喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:1064457796 或 1304139763】
1 沖壓變形 沖壓變形工藝可完成多種工序,其基本工序可分為分離工序和變形工序兩 大類。 分離工序是使坯料的一部分與另一部分相互分離的工藝方法,主要有落料、 沖孔、切邊、剖切、修整等。其中有以沖孔、落料應(yīng)用最廣。變形工序是使坯 料的一部分相對另一部分產(chǎn)生位移而不破裂的工藝方法,主要有拉深、彎曲、 局部成形、脹形、翻邊、縮徑、校形、旋壓等。 從本質(zhì)上看,沖壓成形就是毛坯的變形區(qū)在外力的作用下產(chǎn)生相應(yīng)的塑性 變形,所以變形區(qū)的應(yīng)力狀態(tài)和變形性質(zhì)是決定沖壓成形性質(zhì)的基本因素。因 此,根據(jù)變形區(qū)應(yīng)力狀態(tài)和變形特點進行的沖壓成形分類, 可以把成形性質(zhì)相 同的成形方法概括成同一個類型并進行系統(tǒng)化的研究。 絕大多數(shù)沖壓成形時毛坯變形區(qū)均處于平面應(yīng)力狀態(tài)。通常認為在板材表面上 不受外力的作用,即使有外力作用,其數(shù)值也是較小的,所以可以認為垂直于 板面方向的應(yīng)力為零,使板材毛坯產(chǎn)生塑性變形的是作用于板面方向上相互垂 直的兩個主應(yīng)力。由于板厚較小,通常都近似地認為這兩個主應(yīng)力在厚度方向 上是均勻分布的?;谶@樣的分析,可以把各種形式?jīng)_壓成形中的毛坯變形區(qū) 的受力狀態(tài)與變形特點,在平面應(yīng)力的應(yīng)力坐標系中 (沖壓應(yīng)力圖 )與相應(yīng)的兩 向應(yīng)變坐標系中 (沖壓應(yīng)變圖 )以應(yīng)力與 應(yīng)變坐標決定的位置來表示。也就是說, 沖壓 應(yīng)力圖與沖壓應(yīng)變圖中的不同位置都代表著不同的受力情況與變形特點 (1)沖壓毛坯變形區(qū)受兩向拉應(yīng)力作用時,可以分為兩種情況:即 0 t=0 和 0, t=0。再這兩種情況下,絕對值最大的應(yīng)力都是拉應(yīng)力。以下 對這兩種情況進行分析。 1)當 0且 t=0時,安全量理論可以寫出如下應(yīng)力與應(yīng)變的關(guān)系式: (1-1) /( - m) = /( - m) = t/( t - m) =k 式中 , , t 分 別 是 軸對稱沖壓 成 形時 的 徑向 主 應(yīng)變 、切向主 應(yīng) 變 和厚度方向上的主 應(yīng)變 ; , , t 分 別 是 軸對稱沖壓 成 形時 的 徑向 主 應(yīng) 力、切向主 應(yīng) 力和厚度 方向上的主 應(yīng) 力; m 平均 應(yīng) 力, m=( + + t) /3; k 常數(shù) 。在平面 應(yīng) 力 狀態(tài) ,式( 1 1)具有如下形式: 3 /( 2 - ) =3 /( 2 - t) =3 t/-( t+ ) =k ( 1 2) 因為 0,所以必定有 2 - 0 與 0。 這個結(jié) 果表明:在 兩向 2 拉應(yīng) 力的平面 應(yīng) 力 狀態(tài)時 ,如果 絕對 值 最大 拉應(yīng) 力是 ,則在這個方向上的主 應(yīng)變一定是正應(yīng)變,即是伸長變形。 又因為 0,所以必定有 -( t+ ) 0 與 t2 時, 0;當 0。 的變化范圍是 = =0 。在雙向等拉力狀態(tài)時, = ,有 式( 1 2)得 = 0 及 t 0 且 t=0 時,有式( 1 2)可知:因為 0,所以 1) 定有 2 0 與 0。這個結(jié)果表明:對于兩向拉應(yīng)力的平面應(yīng)力狀 態(tài),當 的絕對值最大時,則在這個方向上的應(yīng)變一定時正的,即一定是 伸長變形。 又因為 0,所以必定有 -( t+ ) 0 與 t , 0;當 0。 的變化范圍是 = =0 。當 = 時, = 0, 也就是 在 雙向等拉 力 狀態(tài)下 ,在 兩個拉應(yīng) 力方向 上產(chǎn) 生 數(shù) 值相同的伸 長變形 ;在受 單 向拉應(yīng) 力 狀態(tài)時 , 當 =0 時, =- /2,也就是說, 在受 單向拉應(yīng) 力 狀態(tài) 下 其 變形 性 質(zhì) 與一般的 簡單 拉伸是完全一 樣 的 。 這種變形與受力情況,處于沖壓應(yīng)變圖中的 AOC 范圍內(nèi)(見圖 1 1);而 在沖壓應(yīng)力圖中則處于 AOH 范圍內(nèi)(見圖 1 2)。 上述兩種沖壓情況,僅在最大應(yīng)力的方向上不同,而兩個應(yīng)力的性質(zhì)以及 它們引起的變形都是一樣的。因此,對于各向同性的均質(zhì)材料,這兩種變形是 完全相同的。 (1)沖壓毛坯變形區(qū)受兩向壓應(yīng)力的作用,這種變形也分兩種情況分析,即 t=0 和 0, t=0。 1)當 0 且 t=0 時,有式( 1 2)可知:因 為 0,一定有 2 - 0 與 0。 這個結(jié) 果表明:在 兩向壓應(yīng) 力的平面 應(yīng) 力 狀態(tài)時 ,如果 3 絕對 值最大 拉應(yīng) 力是 0,則在這個方向上的主應(yīng)變一定是負應(yīng)變,即是壓 縮變形。 又因為 0 與 t0,即在板料厚度方 向上的 應(yīng)變 是正的,板料增厚。 在 方向上的變形取決于 與 的數(shù)值:當 =2 時, =0;當 2 時, 0;當 0。 這時 的變化范圍是 與 0 之間 。當 = 時,是雙向等 壓 力狀態(tài) 時,故有 = 0;當 =0 時 ,是受 單 向 壓應(yīng) 力 狀態(tài) ,所以 =- /2。 