影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

智能算法綜述

上傳人:冷*** 文檔編號:19560535 上傳時(shí)間:2021-01-11 格式:DOCX 頁數(shù):3 大?。?5.49KB
收藏 版權(quán)申訴 舉報(bào) 下載
智能算法綜述_第1頁
第1頁 / 共3頁
智能算法綜述_第2頁
第2頁 / 共3頁
智能算法綜述_第3頁
第3頁 / 共3頁

最后一頁預(yù)覽完了!喜歡就下載吧,查找使用更方便

18 積分

下載資源

資源描述:

《智能算法綜述》由會員分享,可在線閱讀,更多相關(guān)《智能算法綜述(3頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、智能算法綜述 摘要:隨著計(jì)算機(jī)技術(shù)的飛速發(fā)展,智能計(jì)算方法的應(yīng)用領(lǐng)域也越來越廣泛,本文介紹了當(dāng)前存在的一些智能計(jì)算方法,闡述了其工作原理和特點(diǎn),同時(shí)對智能計(jì)算方法的

2、發(fā)展進(jìn)行了展望。 關(guān)鍵詞:人工神經(jīng)網(wǎng)絡(luò)遺傳算法模擬退火算法群集智能蟻群算法粒子群算  1什么是智能算法 智能計(jì)算也有人稱之為“軟計(jì)算”,是們受自然(生物界)規(guī)律的啟迪,根據(jù)其原理,模仿求解問題的算法。從自然界得到啟迪,模仿其結(jié)構(gòu)進(jìn)行發(fā)明創(chuàng)造,這就是仿生學(xué)。這是我們向自然界學(xué)習(xí)的一個(gè)方面。另一方面,我們還可以利用仿生原理進(jìn)行設(shè)計(jì)(包括設(shè)計(jì)算法),這就是智能計(jì)算的思想。這方面的內(nèi)容很多,如人工神經(jīng)網(wǎng)絡(luò)技術(shù)、遺傳算法、模擬退火算法、模擬退火技術(shù)和群集智能技術(shù)等。 2人工神經(jīng)網(wǎng)絡(luò)算法 “人工神經(jīng)網(wǎng)絡(luò)”(ARTIFICIALNEURALNETWORK,簡稱ANN)是在對人腦組織結(jié)構(gòu)和運(yùn)行機(jī)制的認(rèn)識理解基

3、礎(chǔ)之上模擬其結(jié)構(gòu)和智能行為的一種工程系統(tǒng)。早在本世紀(jì)40年代初期,心理學(xué)家McCulloch、數(shù)學(xué)家Pitts就提出了人工神經(jīng)網(wǎng)絡(luò)的第一個(gè)數(shù)學(xué)模型,從此開創(chuàng)了神經(jīng)科學(xué)理論的研究時(shí)代。其后,F(xiàn)Rosenblatt、Widrow和J.J.Hopfield等學(xué)者又先后提出了感知模型,使得人工神經(jīng)網(wǎng)絡(luò)技術(shù)得以蓬勃發(fā)展。 神經(jīng)系統(tǒng)的基本構(gòu)造是神經(jīng)元(神經(jīng)細(xì)胞),它是處理人體內(nèi)各部分之間相互信息傳遞的基本單元。據(jù)神經(jīng)生物學(xué)家研究的結(jié)果表明,人的一個(gè)大腦一般有1010~1011個(gè)神經(jīng)元。每個(gè)神經(jīng)元都由一個(gè)細(xì)胞體,一個(gè)連接其他神經(jīng)元的軸突和一些向外伸出的其它較短分支——樹突組成。軸突的功能是將本神經(jīng)元的輸出信

4、號(興奮)傳遞給別的神經(jīng)元。其末端的許多神經(jīng)末梢使得興奮可以同時(shí)傳送給多個(gè)神經(jīng)元。樹突的功能是接受來自其它神經(jīng)元的興奮。神經(jīng)元細(xì)胞體將接受到的所有信號進(jìn)行簡單處理(如:加權(quán)求和,即對所有的輸入信號都加以考慮且對每個(gè)信號的重視程度——體現(xiàn)在權(quán)值上——有所不同)后由軸突輸出。神經(jīng)元的樹突與另外的神經(jīng)元的神經(jīng)末梢相連的部分稱為突觸。 2.1人工神經(jīng)網(wǎng)絡(luò)的特點(diǎn) 人工神經(jīng)網(wǎng)絡(luò)是由大量的神經(jīng)元廣泛互連而成的系統(tǒng),它的這一結(jié)構(gòu)特點(diǎn)決定著人工神經(jīng)網(wǎng)絡(luò)具有高速信息處理的能力。人腦的每個(gè)神經(jīng)元大約有103~104個(gè)樹突及相應(yīng)的突觸,一個(gè)人的大腦總計(jì)約形成1014~1015個(gè)突觸。用神經(jīng)網(wǎng)絡(luò)的術(shù)語來說,即是人腦具有

