側(cè)抽芯和其型芯型腔的加工復(fù)雜性上,但通過比較合理的斜頂裝置可以很完善的達到內(nèi)抽的效果,并且該機構(gòu)制造相對簡單,可降低模具成本。在一些零件的選用上也是盡量選取標準件以降低模具造價,型芯和型腔都采用鑲拼式的結(jié)構(gòu),同時運用直通式冷卻水道,降低加工難度和成本。最后分析模具裝配和型腔的加工工藝性。
關(guān)鍵詞:注塑模;分型面;抽芯
6
The Plastic Mold Design of Box Cover
Abstract
From the analysis of the whole process of the design of plastic pates injection mold, and departure from its processing technology, select a more reasonable design, the process calculation and initially identified the mold structure of the program, the final design of some parts of the mold. Due to the product structure is more complex, the mold structure and manufacturing process is relatively complex, production volume in bulk, the accuracy of IT10, the cost will be higher. The die is used to design a mold two cavity, so increases the complexity of the structure, calculation and design of the core-pulling mechanism, and grasp the mold moving parts design, including the calculation of the size of positioning parts and molded parts and checked. Spure slug and shunt used in the mold of the type, so that the parts of the slug of the mold forming board last putter introduced the roleof the parts off the core, to achieve the production of parts. At the same time, the highlight and difficulty of this mold is processing complexity two angled inside core-pulling and its core cavity, but more reasonable lifter device can be improved to achieve the pumping effect, and the organization to produce relatively simple, can reduce the cost of the mold. Also try to select in some parts of the slection of standard parts to reduce tooling cost, core and cavity mosaic structure, while the use of straight-through cooling water, reducing the processing difficulty and cost. Finally, analysis and processing of the mold assembly and cavity.
Keywords: Plastic injection molding;once;medial to the core-pulling
主要符號表
k
安全系數(shù)
E
材料彈性模量
Smax
塑料的最大收縮率
q
熔融塑料在模腔內(nèi)的壓力
Smin
塑料的最小收縮率
V塑
塑件體積
P0
注射壓力
V注
注射機理論注射量
P公
公稱注射壓力
F鎖
鎖模力
Δs
塑件公差
δs
塑件收縮引起的塑件尺寸誤差
T
注射機的額定鎖模力
LS
塑件尺寸
L凹
型腔尺寸
L凸
型芯尺寸
H塑
塑件內(nèi)形深度基本尺寸
S
注射機最大行程
d
塑件外徑基本尺寸
H
模具閉合尺寸
D
塑件內(nèi)形基本尺寸
Hmin
模具最小尺寸
h
凸模/型芯高度尺寸
Hmax
模具最大尺寸
δ
模具制造公差
α
傾斜角
A
塑件包緊型芯的側(cè)面積
p
單位面積塑件對型芯的正力
F
塑件的投影面積
n
個數(shù)
P
型腔壓力
f
摩擦系數(shù)
φ
長度系數(shù)
Q
總脫模力
目 錄
摘 要 I
Abstract II
1 前言 1
1.1我國塑料模具的發(fā)展現(xiàn)狀 1
1.2塑料模具的發(fā)展趨勢 2
1.3中國塑料模具行業(yè)存在的問題 3
1.4發(fā)展展望 4
2 塑料ABS分析 6
2.1基本特性 6
2.2成型特性 6
2.3綜合性能 6
2.4ABS的注射工藝參數(shù) 7
3 塑料模的總體設(shè)計 8
3.1塑件的形狀尺寸 8
3.2型腔數(shù)目的決定及排布 8
3.3注射機的選擇 9
3.4分型面確定 9
3.5模架的選擇 10
3.5.1型腔壁厚的計算 10
3.5.2凹模型腔底部高度 11
3.5.3模架的選擇 11
4 成型尺寸及澆注系統(tǒng)設(shè)計 12
4.1型腔的內(nèi)徑計算 12
4.2型腔的深度尺寸計算 12
4.3型芯的外徑計算 12
4.4型芯的高度計算 13
4.5澆注系統(tǒng)的初步計算 13
5 導(dǎo)柱導(dǎo)向機構(gòu)的設(shè)計 15
5.1導(dǎo)柱導(dǎo)向機構(gòu)的作用 15
5.2導(dǎo)柱導(dǎo)套的選擇 15
6 脫出機構(gòu)設(shè)計 16
6.1推出機構(gòu)的組成 16
6.2設(shè)計原則 16
6.3脫模力的計算 16
6.4推板脫出機構(gòu)計算 17
6.5脫模機構(gòu)設(shè)計 18
6.5.1簡單脫模 18
6.5.2側(cè)向抽芯機構(gòu)設(shè)計 19
7 排氣溫控系統(tǒng)設(shè)計 22
7.1溫控系統(tǒng)設(shè)計 22
7.2注射模冷卻系統(tǒng)設(shè)計原則 22
7.3冷卻系統(tǒng)的結(jié)構(gòu)設(shè)計 23
7.4 冷卻水孔直徑計算 24
7.5求冷卻水在水孔里的流速 24
8 注射機與模具型腔型芯強度校核 25
8.1注射機的校核 25
8.2型腔型芯的強度校核 25
9 模具的裝配、試模與維修 26
9.1模具的裝配 26
9.2模具裝配的主要內(nèi)容 26
9.2.1型芯裝配 26
9.2.2型腔的裝配加工 26
9.2.3導(dǎo)柱、導(dǎo)套的裝配 26
9.2.4頂桿裝配加工 26
9.2.5澆口套的裝配加工 26
9.3裝配順序 27
9.4試模 27
9.5模具的維修 27