這種變形情況處于沖壓應(yīng)變圖中的 EOG 范圍內(nèi)(見圖 1 1);而在沖壓應(yīng)力圖 中則處于 COD 范圍內(nèi)(見圖 1 2)。 2) 當 0 且 t=0 時,有式( 1 2)可知:因為 0,所以 一定有 2 0 與 0。這個結(jié)果表明:對于兩向 壓 應(yīng)力的平面應(yīng)力狀 態(tài),如果絕對值最大是 ,則在這個方向上的應(yīng)變一定時負的,即一定是壓 縮變形。 又因為 0 與 t0,即在板料厚度方 向上的 應(yīng)變 是正的,即 為壓縮變形 ,板厚增大。 在 方向上的變形取決于 與 的數(shù)值:當 =2 時, =0;當 2 , 0;當 0。 這時, 的數(shù)值只能在 = =0 之間變化。當 = 時, 是 雙向 等壓力狀態(tài) ,所以 = 0。這種變形與受力情況,處于沖壓應(yīng)變圖中的 GOL 范圍內(nèi)(見圖 1 1);而在沖壓應(yīng)力圖中則處于 DOE 范圍內(nèi)(見圖 1 2)。 (1)沖壓毛坯變形區(qū)受兩個異號應(yīng)力的作用,而且拉應(yīng)力的絕對值大于壓應(yīng) 力的絕對 值。這種變形共有兩種情況,分別作如下分析。 1)當 0, | |時,由式( 1 2)可知:因 為 0, | |,所以一定 有 2 - 0 及 0。 這個結(jié) 果表明:在異 號 的 平面 應(yīng) 力 狀態(tài)時 ,如果 絕對 值最大 應(yīng) 力是 拉應(yīng) 力 ,則在這個絕對值最大的拉應(yīng) 力方向上應(yīng)變一定是正應(yīng)變,即是伸長變形。 又因為 0, | |,所以必定有 0 0, 0, | |時,由式( 1 2)可知: 用與前 項相同的方法分析可得 0。 即在異 號應(yīng) 力作用的平面 應(yīng) 力 狀態(tài)下 ,如果 絕 對 值最大 應(yīng) 力是 拉應(yīng) 力 ,則在這個方向上的應(yīng)變是正的,是伸長變形;而在 壓應(yīng)力 方向上的應(yīng)變是負的( 0, 0, 0, | |時,由式( 1 2)可知:因 為 0, | |,所以一定有 2 - 0 及 0, 0,必定有 2 - 0, 即在 拉應(yīng) 力方向上 的 應(yīng)變 是正的, 是伸長變形。 這時 的變化范圍只能在 =- 與 =0 的范圍內(nèi) 。當 =- 時, 0 0, 0, | |時,由式( 1 2)可知: 用與前 項相同的方法分析可得 0, 0, 0, 0 AON GOH + + 伸長類 AOC AOH + + 伸長類 雙向受壓 0, 0 EOG COD 壓縮類 0, | | MON FOG + + 伸長 類 | | | LOM EOF 壓縮類 異號應(yīng)力 0, | | COD AOB + + 伸長類 | | | | DOE BOC 壓縮類 7 變形區(qū)質(zhì)量問題的表 現(xiàn)形式 變形程度過大引起變形區(qū) 產(chǎn)生破裂現(xiàn)象 壓力作用下失穩(wěn)起皺 成形極限 1 主要取決于板材的塑 性, 與厚度無關(guān) 2 可用伸長率及成形極 限 DLF 判斷 1 主要取決于傳力區(qū)的 承載能力 2 取決于抗失穩(wěn)能力 3 與板厚有關(guān) 變形區(qū)板厚的變化 減薄 增厚 提高成形極限的方法 1 改善板材塑性 2 使變形均勻化,降低局 部變形程度 3 工序間熱處理 1 采用多道工序成形 2 改變傳力區(qū)與變形區(qū) 的力學關(guān)系 3 采用防起皺措施 伸 長 類 成 形 脹 形 拉 深 翻 邊 壓 縮 類 成 形 壓 縮 類 成 形 擴 口 拉 深 脹 形 伸 長 類 成 形 縮 口 縮 口 擴口 + - - + /4 /4 翻 邊 - + + - 圖 1 3 沖壓應(yīng)變圖 8 沖壓成形 極限 變形區(qū)的 成形極限 傳動區(qū)的 成形極限 伸長類 變 形 壓縮類 變 形 強 度 抗拉與抗壓 縮失衡能力 塑 性 抗縮頸 能 力 變形均 化與擴 展能力 塑 性 抗起皺 能 力 變形力及 其 變 化 各向異性 值 硬化性能 變形抗力 化學成分 組 織 變形條件 硬化性能 應(yīng)力狀態(tài) 應(yīng)變梯度 硬化性能 模具狀態(tài) 力學性能 值與 值 相對厚度 化學成分 組 織 變形條件 圖 1 3 體系化研究方法舉例 9 Categories of stamping forming Many deformation processes can be done by stamping, the basic processes of the stamping can be divided into two kinds: cutting and forming. Cutting is a shearing process that one part of the blank is cut form the other .It mainly includes blanking, punching, trimming, parting and shaving, where punching and blanking are the most widely used. Forming is a process that one part of the blank has some displacement form the other. It mainly includes deep drawing, bending, local forming, bulging, flanging, necking, sizing and spinning. In substance, stamping forming is such that the plastic deformation occurs in the deformation zone of the stamping blank caused