5、1014~1015個(gè)互相連接的存儲潛力。雖然每個(gè)神經(jīng)元的運(yùn)算功能十分簡單,且信號傳輸速率也較低(大約100次/秒),但由于各神經(jīng)元之間的極度并行互連功能,最終使得一個(gè)普通人的大腦在約1秒內(nèi)就能完成現(xiàn)行計(jì)算機(jī)至少需要數(shù)10億次處理步驟才能完成的任務(wù)。 人工神經(jīng)網(wǎng)絡(luò)的知識存儲容量很大。在神經(jīng)網(wǎng)絡(luò)中,知識與信息的存儲表現(xiàn)為神經(jīng)元之間分布式的物理聯(lián)系。它分散地表示和存儲于整個(gè)網(wǎng)絡(luò)內(nèi)的各神經(jīng)元及其連線上。每個(gè)神經(jīng)元及其連線只表示一部分信息,而不是一個(gè)完整具體概念。只有通過各神經(jīng)元的分布式綜合效果才能表達(dá)出特定的概念和知識。 由于人工神經(jīng)網(wǎng)絡(luò)中神經(jīng)元個(gè)數(shù)眾多以及整個(gè)網(wǎng)絡(luò)存儲信息容量的巨大,使得它具有很強(qiáng)的

6、不確定性信息處理能力。即使輸入信息不完全、不準(zhǔn)確或模糊不清,神經(jīng)網(wǎng)絡(luò)仍然能夠聯(lián)想思維存在于記憶中的事物的完整圖象。只要輸入的模式接近于訓(xùn)練樣本,系統(tǒng)就能給出正確的推理結(jié)論。 正是因?yàn)槿斯ど窠?jīng)網(wǎng)絡(luò)的結(jié)構(gòu)特點(diǎn)和其信息存儲的分布式特點(diǎn),使得它相對于其它的判斷識別系統(tǒng),如:專家系統(tǒng)等,具有另一個(gè)顯著的優(yōu)點(diǎn):健壯性。生物神經(jīng)網(wǎng)絡(luò)不會因?yàn)閭€(gè)別神經(jīng)元的損失而失去對原有模式的記憶。最有力的證明是,當(dāng)一個(gè)人的大腦因意外事故受輕微損傷之后,并不會失去原有事物的全部記憶。人工神經(jīng)網(wǎng)絡(luò)也有類似的情況。因某些原因,無論是網(wǎng)絡(luò)的硬件實(shí)現(xiàn)還是軟件實(shí)現(xiàn)中的某個(gè)或某些神經(jīng)元失效,整個(gè)網(wǎng)絡(luò)仍然能繼續(xù)工作。 人工神經(jīng)網(wǎng)絡(luò)是一種非線

7、性的處理單元。只有當(dāng)神經(jīng)元對所有的輸入信號的綜合處理結(jié)果超過某一門限值后才輸出一個(gè)信號。因此神經(jīng)網(wǎng)絡(luò)是一種具有高度非線性的超大規(guī)模連續(xù)時(shí)間動力學(xué)系統(tǒng)。它突破了傳統(tǒng)的以線性處理為基礎(chǔ)的數(shù)字電子計(jì)算機(jī)的局限,標(biāo)志著人們智能信息處理能力和模擬人腦智能行為能力的一大飛躍。 2.2幾種典型神經(jīng)網(wǎng)絡(luò)簡介 2.2.1多層感知網(wǎng)絡(luò)(誤差逆?zhèn)鞑ド窠?jīng)網(wǎng)絡(luò)) 在1986年以Rumelhart和McCelland為首的科學(xué)家出版的《ParallelDistributedProcessing》一書中,完整地提出了誤差逆?zhèn)鞑W(xué)習(xí)算法,并被廣泛接受。多層感知網(wǎng)絡(luò)是一種具有三層或三層以上的階層型神經(jīng)網(wǎng)絡(luò)。典型的多層感知網(wǎng)絡(luò)是