10 模具裝配圖 28
11 模具可行性分析 29
11.1本模具的特點 29
11.2市場效益及經(jīng)濟效益分析 29
參考文獻 30
總結(jié) 31
致 謝 32
畢業(yè)設(shè)計(論文)知識產(chǎn)權(quán)聲明 33
畢業(yè)設(shè)計(論文)獨創(chuàng)性聲明 34
1 前言
1.1我國塑料模具的發(fā)展現(xiàn)狀
整體來看,中國塑料模具無論是在數(shù)量上,還是在質(zhì)量、技術(shù)和能力等方面都有了很大進步,但與國民經(jīng)濟發(fā)展的需求、世界先進水平相比,差距仍很大。一些大型、精密、復(fù)雜、長壽命的中高檔塑料模具每年仍需大量進口。在總量供不應(yīng)求的同時,一些低檔塑料模具卻供過于求,市場競爭激烈,還有一些技術(shù)含量不太高的中檔塑料模具也有供過于求的趨勢[1]。
加入WTO,給塑料模具產(chǎn)業(yè)帶來了巨大的挑戰(zhàn),同時帶來更多的機會。由于中國塑料模具以中低檔產(chǎn)品為主,產(chǎn)品價格優(yōu)勢明顯,有些甚至只有國外產(chǎn)品價格的1/5~1/3,加入WTO后,國外同類產(chǎn)品對國內(nèi)沖擊不大,而中國中低檔模具的出口量則加大;在高精模具方面,加入WTO前本來就主要依靠進口,加入WTO后,不僅為高精尖產(chǎn)品的進口帶來了更多的便利,同時還促使更多外資來中國建廠,帶來國外先進的模具技術(shù)和管理經(jīng)驗,對培養(yǎng)中國的專業(yè)模具人才起到了推動作用。
畢業(yè)設(shè)計(論文)中期報告
題目:燈罩塑料模具設(shè)計
系 別 機電信息系
專 業(yè) 機械設(shè)計制造及自動化
班 級
姓 名
學(xué) 號
導(dǎo) 師
2013年 3 月 21 日
1.概述塑件特點
本次設(shè)計的塑料件為一燈罩,產(chǎn)品特點為:燈罩外表面必須光滑,且無明顯澆口痕跡;燈罩內(nèi)壁有呈圓周均布的三個盲孔。在結(jié)構(gòu)設(shè)計時需考慮型芯在三個盲孔處的脫模,及模具總體結(jié)構(gòu)的合理性。塑件二維三維圖如圖1和圖2。
圖 1塑件三維圖
圖 2塑件二維圖
2.設(shè)計(論文)進展狀況
2.1已經(jīng)完成外文文獻翻譯。
2.2在開題的基礎(chǔ)上進行了計算和結(jié)構(gòu)方案的優(yōu)化設(shè)計,并的完成了模具裝配草圖的繪制。
2.3通過繪制三維圖形獲得塑料件的體積,通過材料的選擇獲得材料的密度,并計算出塑件的質(zhì)量。通過計算和查閱相關(guān)模具設(shè)計手冊完成了注塑機的選擇。選型為:G54-S200/400型。相關(guān)參數(shù)如下:
結(jié)構(gòu)類型: 臥式
理論注射量: 200cm3 最大注射面積:645cm2
最大模具厚度:406mm 鎖模力: 2540KN
最小模具厚度:165mm 定位空直徑: 125mm
模板行程: 260mm 拉桿空間: 290×368mm
噴嘴球半徑: 18mm 噴嘴孔徑: 4mm
注射方式: 螺桿式 螺桿轉(zhuǎn)速: 16,28,48r/min
螺桿直徑: 55mm 注射壓力: 109MPa
2.4確定主流道、分流道的形式和尺寸。其主流道的尺寸如圖3所示。分流道截面形狀及尺寸如圖4所示,主流道入口直徑d,應(yīng)大于注塑機噴嘴直徑1mm左右。這樣便于兩者能同軸對準,也使得主流道凝料能順利脫出。主流道入口的凹坑球面半徑R,應(yīng)該大于注塑機噴嘴頭半徑約2~3mm。反之,兩者不能很好粘合,會讓塑料熔體反噴,出現(xiàn)溢邊導(dǎo)致脫模困難。錐孔粗糙度。主流道的錐角a=2°~4°。過大的錐角會產(chǎn)生湍流或渦流,卷入空氣。過小錐角使凝料脫模困難;還會使充模時流動阻力大,比表面增大,熱量損耗大。
2.5確定模腔數(shù)量及其排列方式、澆口形式。
燈罩外形尺寸不大,為了降低注射成本,根據(jù)所選注塑機的注射量,采用一模四型腔的模具,并選用平衡式十字排列。為了滿足較高的外觀要求,確定采用點澆口。型腔排列方式圖5,點澆口分流道拉料井結(jié)構(gòu)形式圖6。
圖 3型腔排列
圖 4點澆口分流道拉料井結(jié)構(gòu)形式
圖 4分流道截面圖
圖 3澆口套
2.6計算并校核型腔部分的強度和剛度,根據(jù)燈罩的高度確定型腔板的側(cè)壁厚度,型芯固定板的厚度。并確動模板、頂出桿,支塊厚度及其模具安裝方法。
2.7完成了對模具工作部分尺寸及公差進行設(shè)計計算。
2.8完成了部分模具零件結(jié)構(gòu)設(shè)計。如:澆口套、定位圈等。
2.9完成裝配草圖,如圖7。
圖 5裝配圖
3.存在問題
3.1模具工作原理還是有一點不太了解。
3.2繪制裝配圖是發(fā)現(xiàn)設(shè)計中一些問題,后期要進行修改。
3.3三維軟件繪制模具有點欠缺。
4.后期工作安排
第9-13周:運用Pro/E或solidworks完成模具整體結(jié)構(gòu)3D圖,完成模具零件的選材、工藝規(guī)程的編制、裝配圖及零件圖的 繪制等工作。
第14-15周:對所有圖紙進行校核,編寫設(shè)計說明書,所有資料提請指導(dǎo)教師檢查。
第16周:準備畢業(yè)答辯。
指導(dǎo)教師簽字:
年 月 日
注:1)正文:宋體小四號字,行距20磅,單面打??;其他格式要求與畢業(yè)論文相同。
2)中期報告由各系集中歸檔保存,不裝訂入冊。
畢業(yè)設(shè)計(論文)開題報告
題目:燈罩塑料模具設(shè)計
系 別 機電信息系
專 業(yè) 機械設(shè)計制造及自動化
班 級
姓 名
學(xué) 號
導(dǎo) 師
2012年12月18日
1、畢業(yè)設(shè)計(論文)題目背景、研究意義及國內(nèi)外相關(guān)研究情況
1.1、課題名稱:燈罩塑料模具設(shè)計
1.2、課題研究背景和意義
1.2.1、德國人說模具工業(yè)是金屬加工業(yè)中之王,美國人說模具工業(yè)是美國工業(yè)的基石,羅馬尼亞人說模具就是黃金,而日本人說模具是促進社會繁榮富裕的動力,中國人說模具工是工業(yè)生產(chǎn)之母[1]。這充分說明模具工業(yè)是制造業(yè)中最重要的基礎(chǔ)性行業(yè),又被經(jīng)濟學(xué)家稱為“點鐵成金”的磁力工業(yè)[5]。模具是制造業(yè)的一種基本工藝裝備,它的作用是控制和限制材料(固態(tài)或液態(tài))的流動,使之形成所需要的形體[7]。用模具制造零件其效率高,產(chǎn)品質(zhì)量好,材料消耗低,生產(chǎn)成本低而廣泛應(yīng)用于制造業(yè)中。模具工業(yè)既是高新技術(shù)產(chǎn)業(yè)的一個組成部分,又是高新技術(shù)產(chǎn)業(yè)化的重要領(lǐng)域。模具在機械,電子,輕工,汽車,紡織,航空,航天等工業(yè)領(lǐng)域里,日益成為使用最廣泛的主要工藝裝備,它承擔(dān)了這些工業(yè)領(lǐng)域中 60%~90%的產(chǎn)品的零件、組件和部件的生產(chǎn)加工(來自泊頭華林模具制造有限公司產(chǎn)品中心模具的重要性)。