by the external force. The stress state and deformation characteristic of the deformation zone are the basic factors to decide the properties of the stamping forming. Based on the stress state and deformation characteristics of the deformation zone, the forming methods can be divided into several categories with the same forming properties and to be studied systematically. The deformation zone in almost all types of stamping forming is in the plane stress state. Usually there is no force or only small force applied on the blank surface. When it is assumed that the stress perpendicular to the blank surface equal to zero, two principal stresses perpendicular to each other and act on the blank surface produce the plastic deformation of the material. Due to the small thickness of the blank, it is assumed approximately that the two principal stresses distribute uniformly along the thickness direction. Based on this analysis, the stress state and 10 the deformation characteristics of the deformation zone in all kind of stamping forming can be denoted by the point in the coordinates of the plane princ ipal stress(diagram of the stamping stress) and the coordinates of the corresponding plane principal stains (diagram of the stamping strain). The different points in the figures of the stamping stress and strain possess different stress state and deformation characteristics. (1)When the deformation zone of the stamping blank is subjected toplanetensile stresses, it can be divided into two cases, that is 0,t=0and 0,t=0.In both cases, the stress with the maximum absolute value is always a tensile stress. These two cases are analyzed respectively as follows. 2)In the case that 0andt=0, according to the integral theory, the relationships between stresses and strains are: /( -m) =/( -m) =t/( t -m) =k 1.1 where, , , t are the principal strains of the radial, tangential and thickness directions of the axial symmetrical stamping forming; , and tare the principal stresses of the radial, tangential and thickness directions of the axial symmetrical stamping forming;m is the average stress,m=( +t) /3; k is a constant. In plane stress state, Equation 1.1 3/( 2-) =3/( 2-t) =3t/-( t+) =k 1.2 Since 0,so 2-0 and 0.It indicates that in plane stress state with two axial tensile stresses, if the tensile stress with the maximum absolute value is , the principal strain in this direction must be positive, that is, the deformation belongs 11 to tensile forming. In addition, because 0, therefore -( t+) 0 and t2,0; and when 0. The range of is =0 . In the equibiaxial tensile stress state = , according to Equation 1.2,=0 and t 0 and t=0, according to Equation 1.2 , 2 0 and 0,This result shows that for the plane stress state with two tensile stresses, when the absoluste value of is the strain in this direction must be positive, that is, it must be in the state of tensile forming. Also because0, therefore -( t+) 0 and t,0;and when 0. 