高中數(shù)學(xué) 第二講 變換的復(fù)合與二階矩陣的乘法 2.2 矩陣乘法的性質(zhì)課件 新人教A版選修4-2.ppt
《高中數(shù)學(xué) 第二講 變換的復(fù)合與二階矩陣的乘法 2.2 矩陣乘法的性質(zhì)課件 新人教A版選修4-2.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第二講 變換的復(fù)合與二階矩陣的乘法 2.2 矩陣乘法的性質(zhì)課件 新人教A版選修4-2.ppt(32頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
二 矩陣乘法的性質(zhì),1.掌握矩陣乘法的性質(zhì),會(huì)驗(yàn)證二階矩陣乘法滿足結(jié)合律,通過具體的幾何圖形變換,體會(huì)矩陣乘法不滿足消去律和交換律. 2.會(huì)利用矩陣乘法的性質(zhì)解決計(jì)算、判斷等簡單問題.,1,2,1.結(jié)合律 設(shè)A,B,C是任意的三個(gè)二階矩陣,則A(BC)=(AB)C. 名師點(diǎn)撥與實(shí)數(shù)乘法的運(yùn)算律類似,二階矩陣的乘法滿足結(jié)合律,但在書寫時(shí)其先后順序不可顛倒,而實(shí)數(shù)可以顛倒.,,1,2,1,2,,1,2,2.二階矩陣A的方冪及其性質(zhì) 設(shè)A是二階矩陣,n為任意自然數(shù),規(guī)定A0=E2,A1=A,A2=AA1,A3=AA2,…,An=AAn-1,稱An為A的n次方冪. 二階矩陣A的方冪具有的性質(zhì):①AkAl=Ak+l;②(Ak)l=Akl.其中k,l是任意自然數(shù). 名師點(diǎn)撥1.二階矩陣的方冪的定義及其性質(zhì)與實(shí)數(shù)的方冪的定義及其性質(zhì)十分類似,只是實(shí)數(shù)a0=1,而二階矩陣A0=E2,為單位矩陣. 2.二階矩陣的乘法不滿足交換律,即AB不一定等于BA. 3.二階矩陣的乘法不滿足消去律,即AB=CB,但A不一定等于C.,,,,1,2,,,題型一,題型二,題型三,題型四,,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,,題型一,題型二,題型三,題型四,,題型一,題型二,題型三,題型四,,題型一,題型二,題型三,題型四,反思矩陣的乘法不滿足交換律,但在某些特定情況下,如連續(xù)兩次旋轉(zhuǎn)或連續(xù)兩次伸縮變換,此時(shí)乘法滿足交換律;對(duì)于同一個(gè)矩陣,有AmAn=AnAm等.,題型一,題型二,題型三,題型四,,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,反思對(duì)于實(shí)數(shù)a,b,c來說,ab=ac,且a≠0等價(jià)于b=c.但對(duì)于矩陣而言,由例題可以看出,對(duì)于二階矩陣A,B,C,即使?jié)M足AB=AC(或BA=CA),且A≠0,一般來說,也不一定有B=C,即矩陣的乘法不滿足消去律.這一點(diǎn)也是零矩陣與實(shí)數(shù)零的不同之處.,1,2,3,4,5,1,2,3,4,5,,1,2,3,4,5,1,2,3,4,5,,1,2,3,4,5,,1,2,3,4,5,,1,2,3,4,5,,1,2,3,4,5,,1,2,3,4,5,,1,2,3,4,5,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 第二講 變換的復(fù)合與二階矩陣的乘法 2.2 矩陣乘法的性質(zhì)課件 新人教A版選修4-2 第二 變換 復(fù)合 矩陣 乘法 性質(zhì) 課件 新人 選修
鏈接地址:http://www.820124.com/p-1834679.html