1.2.2、模具種類有:沖模,鍛模,塑料模,壓鑄模,粉末冶金模,玻璃模,橡膠模,陶瓷模等。除部分沖模以外的的其他各種模具都屬于型腔模,因為他們一般都是依靠三維的模具型腔使材料成型[13]。本次畢業(yè)設(shè)計主要是塑料模,故其他模具不談。而塑料模具是大批生產(chǎn)塑料制品的現(xiàn)代化專用成型工藝裝備的總稱。而且塑料是繼陶瓷和金屬之后的第三大材料,廣泛應(yīng)用在現(xiàn)代工業(yè)和日常生活中[8]。塑料模主要包括注射模,壓塑模,擠塑模,此外還有擠出成型模,泡沫塑料的發(fā)泡成型模,低發(fā)泡注射成型模,吹塑模等[1]。
1.2.3、我國模具技術(shù)的現(xiàn)狀及發(fā)展趨勢20世紀80年代開始,發(fā)達工業(yè)國家的模具工業(yè)已從機床工業(yè)中分離出來,并發(fā)展成為獨立的工業(yè)部門,其產(chǎn)值已超過機床工業(yè)的產(chǎn)值。改革開放以來,我國的模具工業(yè)發(fā)展也十分迅速。近10年來,每年都以 15%的增長速度快速發(fā)展。許多模具企業(yè)十分重視技術(shù)發(fā)展。加大了用于技術(shù)進步的投入力度,將技術(shù)進步作為企業(yè)發(fā)展的重要動力[2]。
2、本課題研究的主要內(nèi)容、設(shè)計的要求、擬定方案和研究方法、手段
2.1、主要內(nèi)容:塑件測繪圖、模具裝配圖、模具零件圖、說明書
2.2、本設(shè)計的基本要求:
2.2.1不少于3000字的文獻綜述;
2.2.2充分了解塑件結(jié)構(gòu),繪制3D圖,并完成基本參數(shù)的計算及注射機的選用;
2.2.3確定模具類型及結(jié)構(gòu),完成模具的結(jié)構(gòu)草圖的繪制;
2.2.4運用Pro/E或solidworks等工具軟件輔助設(shè)計完成模具整體結(jié)構(gòu) ;
2.2.5對模具工作部分尺寸及公差進行設(shè)計計算;
2.2.6對模具典型零件需進行選材及熱處理工藝路線分析;
2.2.7編制模具中典型零件的制造工藝規(guī)程卡片;
2.2.8對設(shè)計方案和設(shè)計結(jié)果進行經(jīng)濟分析和環(huán)保分析;
2.2.9繪制模具零件圖及裝配圖;
2.2.10對模具結(jié)構(gòu)進行三維剖析,輸出模具開合結(jié)構(gòu)圖;
2.2.11編寫設(shè)計說明書(所有3D圖插入說明書中恰當(dāng)位置)。
2.3、擬定方案
2.3.1燈罩零件圖圖1。
圖1燈罩零件圖
圖3內(nèi)部結(jié)構(gòu)
圖2外形
2.3.2燈罩模型外形圖2,內(nèi)部結(jié)構(gòu)圖3。
2.3.3設(shè)計要求
課題名稱:燈罩塑料模具設(shè)計;材料選擇:PS;生產(chǎn)批量:大批量;精度要求:中;塑料等級:4級。
2.3.4方案擬定
方案1:選擇燈罩的下端面為分型面,采用整體式的直澆道,點澆口,澆口設(shè)在零件的上端面,選用臥式注射機,選用機動推出機構(gòu)脫模,機動內(nèi)側(cè)分型方式抽芯。
此方案生產(chǎn)效率高,操作簡便,動作可靠,方便脫出流道凝料。
方案2:選擇燈罩的如圖1剖切位置為分型面,采用整體式的直澆道,側(cè)澆口,澆口設(shè)在零件的側(cè)面,手動推出機構(gòu)脫模,用手動內(nèi)側(cè)分型方式抽芯。
此方案的優(yōu)點是制造方便,但操作麻煩,生產(chǎn)率低,勞動強度大。
經(jīng)過兩種方案的對比,方案1的可靠性高,經(jīng)濟性價比高,適合大批量生產(chǎn),故選此次模具設(shè)計選用方案1。
2.4、研究方法、手段:
本設(shè)計題目涉及目標均為工程實際零件,通過對塑件的實體測繪,完成基本參數(shù)的采集,然后運用《注塑模具設(shè)計》、《塑料模具設(shè)計》、《塑料成型工藝》等知識,指導(dǎo)學(xué)生利用AutoCAD和Pro/E或soildworks等軟件完成模具結(jié)構(gòu)的設(shè)計,并進行相關(guān)的校核計算,完成包括選材熱處理、制造工藝規(guī)程、可行性分析等工作。本設(shè)計旨在鍛煉學(xué)生在專業(yè)技術(shù)應(yīng)用能力上達到培養(yǎng)目標的基本要求,在塑料成型工藝與塑料模具設(shè)計技術(shù)方面得到全面提高,并受到模具設(shè)計工程師的基本訓(xùn)練。
3、本課題研究的重點及難點,前期已開展工作
3.1、重點及難點:
本課題研究的重點是模具總體結(jié)構(gòu)的設(shè)計優(yōu)化選擇,應(yīng)用相關(guān)軟件進行零件圖和裝配圖繪制,以及對模具結(jié)構(gòu)進行三維剖析輸出開合模具結(jié)構(gòu)圖.難點在于抽芯機構(gòu)的設(shè)計和總體方案的優(yōu)化選擇,以及模具三維結(jié)構(gòu)剖析和開合模具圖輸出。
3.2、前期工作:
3.2.1查閱了相關(guān)專業(yè)資料為設(shè)計做好準備;
3.2.2完成模具二維圖、3D圖的繪制;
3.2.3進行了模具結(jié)構(gòu)的簡單分析,擬訂了兩套簡單結(jié)構(gòu)方案。
4、完成本課題的工作方案及進度計劃(按周次填寫)
第1周:熟悉課題,工廠參觀注塑生產(chǎn)過程,繪制塑件3D圖;
第2周:確定模具類型及結(jié)構(gòu),繪制模具結(jié)構(gòu)草圖,準備開題答辯;
第3-8周:對模具工作部分尺寸及公差進行設(shè)計計算,并運用Pro/E或solidworks輔助設(shè)計完成部分模具零件,準備中期答辯, 翻譯外文資料;
第9-15周:運用Pro/E或solidworks完成模具整體結(jié)構(gòu)3D圖,完成模具零件的選材、工藝規(guī)程的編制、裝配圖及零件圖的 繪制等工作;
第16周:對所有圖紙進行校核,編寫設(shè)計說明書,所有資料提請指導(dǎo)教師檢查,準備畢業(yè)答辯。
參考文獻
[1]鄒繼強 塑料制品及其成型模具設(shè)計 北京:清華大學(xué)出版社 2005.2
[2]屈偉平 國內(nèi)模具行業(yè)發(fā)展現(xiàn)狀從在問題及對策 工程機械 廣西桂林 2006.4
[3]肖愛民 沈春根 塑料模具設(shè)計與制造完全自學(xué)手冊 北京:兵器工業(yè)出版社2006.10
[4]李秦蕊 塑料模具設(shè)計 西北工業(yè)大學(xué)出版社1988年修訂本
[5]師商 沈陽模具產(chǎn)業(yè)前景廣闊全力打造世界一流“工業(yè)之母“ 中國高新技術(shù)產(chǎn)業(yè)導(dǎo)報2009.11.23第 C05 版
[6]陳劍鶴 模具設(shè)計基礎(chǔ) 北京:機械工業(yè)出版社2003
[7]李秦蕊 塑料模具設(shè)計 西安:西北工業(yè)大學(xué)出版社2006
[8]張中元 塑料注射模具設(shè)計:入門到精通 北京:航空工業(yè)出版社1999.1
[9]方國治 高洋 童忠良塑料制品加工與應(yīng)用實例 北京:化學(xué)工業(yè)出版社 2009.12
[10]申開智 塑料成型模具 北京:中國輕工業(yè)出版社2002
[11]徐政坤 塑料成型工藝與模具設(shè)計 北京:國防工業(yè)出版社2008
[12]陳萬林 實用模具技術(shù) 北京:機械工業(yè)出版社2000
[13]陳志剛 塑料模具設(shè)計 北京:機械工業(yè)出版社2002
[14 ]付偉 陳碧龍 注塑模具設(shè)計:原則、要點及實例解析 北京:機械工業(yè)出版社2010.7