12 The range of is = =0 .When =,=0, that is, in equibiaxial tensile stress state, the tensile deformation with the same values occurs in the two tensile stress directions; when =0, =- /2, that is, in uniaxial tensile stress state, the deformation characteristic in this case is the same as that of the ordinary uniaxial tensile. This kind of deformation is in the region AON of the diagram of the stamping strain (see Fig.1.1), and in the region GOH of the diagram of the stamping stress (see Fig.1.2). Between above two cases of stamping deformation, the properties ofand, and the deformation caused by them are the same, only the direction of the maximum stress is different. These two deformations are same for isotropic homogeneous material. (1)When the deformation zone of stamping blank is subjected to two compressive stressesand(t=0), it can also be divided into two cases, which are 0,t=0 and 0,t=0. 1) When 0 and t=0, according to Equation 1.2, 2-0 與 =0.This result shows that in the plane stress state with two compressive stresses, if the stress with the maximum absolute value is 0, the strain in this direction must be negative, that is, in the state of compressive forming. Also because 0 and t0.The strain in the thickness direction of the blankt is positive, and the thickness increases. The deformation condition in the tangential direction depends on the values 13 of and .When =2,=0;when 2,0;and when 0. The range of is 0.When =,it is in equibiaxial tensile stress state, hence=0; when =0,it is in uniaxial tensile stress state, hence =-/2.This kind of deformation condition is in the region EOG of the diagram of the stamping strain (see Fig.1.1), and in the region COD of the diagram of the stamping stress (see Fig.1.2). 2) When 0and t=0, according to Equation 1.2,2- 0 and 0. This result shows that in the plane stress state with two compressive stresses, if the stress with the maximum absolute value is , the strain in this direction must be negative, that is, in the state of compressive forming. Also because 0 and t0.The strain in the thickness direction of the blankt is positive, and the thickness increases. The deformation condition in the radial direction depends on the values