8、三層、前饋的階層網(wǎng)絡(luò),即:輸入層I、隱含層(也稱中間層)J和輸出層K。相鄰層之間的各神經(jīng)元實(shí)現(xiàn)全連接,即下一層的每一個(gè)神經(jīng)元與上一層的每個(gè)神經(jīng)元都實(shí)現(xiàn)全連接,而且每層各神經(jīng)元之間無連接。 但BP網(wǎng)并不是十分的完善,它存在以下一些主要缺陷:學(xué)習(xí)收斂速度太慢、網(wǎng)絡(luò)的學(xué)習(xí)記憶具有不穩(wěn)定性,即:當(dāng)給一個(gè)訓(xùn)練好的網(wǎng)提供新的學(xué)習(xí)記憶模式時(shí),將使已有的連接權(quán)值被打亂,導(dǎo)致已記憶的學(xué)習(xí)模式的信息的消失。 2.2.2競爭型(KOHONEN)神經(jīng)網(wǎng)絡(luò) 它是基于人的視網(wǎng)膜及大腦皮層對剌激的反應(yīng)而引出的。神經(jīng)生物學(xué)的研究結(jié)果表明:生物視網(wǎng)膜中,有許多特定的細(xì)胞,對特定的圖形(輸入模式)比較敏感,并使得大腦皮層中的特

9、定細(xì)胞產(chǎn)生大的興奮,而其相鄰的神經(jīng)細(xì)胞的興奮程度被抑制。對于某一個(gè)輸入模式,通過競爭在輸出層中只激活一個(gè)相應(yīng)的輸出神經(jīng)元。許多輸入模式,在輸出層中將激活許多個(gè)神經(jīng)元,從而形成一個(gè)反映輸入數(shù)據(jù)的“特征圖形”。競爭型神經(jīng)網(wǎng)絡(luò)是一種以無教師方式進(jìn)行網(wǎng)絡(luò)訓(xùn)練的網(wǎng)絡(luò)。它通過自身訓(xùn)練,自動對輸入模式進(jìn)行分類。競爭型神經(jīng)網(wǎng)絡(luò)及其學(xué)習(xí)規(guī)則與其它類型的神經(jīng)網(wǎng)絡(luò)和學(xué)習(xí)規(guī)則相比,有其自己的鮮明特點(diǎn)。在網(wǎng)絡(luò)結(jié)構(gòu)上,它既不象階層型神經(jīng)網(wǎng)絡(luò)那樣各層神經(jīng)元之間只有單向連接,也不象全連接型網(wǎng)絡(luò)那樣在網(wǎng)絡(luò)結(jié)構(gòu)上沒有明顯的層次界限。它一般是由輸入層(模擬視網(wǎng)膜神經(jīng)元)和競爭層(模擬大腦皮層神經(jīng)元,也叫輸出層)構(gòu)成的兩層網(wǎng)絡(luò)。兩層

10、之間的各神經(jīng)元實(shí)現(xiàn)雙向全連接,而且網(wǎng)絡(luò)中沒有隱含層。有時(shí)競爭層各神經(jīng)元之間還存在橫向連接。競爭型神經(jīng)網(wǎng)絡(luò)的基本思想是網(wǎng)絡(luò)競爭層各神經(jīng)元競爭對輸入模式的響應(yīng)機(jī)會,最后僅有一個(gè)神經(jīng)元成為競爭的勝者,并且只將與獲勝神經(jīng)元有關(guān)的各連接權(quán)值進(jìn)行修正,使之朝著更有利于它競爭的方向調(diào)整。神經(jīng)網(wǎng)絡(luò)工作時(shí),對于某一輸入模式,網(wǎng)絡(luò)中與該模式最相近的學(xué)習(xí)輸入模式相對應(yīng)的競爭層神經(jīng)元將有最大的輸出值,即以競爭層獲勝神經(jīng)元來表示分類結(jié)果。這是通過競爭得以實(shí)現(xiàn)的,實(shí)際上也就是網(wǎng)絡(luò)回憶聯(lián)想的過程。 除了競爭的方法外,還有通過抑制手段獲取勝利的方法,即網(wǎng)絡(luò)競爭層各神經(jīng)元抑制所有其它神經(jīng)元對輸入模式的響應(yīng)機(jī)會,從而使自己“脫穎

11、而出”,成為獲勝神經(jīng)元。除此之外還有一種稱為側(cè)抑制的方法,即每個(gè)神經(jīng)元只抑制與自己鄰近的神經(jīng)元,而對遠(yuǎn)離自己的神經(jīng)元不抑制。這種方法常常用于圖象邊緣處理,解決圖象邊緣的缺陷問題。 競爭型神經(jīng)網(wǎng)絡(luò)的缺點(diǎn)和不足:因?yàn)樗鼉H以輸出層中的單個(gè)神經(jīng)元代表某一類模式。所以一旦輸出層中的某個(gè)輸出神經(jīng)元損壞,則導(dǎo)致該神經(jīng)元所代表的該模式信息全部丟失。 2.2.3Hopfield神經(jīng)網(wǎng)絡(luò) 1986年美國物理學(xué)家J.J.Hopfield陸續(xù)發(fā)表幾篇論文,提出了Hopfield神經(jīng)網(wǎng)絡(luò)。他利用非線性動力學(xué)系統(tǒng)理論中的能量函數(shù)方法研究反饋人工神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性,并利用此方法建立求解優(yōu)化計(jì)算問題的系統(tǒng)方程式。基本的Hopf