[15]Eldukhri. E, E.Design and control of a biped walking robot.phD thesis.Department of Electronic and Electrical Engineering University of Salford UK.
[16]Mechanical Drive(Reference Issue). Machine Design.52(14),1980
[17]Yong-Sheng Ma Shu Beng Tor Graeme A. Britton The development of a standard component library for plastic injection mould design using an object-oriented approach July 2002
5 指導(dǎo)教師意見(對課題的深度、廣度及工作量的意見)
指導(dǎo)教師: 年 月 日
6 所在系審查意見:
系主管領(lǐng)導(dǎo): 年 月 日
畢業(yè)設(shè)計(論文)外文資料翻譯
系 別: 機電信息系
專 業(yè): 機械設(shè)計制造及其自動化專業(yè)
班 級:
姓 名:
學(xué) 號:
外文出處: 塑料注塑模具并行設(shè)計
21(2005)368-378
附 件: 1. 原文; 2. 譯文
2013年3月
塑料注塑模具并行設(shè)計
Assist.Prof.Dr. A. YAYLA /Prof.Dr. Pa? a YAYLA
摘要
塑料制品制造業(yè)近年迅速成長。其中最受歡迎的制作過程是注塑塑料零件。注塑模具的設(shè)計對產(chǎn)品質(zhì)量和效率的產(chǎn)品加工非常重要。模具公司想保持競爭優(yōu)勢,就必須縮短模具設(shè)計和制造的周期。
模具是工業(yè)的一個重要支持行業(yè),在產(chǎn)品開發(fā)過程中作為一個重要產(chǎn)品設(shè)計師和制造商之間的聯(lián)系。產(chǎn)品開發(fā)經(jīng)歷了從傳統(tǒng)的串行開發(fā)設(shè)計制造到有組織的并行設(shè)計和制造過程中,被認為是在非常早期的階段的設(shè)計。并行工程的概念(CE)不再是新的,但它仍然是適用于當(dāng)今的相關(guān)環(huán)境。團隊合作精神、管理參與、總體設(shè)計過程和整合IT工具仍然是并行工程的本質(zhì)。CE過程的應(yīng)用設(shè)計的注射過程包括同時考慮塑件設(shè)計、模具設(shè)計和注塑成型機的選擇、生產(chǎn)調(diào)度和成本中盡快設(shè)計階段。
介紹了注射模具的基本結(jié)構(gòu)設(shè)計。在該系統(tǒng)的基礎(chǔ)上,模具設(shè)計公司分析注塑模具設(shè)計過程。該注射模設(shè)計系統(tǒng)包括模具設(shè)計過程及模具知識管理。最后的原則概述了塑料注射模并行工程過程并對其原理應(yīng)用到設(shè)計。
關(guān)鍵詞:塑料注射模設(shè)計、并行工程、計算機輔助工程、成型條件、塑料注塑、流動模擬
1、簡介
注塑模具總是昂貴的,不幸的是沒有模具就不可能生產(chǎn)模具制品。每一個模具制造商都有他/她自己的方法來設(shè)計模具,有許多不同的設(shè)計與建造模具。當(dāng)然最關(guān)鍵的參數(shù)之一,要考慮到模具設(shè)計階段是大量的計算、注射的方法,澆注的的方法、研究注射成型機容量和特點。模具的成本、模具的質(zhì)量和制件質(zhì)量是分不開的
在針對今天的計算機輔助充型模擬軟件包能準確地預(yù)測任何部分充填模式環(huán)境中。這允許快速模擬實習(xí),幫助找到模具的最佳位置。工程師可以在電腦上執(zhí)行成型試驗前完成零件設(shè)計。工程師可以預(yù)測過程系統(tǒng)設(shè)計和加工窗口,并能獲得信息累積所帶來的影響,如部分過程變量影響性能、成本、外觀等。
2、注射成型法
注塑成型是最有效的方法之一,將塑料最好的一面呈現(xiàn)。這是普遍用于制造復(fù)雜的制件,優(yōu)點是簡單、經(jīng)濟、準確與少浪費。塑料零件的批量生產(chǎn)主要采用模具。產(chǎn)品設(shè)計制造過程包括模具的結(jié)構(gòu)必須經(jīng)過外觀評價和結(jié)構(gòu)優(yōu)化。當(dāng)設(shè)計師創(chuàng)造注射模具組件時,他們面臨一個巨大的多種選擇,并行工程需要一個工程師考慮制產(chǎn)品在發(fā)展階段時的過程設(shè)計。一個好的產(chǎn)品設(shè)計為了滿足市場其制造過程是不可能太貴的。CAD/CAM整合了過程仿真、快速成形制造能減少風(fēng)險,進一步提高產(chǎn)品開發(fā)的有效性。
3、注塑模具設(shè)計重要的計算機輔助
注射模具設(shè)計任務(wù)是相當(dāng)復(fù)雜的。計算機輔助工程(CAE)分析工具提供了巨大的優(yōu)勢讓設(shè)計工程師考慮幾乎所有模具、注塑參數(shù)沒有真正利用的地方。在可能性的設(shè)計、理念設(shè)計師,給工程師們機會去消除潛在的問題,開始真正的生產(chǎn)。此外,在虛擬環(huán)境中,設(shè)計師可以快速而方便地評估特定的成型參數(shù)敏感性的質(zhì)量和生產(chǎn)最終產(chǎn)品。所有這些分析工具使所有模具設(shè)計將在一天甚至數(shù)小時完成,而不需要幾周或幾個月來做真正的實驗反復(fù)試驗。CAE用于早期設(shè)計的部分,模具和注塑模具參數(shù)、節(jié)約成本是實質(zhì)功能不僅是最好的部分,而且還能節(jié)省和縮短開發(fā)產(chǎn)品推向市場的時間。
在所有方面的成型過程中需要滿足塑料部分設(shè)置的公差,包括零件的尺寸和形狀,樹脂的化學(xué)結(jié)構(gòu)、填料使用,模具型腔布置、澆注、模具冷卻并釋放機制使用。面對這復(fù)雜性,設(shè)計師經(jīng)常使用電腦設(shè)計工具,如有限元分析(FEA)和充型分析(MFA),減少開發(fā)時間和成本。有限元分析確定部分結(jié)構(gòu)的應(yīng)變、應(yīng)力和撓度,在那里這些參數(shù)可以很好地被定義。沖型分析位置和大小進行優(yōu)化樹脂流動。它還定義了焊縫的位置、面積過大的壓力,以及如何影響墻壁和肋厚度流動。其它有限元分析設(shè)計工具包括模具冷卻溫度分布,分析周期時間和收縮為空間控制和預(yù)測凍結(jié)應(yīng)力、翹曲變形等情況。
采用CAE分析部分壓縮模如圖1所示。分析周期始于創(chuàng)造一個CAD模型和有限元網(wǎng)格的模具腔。在注入條件規(guī)定,充型、纖維取向、固化和熱歷史、收縮和翹曲變形等情況進行仿真。該材料的性能計算模型模擬可用于結(jié)構(gòu)的行為的一部分。如果需要部分設(shè)計澆口位置及加工條件可以在電腦上修改,直到一個可接受的零件的表達式。摘要分析了一個優(yōu)化完成部分可采用降低weldline(亦即也knitline),優(yōu)化力量、控制溫度和固化、最小收縮和翹曲變形等情況。
模具加工的前身是手工制作,如檢查每一剪機床維修工。自動化的增長和普遍使用的電腦數(shù)值控制或CNC加工中心使這過程變得更加簡便。設(shè)計的時間也被大大降低通過使用特殊的軟件能夠產(chǎn)生刀具路徑直接從CAD數(shù)據(jù)文件提取。主軸速度高達100000每分鐘轉(zhuǎn)速提一步提出了高速加工。切削材料已經(jīng)證明了驚人的表現(xiàn)而不使用任何的剪切/冷卻液,什么都沒有。作為一個結(jié)果,加工過程復(fù)雜的型心和型腔已經(jīng)加快了。