of and . When =2, =0; when 2,0; and when 0. The range of is = =0 . When = , it is in equibiaxial tensile stress state, hence =0.This kind of deformation is in the region GOL of the diagram of the stamping strain (see Fig.1.1), and in the region DOE of the diagram of the stamping stress (see Fig.1.2). (3) The deformation zone of the stamping blank is subjected to two stresses with opposite signs, and the absolute value of the tensile stress is larger than that of the compressive stress. There exist two cases to be analyzed as follow: 14 1)When 0, |, according to Equation 1.2, 2-0 and 0.This result shows that in the plane stress state with opposite signs, if the stress with the maximum absolute value is tensile, the strain in the maximum stress direction is positive, that is, in the state of tensile forming. Also because 0, |, therefore =-. When =-, then 0,0,0, |, according to Equation 1.2, by means of the same analysis mentioned above, 0, that is, the deformation zone is in the plane stress state with opposite signs. If the stress with the maximum absolute value is tensile stress , the strain in this direction is positive, that is, in the state of tensile forming. The strain in the radial direction is negative ( =-. When =-, then 0, 0, 0,|, according to Equation 1.2, 2- 0 and 0 and 0, therefore 2- 0. The strain in the tensile stress direction is positive, or in the state of tensile forming. The range of is 0=-.When =-, then 0,0,0, |, according to Equation 1.2 and by means of the same analysis mentioned above,=-.When =-, then 0, 0, 0,0 AON GOH + + Tensile AOC AOH + + Tensile Biaxial compressive stress state 0,0 EOG COD Compress ive 0,| MON FOG + + Tensile | LOM EOF Compress ive State of stress with opposite signs 0,| COD AOB + + Tensile | | DOE BOC Compress ive 20 Table 1.2 Comparison between tensile and compressive forming Item Tensile forming Compressive forming Representation of the quality problem in the deformation zone Fracture in the deformation zone due to excessive deformation Instability wrinkle caused by compressive stress Forming limit 3 Mainly depends on the plasticity of the material, and is irrelevant to the thickness 4 Can be estimated by extensibility or the forming limit DLF 4 Mainly depends on the loading capability in the force transferring zone 5 Depends on the anti-instability capability 6 Has certain relationship to the blank thickness Variation of the blank thickness in the deformation zone Thinning Thickening Methods to improve forming limit 4 Improve the plasticity of the material 5 Decrease local 4 Adopt