12、ield神經(jīng)網(wǎng)絡(luò)是一個(gè)由非線性元件構(gòu)成的全連接型單層反饋系統(tǒng)。 網(wǎng)絡(luò)中的每一個(gè)神經(jīng)元都將自己的輸出通過連接權(quán)傳送給所有其它神經(jīng)元,同時(shí)又都接收所有其它神經(jīng)元傳遞過來的信息。即:網(wǎng)絡(luò)中的神經(jīng)元t時(shí)刻的輸出狀態(tài)實(shí)際上間接地與自己的t-1時(shí)刻的輸出狀態(tài)有關(guān)。所以Hopfield神經(jīng)網(wǎng)絡(luò)是一個(gè)反饋型的網(wǎng)絡(luò)。其狀態(tài)變化可以用差分方程來表征。反饋型網(wǎng)絡(luò)的一個(gè)重要特點(diǎn)就是它具有穩(wěn)定狀態(tài)。當(dāng)網(wǎng)絡(luò)達(dá)到穩(wěn)定狀態(tài)的時(shí)候,也就是它的能量函數(shù)達(dá)到最小的時(shí)候。這里的能量函數(shù)不是物理意義上的能量函數(shù),而是在表達(dá)形式上與物理意義上的能量概念一致,表征網(wǎng)絡(luò)狀態(tài)的變化趨勢,并可以依據(jù)Hopfield工作運(yùn)行規(guī)則不斷進(jìn)行狀態(tài)變化,

13、最終能夠達(dá)到的某個(gè)極小值的目標(biāo)函數(shù)。網(wǎng)絡(luò)收斂就是指能量函數(shù)達(dá)到極小值。如果把一個(gè)最優(yōu)化問題的目標(biāo)函數(shù)轉(zhuǎn)換成網(wǎng)絡(luò)的能量函數(shù),把問題的變量對應(yīng)于網(wǎng)絡(luò)的狀態(tài),那么Hopfield神經(jīng)網(wǎng)絡(luò)就能夠用于解決優(yōu)化組合問題。 對于同樣結(jié)構(gòu)的網(wǎng)絡(luò),當(dāng)網(wǎng)絡(luò)參數(shù)(指連接權(quán)值和閥值)有所變化時(shí),網(wǎng)絡(luò)能量函數(shù)的極小點(diǎn)(稱為網(wǎng)絡(luò)的穩(wěn)定平衡點(diǎn))的個(gè)數(shù)和極小值的大小也將變化。因此,可以把所需記憶的模式設(shè)計(jì)成某個(gè)確定網(wǎng)絡(luò)狀態(tài)的一個(gè)穩(wěn)定平衡點(diǎn)。若網(wǎng)絡(luò)有M個(gè)平衡點(diǎn),則可以記憶M個(gè)記憶模式。 當(dāng)網(wǎng)絡(luò)從與記憶模式較靠近的某個(gè)初始狀態(tài)(相當(dāng)于發(fā)生了某些變形或含有某些噪聲的記憶模式,也即:只提供了某個(gè)模式的部分信息)出發(fā)后,網(wǎng)絡(luò)按Hopf

14、ield工作運(yùn)行規(guī)則進(jìn)行狀態(tài)更新,最后網(wǎng)絡(luò)的狀態(tài)將穩(wěn)定在能量函數(shù)的極小點(diǎn)。這樣就完成了由部分信息的聯(lián)想過程。 Hopfield神經(jīng)網(wǎng)絡(luò)的能量函數(shù)是朝著梯度減小的方向變化,但它仍然存在一個(gè)問題,那就是一旦能量函數(shù)陷入到局部極小值,它將不能自動跳出局部極小點(diǎn),到達(dá)全局最小點(diǎn),因而無法求得網(wǎng)絡(luò)最優(yōu)解。

15、 3遺傳算法 遺傳算法(GeneticAlgorithms)是基于生物進(jìn)化理論的原理[4]胡守仁等.神經(jīng)網(wǎng)絡(luò)導(dǎo)論[M].長沙:國防科技大學(xué)出版社,1993.113~117. [5]姚新,陳國良,徐惠敏等.進(jìn)化算法研究進(jìn)展[J].計(jì)算機(jī)學(xué)報(bào),1995,18(9):694-706. [6]張曉,戴冠中,徐乃平.一種新的優(yōu)化搜索算法—遺傳算法.控制理論與應(yīng)用[J].1995,12(3):265-273. [7]楊志英.BP神經(jīng)網(wǎng)絡(luò)在水質(zhì)評價(jià)中的應(yīng)用[J].中國農(nóng)村水利水電,2001,9:27-29.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔

相關(guān)搜索

關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!