這是一個好消息,產(chǎn)生一個模具所花費的時間不斷的被減少。壞消息是,另一方面,甚至所有這些進步、設(shè)計和制造的模具仍然要花很長時間,是非常昂貴的。
圖1的注射模CAE分析部分
許多公司的經(jīng)理人現(xiàn)在體會部署新產(chǎn)品推向市場迅速發(fā)展是多么的重要。企業(yè)的繁榮關(guān)鍵在于新產(chǎn)品。他們推動企業(yè)的收入、市場份額、底線和股票價格。一個公司能夠發(fā)明優(yōu)質(zhì)的產(chǎn)品和合理的價格領(lǐng)先其競爭不僅實現(xiàn)了100%的打敗市場競爭對手的產(chǎn)品,但之前到達也傾向于保持主導(dǎo)地位甚至幾年之后終于宣布競爭產(chǎn)品(史密斯,1991)。對大多數(shù)產(chǎn)品來說,這兩個優(yōu)勢是戲劇性的?,F(xiàn)在產(chǎn)品快速發(fā)展的一個關(guān)鍵方面的競爭成功。圖2顯示,只有3 - 7%的產(chǎn)品結(jié)構(gòu)與一般的工業(yè)或電子公司是小于5歲。公司在第一四分位,這個數(shù)字增加到15 - 25%。一流的公司,它是60 - 80%(湯普森,1996)。最好的公司在不斷開發(fā)新產(chǎn)品。在惠普,超過80%的利潤結(jié)果從產(chǎn)品小于2歲!(Neel,1997)
圖2重要的新產(chǎn)品(雅克布,2000)
以先進的計算機技術(shù)和人工智能,努力已經(jīng)被指向降低成本和交貨時間在設(shè)計和制造注塑模具。注塑模具設(shè)計主要感興趣的地區(qū),因為它是一個復(fù)雜的過程涉及到很多表面設(shè)計等各零件的模具,每個都需要專家的知識和經(jīng)驗。李et.艾爾。(1997)提出了一種系統(tǒng)的方法關(guān)于注塑模具設(shè)計的知識庫和并行工程環(huán)境。
4并行工程在模具設(shè)計中
并行工程(CE)是一個系統(tǒng)性的方法來集成產(chǎn)品開發(fā)過程。它代表了團隊合作的價值觀、信任和分享,以這樣的方式,決策是通過協(xié)商一致,包括視角并聯(lián),從一開始就產(chǎn)品的整個生命周期(埃文斯,1998)。從本質(zhì)上講,CE提供合作、合作、集體和同步工程的工作環(huán)境。一個并行工程的方法是基于五個關(guān)鍵要素:
1、過程
2、多學(xué)科小組
3、綜合設(shè)計模型
4、設(shè)施
5、軟件基礎(chǔ)設(shè)施
圖3的方法對塑料注射模設(shè)計,工程b)串并行工程
在塑料模具制造業(yè)、CE是很重要的,由于高成本加工和長交貨期。通常,CE利用制造原型模具在設(shè)計之初相位分析和調(diào)整設(shè)計。生產(chǎn)制造模具是作為最后一步。制造過程,包括模具的結(jié)構(gòu)必須經(jīng)過外觀評價和結(jié)構(gòu)優(yōu)化的產(chǎn)品設(shè)計。CE要求工程師考慮生產(chǎn)過程中產(chǎn)品設(shè)計的發(fā)展階段。一個好的設(shè)計產(chǎn)品是滿足市場如果其制造過程是不可能的。CAD/CAM整合過程模擬、快速成形制造能減少風(fēng)險,從效率和進一步提高產(chǎn)品開發(fā)的有效性。
多年來,設(shè)計師已經(jīng)被限制在他們可以產(chǎn)出通常必須設(shè)計制造(DFM)——那就是,調(diào)整他們的設(shè)計意圖,使元件(或總成)生產(chǎn)使用一個特定的進程或程序。此外,如果一個模具用于產(chǎn)生一個項目,而因此自動設(shè)計對固有限制在一開始就相處得很好。以注塑為例,以處理一個組件成功,即使在最小程度上,下面的設(shè)計元素需要考慮的內(nèi)容:
1、.幾何
.拔模斜度
.非內(nèi)角形狀
.近恒壁厚
.復(fù)雜性
.分裂線位置
.表面拋光
材料選擇
元件的合理化(減少組件)
成本
在注塑、生產(chǎn)的模具生產(chǎn)注射模具元件通常是最長的部分產(chǎn)品開發(fā)過程。當(dāng)利用快速造型、CAD需要長時間,因此成為瓶頸。
廢水處理工程的工藝設(shè)計和注塑塑料涉及相當(dāng)復(fù)雜且耗時的活動,包括零件設(shè)計、模具設(shè)計、注塑成型機的選擇、生產(chǎn)排程、工裝和成本估算。所有這些活動是傳統(tǒng)上由部分設(shè)計和模具制作人員按注射模順序的方式完成后塑料部件的設(shè)計。很明顯的,這些序列階段可能會導(dǎo)致長的產(chǎn)品開發(fā)時間。但隨著社會的過程中實施并行工程所有參數(shù)影響產(chǎn)品設(shè)計、模具設(shè)計、機械的選擇、生產(chǎn)排程、模具和加工成本被認為是盡早塑料部件的設(shè)計。
使用時有效,CAE方法節(jié)省了部分設(shè)計及制造巨大的成本和時間。這些工具幾乎讓工程師測試部分處理它在其正常使用壽命表現(xiàn)怎樣。材料供應(yīng)商,設(shè)計師和制造商應(yīng)該運用這些工具同時在設(shè)計之初階段利用CAE增加塑料成本效益。CAE技術(shù)使人們有可能取代傳統(tǒng),順序決策程序和并行設(shè)計過程,其中各方之間是如何產(chǎn)生互動和分享信息,圖3塑料注塑、CAE及相關(guān)設(shè)計數(shù)據(jù)提供一個綜合的環(huán)境,為便于并行工程的設(shè)計、制造和模具部分,以及材料的選擇和模擬優(yōu)化工藝控制參數(shù)。
定性費用有關(guān)的部分比較設(shè)計上的變化被顯示在圖4,顯示出一個事實,那就是當(dāng)設(shè)計已經(jīng)改好了在早期階段在計算機屏幕上時,與成本有關(guān)的順序的10.000倍,如果低于部分生產(chǎn)。這些改變可能發(fā)生在塑料部件模具的改變,如澆口位置、厚度變化、生產(chǎn)延遲,質(zhì)量成本、機械安裝時間,或是設(shè)計變更在塑料部件。
圖4的成本在部分改變設(shè)計產(chǎn)品開發(fā)周期(張志剛,2001年版)
在早期設(shè)計階段,設(shè)計師設(shè)計模具部分必須完成零件設(shè)計基于各自的經(jīng)驗相似的部分。但是隨著部分變得更為復(fù)雜,它變得相當(dāng)困難的加工性能預(yù)測及部分不使用計算機輔助工具。因此,即使是相對復(fù)雜的部分,使用計算機輔助工具,防止變化和昂貴的設(shè)計過程中出現(xiàn)的問題,可以注射后。為成功實施并行工程,必須有歸屬感從人人參與。
5個案研究
圖5顯示初始CAD(計算機輔助設(shè)計)塑料部分用于噴灌消防栓的腿。一個基本特征,部分的部分保持平注射后,在注射操作原因變形問題。
另一個重要特點的塑料部件必須是一種高效的抗彎剛度。一批料中加入了不同取向的部分如圖5 b。這些應(yīng)設(shè)計成一種方式,它有貢獻的重量最小部分的,而且是可行的。
在模具的設(shè)計流程,分析了塑料部分進行了模具仿真分析軟件讓選拔的最佳澆口位置圖6。這個數(shù)字表明最好的點澆口位置的中間饋線的中心部分。作為失真和陶瓷注射后的部分,至關(guān)重要的是,從功能的角度,它必須被保持在最低水平,同樣也使用軟件里面分析。圖5 b顯示結(jié)果暗示了事實后殘留在陶瓷注射預(yù)定義的尺寸公差。
6總結(jié)
在塑料注塑、CAD模型所得的塑料部分商業(yè)的3 D程序可用于部分性能和注塑工藝分析。借助于CEA技術(shù)和并行工程方法的使用,不僅注塑模具的設(shè)計和制造可以在很短的一段時間完成,而且它可能在開始時的模具設(shè)計把出現(xiàn)的所有潛在的問題從部分設(shè)計、模具設(shè)計和工藝參數(shù)消除。這兩個工具幫助設(shè)計師和模具制造商生產(chǎn)良好的產(chǎn)品,更好的交付和更快的模具用較少的時間和金錢。
【原文一】
CONCURRENT DESIGN OF PLASTICS INJECTION MOULDS
Assist.Prof.Dr. A. YAYLA /Prof.Dr. Pa? a YAYLA
Abstract
The plastic product manufacturing industry has been growing rapidly in recent years. One of the most popular processes for making plastic parts is injection moulding. The design of injection mould is critically important to product quality and efficient product processing. Mould-making companies, who wish to maintain the competitive edge, desire to shorten both design and manufacturing leading times of the by applying a systematic mould design process.
The mould industry is an important support industry during the product development process, serving as an important link between the product designer and manufacturer. Product development has changed from the traditional serial process of design, followed by manufacture, to a more organized concurrent process where design and manufacture are considered at a very early stage of design. The concept of concurrent engineering (CE) is no longer new and yet it is still applicable and relevant in today’s manuf acturing environment. Team working spirit, management involvement, total design process and integration of IT tools are still the essence of CE. The application of The CE process to the design of an injection process involves the simultaneous consideration of plastic part design, mould design and injection moulding machine selection, production scheduling and cost as early as possible in the design stage.
This paper presents the basic structure of an injection mould design. The basis of this system arises from an analysis of the injection mould design process for mould design companies. This injection mould design system covers both the mould design process and mould knowledge management. Finally the principle of concurrent engineering process is outlined and then its principle is applied to the design of a plastic injection mould.
Keywords :Plastic injection mould design, Concurrent engineering, Computer aided engineering, Moulding conditions, Plastic injection moulding, Flow simulation
1. Introduction
Injection moulds are always expensive to make, unfortunately without a mould it can not be possible ho have a moulded product. Every mould maker has his/her own approach to design a mould and there are many different ways of designing and building a mould. Surely one of the most critical parameters to be considered in the design stage of the mould is the number of cavities, methods of injection, types of runners, methods of gating, methods of ejection, capacity and features of the injection moulding machines. Mould cost, mould quality and cost of mould product are inseparable
In today’s completive environment, computer aided mould filling simulation packages can accurately predict the fill patterns of any part. This allows for quick simulations of gate placements and helps finding the optimal location. Engineers can perform moulding trials on the computer before the part design is completed. Process engineers can systematically predict a design and process window, and can obtain information about the cumulative effect of the process variables that influence part performance, cost, and appearance.
2. Injection Moulding
Injection moulding is one of the most effective ways to bring out the best in plastics. It is universally used to make complex, finished parts, often in a single step, economically, precisely and with little waste. Mass production of plastic parts mostly utilizes moulds. The manufacturing process and involving moulds must be designed after passing through the appearance evaluation and the structure optimization of the product design. Designers face a huge number of options when they create injection-moulded components. Concurrent engineering requires an engineer to consider the manufacturing process of the designed product in the development phase. A good design of the product is unable to go to the market if its manufacturing process is impossible or too expensive. Integration of process simulation, rapid prototyping and manufacturing can reduce the risk associated with moving from CAD to CAM and further enhance the validity of the product development.
3. Importance of Computer Aided Injection Mould Design
The injection moulding design task can be highly complex. Computer Aided Engineering (CAE) analysis tools provide enormous advantages of enabling design engineers to consider virtually and part, mould and injection parameters without the real use of any manufacturing and time. The possibility of trying alternative designs or concepts on the computer screen gives the engineers the opportunity to eliminate potential problems before beginning the real production. Moreover, in virtual environment, designers can quickly and easily asses the sensitivity of specific moulding parameters on the quality and manufacturability of the final product. All theseCAE tools enable all these analysis to be completed in a meter of days or even hours, rather than weeks or months needed for the real experimental trial and error cycles. As CAE is used in the early design of part, mould and moulding parameters, the cost savings are substantial not only because of best functioning part and time savings but also the shortens the time needed to launch the product to the market.
The need to meet set tolerances of plastic part ties in to all aspects of the moulding process, including part size and shape, resin chemical structure, the fillers used, mould cavity layout, gating, mould cooling and the release mechanisms used. Given this complexity, designers often use computer design tools, such as finite element analysis (FEA) and mould filling analysis (MFA), to reduce development time and cost. FEA determines strain, stress and deflection in a part by dividing the structure into small elements where these parameters can be well defined. MFA evaluates gate position and size to optimize resin flow. It also defines placement of weld lines, areas of excessive stress, and how wall and rib thickness affect flow. Other finite element design tools include mould cooling analysis for temperature distribution, and cycle time and shrinkage analysis for dimensional control and prediction of frozen stress and warpage.
The CAE analysis of compression moulded parts is shown in Figure 1. The analysis cycle starts with the creation of a CAD model and a finite element mesh of the mould cavity. After the injection conditions are specified, mould filling, fiber orientation, curing and thermal history, shrinkage and warpage can be simulated. The material properties calculated by the simulation can be used to model the structural behaviour of the part. If required, part design, gate location and processing conditions can be modified in the computer until an acceptable part is obtained. After the analysis is finished an optimized part can be produced with reduced weldline (known also knitline), optimized strength, controlled temperatures and curing, minimized shrinkage and warpage.
Machining of the moulds was formerly done manually, with a toolmaker checking each cut. This process became more automated with the growth and widespread use of computer numerically controlled or CNC machining centres. Setup time has also been significantly reduced through the use of special software capable of generating cutter paths directly from a CAD data file. Spindle speeds as high as 100,000 rpm provide further advances in high speed machining. Cutting materials have demonstrated phenomenal performance without the use of any cutting/coolant fluid whatsoever. As a result, the process of machining complex cores and cavities has been accelerated.
It is good news that the time it takes to generate a mould is constantly being reduced. The bad news, on the other hand, is that even with all these advances, designing and manufacturing of the mould can still take a long time and can be extremely expensive.
Figure 1 CAE analysis of injection moulded parts
Many company executives now realize how vital it is to deploy new products to market rapidly. New products are the key to corporate prosperity. They drive corporate revenues, market shares, bottom lines and share prices. A company able to launch good quality products with reasonable prices ahead of their competition not only realizes 100% of the market before rival products arrive but also tends to maintain a dominant position for a few years even after competitive products have finally been announced (Smith, 1991). For most products, these two advantages are dramatic. Rapid product development is now a key aspect of competitive success. Figure 2 shows that only 3–7% of the product mix from the average industrial or electronics company is less than 5 years old. For companies in the top quartile, the number increases to 15–25%. For world-class firms, it is 60–80% (Thompson, 1996). The best companies continuously develop new products. At Hewlett-Packard, over 80% of the profits result from products less than 2 years old! (Neel, 1997)
Figure 2. Importance of new product (Jacobs, 2000)
With the advances in computer technology and artificial intelligence, efforts have been directed to reduce the cost and lead time in the design and manufacture of an injection mould. Injection mould design has been the main area of interest since it is a complex process involving several sub-designs related to various components of the mould, each requiring expert knowledge and experience. Lee et. al. (1997) proposed a systematic methodology and knowledge base for injection mould design in a concurrent engineering environment.
4. Concurrent Engineering in Mould Design
Concurrent Engineering (CE) is a systematic approach to integrated product development process. It represents team values of co-operation, trust and sharing in such a manner that decision making is by consensus, involving all per spectives in parallel, from the very beginning of the product life-cycle (Evans, 1998). Essentially, CE provides a collaborative, co-operative, collective and simultaneous engineering working environment. A concurrent engineering approach is based on five key elements:
1. process
2. multidisciplinary team
3. integrated design model
4. facility
5. software infrastructure
Figure 3 Methodologies in plastic injection mould design, a) Serial engineering b) Concurrent engineering
In the plastics and mould industry, CE is very important due to the high cost tooling and long lead times. Typically, CE is utilized by manufacturing prototype tooling early in the design phase to analyze and adjust the design. Production tooling is manufactured as the final step. The manufacturing process and involving moulds must be designed after passing through the appearance evaluation and the structure optimization of the product design. CE requires an engineer to consider the manufacturing process of the designed product in the development phase. A good design of the product is unable to go to the market if its manufacturing process is impossible. Integration of process simulation and rapid prototyping and manufacturing can reduce the risk associated with moving from CAD to CAM and further enhance the validity of the product development.
For years, designers have been restricted in what they can produce as they generally have to design for manufacture (DFM) – that is, adjust their design intent to enable the component (or assembly) to be manufactured using a particular process or processes. In addition, if a mould is used to produce an item, there are therefore automatically inherent restrictions to the design imposed at the very beginning. Taking injection moulding as an example, in order to process a component successfully, at a minimum, the following design elements need to be taken into account:
1. . geometry;
. draft angles,
. Non re-entrants shapes,
. near constant wall thickness,
. complexity,
. split line location, and
. surface finish,
2. material choice;
3. rationalisation of components (reducing assemblies);
4. cost.
In injection moulding, the manufacture of the mould to produce the injection-moulded components is usually the longest part of the product development process. When utilising rapid modelling, the CAD takes the longer time and therefore becomes the bottleneck.
The process design and injection moulding of plastics involves rather complicated and time consuming activities including part design, mould design, injection moulding machine selection, production scheduling, tooling and cost estimation. Traditionally all these activities are done by part designers and mould making personnel in a sequential manner after completing injection moulded plastic part design. Obviously these sequential stages could lead to long product development time. However with the implementation of concurrent engineering process in the all parameters effecting product design, mould design, machine selection, production scheduling, tooling and processing cost are considered as early as possible in the design of the plastic part.
When used effectively, CAE methods provide enormous cost and time savings for the part design and manufacturing. These tools allow engineers to virtually test how the part will be processed and how it performs during its normal operating life. The material supplier, designer, moulder and manufacturer should apply these tools concurrently early in the design stage of the plastic parts in order to exploit the cost benefit of CAE. CAE makes it possible to replace traditional, sequential decision-making procedures with a concurrent design process, in which all parties can interact and share information, Figure 3. For plastic injection moulding, CAE and related design data provide an integrated environment that facilitates concurrent engineering for the design and manufacture of the part and mould, as well as material selection and simulation of optimal process control parameters.
Qualitative expense comparison associated with the part design changes is shown in Figure 4 , showing the fact that when design changes are done at an early stages on the computer screen, the cost associated with is an order of 10.000 times lower than that if the part is in production. These modifications in plastic parts could arise fr om mould modifications, such as gate location, thickness changes, production delays, quality costs, machine setup times, or design change in plastic parts.
Figure 4 Cost of design changes during part product development cycle (Rios et.al, 2001)
At the early design stage, part designers and moulders have to finalise part design based on their experiences with similar parts. However as the parts become more complex, it gets rather difficult to predict processing and part performance without the use of CAE tools. Thus for even relatively complex parts, the use of CAE tools to prevent the late and expe