multi-pass forming process 5 Change the mechanics 21 deformation, and increase deformation uniformity 6 Adopt an intermediate heat treatment process relationship between the force transferring and deformation zones 6 Adopt anti-wrinkle measures Fig.1.1 Diagram of stamping strain tensile forming bulging deep drawing flanging compressive forming compressive forming expanding deep drawing bulging tensile forming necking necking expanding + - - + /4 /4 flanging - + + - Fig.1.2 Diagram of stamping stress 22 Ten sile for ming Com pres sion for ming St re ngth Cap abil ity of an ti -w rinkle und er t he t ensi le and com pres sive st re sses Plasticity Cap abil ity of an ti -n ecking Def orma tion uniformit y an d ex te nsion ca pa bility Pl as ticity Cap abil ity of an ti -w rinkle Def orma tion for ce a nd i ts Ani sotr opy valu e of r Har deni ng c hara cter isti cs Deformation r es is ta nc e Che mist ry c ompo nent Str uctu re Deformation c on di ti on s Har deni ng c hara cter isti cs Sta te o f st ress Gradient of s tr ai n Har deni ng c hara cter isti cs Die sha pe Mechanical pr oe rt y The value of t he n a nd r Relative th ic kn es s Che mist ry c ompo nent Str uctu re Deformation c on di ti on s Fig.1.3 Examples for systematic research methods
河南機電高等??茖W校
畢業(yè)設(shè)計(論文)開題報告
學生姓名: 邵國專 學 號: 0312225
專 業(yè): 模具設(shè)計與制造
設(shè)計(論文)題目: 空調(diào)墊片沖孔落料級進模具
指導(dǎo)教師: 趙長海
2006年 4 月 10 日
開題報告填寫要求
1.開題報告(含“文獻綜述”)作為畢業(yè)設(shè)計(論文)答辯委員會對學生答辯資格審查的依據(jù)材料之一。此報告應(yīng)在指導(dǎo)教師指導(dǎo)下,由學生在畢業(yè)設(shè)計(論文)工作前期內(nèi)完成,經(jīng)指導(dǎo)教師簽署意見及所在專業(yè)審查后生效;
2.開題報告內(nèi)容必須用黑墨水筆工整書寫或按教務(wù)處統(tǒng)一設(shè)計的電子文檔標準格式(可從教務(wù)處網(wǎng)頁上下載)打印,禁止打印在其它紙上后剪貼,完成后應(yīng)及時交給指導(dǎo)教師簽署意見;
3. “文獻綜述”應(yīng)按論文的格式成文,并直接書寫(或打?。┰诒鹃_題報告第一欄目內(nèi),本科學生寫文獻綜述的參考文獻應(yīng)不少于15篇(專科生不少于10篇,不包括辭典、手冊);
4.有關(guān)年月日等日期的填寫,應(yīng)當按照國標GB/T 7408—94《數(shù)據(jù)元和交換格式、信息交換、日期和時間表示法》規(guī)定的要求,一律用阿拉伯數(shù)字書寫。如“2002年4月26日”或“2002-04-26”。
畢 業(yè) 設(shè) 計(論 文)開 題 報 告
1.結(jié)合畢業(yè)設(shè)計(論文)課題情況,根據(jù)所查閱的文獻資料,撰寫1500字左右(本科生200字左右)的文獻綜述(包括目前該課題在國內(nèi)外的研究狀況、發(fā)展趨勢以及對本人研究課題的啟發(fā)):
文 獻 綜 述
這次畢業(yè)設(shè)計是對三年學習生涯的一次總結(jié),三年學習中所學到的知識如:機械制圖、公差技術(shù)與配合、機械設(shè)計、模具制造技術(shù)、沖壓模具設(shè)計與制造,塑料注塑模結(jié)構(gòu)與設(shè)計等都在這次設(shè)計中得到應(yīng)用。鞏固了所學的知識,也進一步加深了對模具的認識,使自己的理論知識得到應(yīng)用。在設(shè)計過程中,應(yīng)做到認真,仔細,做好每一個步驟,每一個環(huán)節(jié)。數(shù)據(jù),公式等的出處都要有據(jù)可查,這次畢業(yè)設(shè)計設(shè)計的是空調(diào)墊片級進模,該模具結(jié)構(gòu)較為簡單,容易加工,精度容易得到保證,級進模的重點在于如何精確定位。
該設(shè)計要先對沖壓件進行工藝性分析,以確定它的沖裁工藝性和生產(chǎn)批量等。然后進行排樣設(shè)計,確保更好的利用材料,提高經(jīng)濟利益。再計算出沖壓力,壓力中心,模具工作刃口尺寸,橡膠尺寸設(shè)計等,通過模具總體設(shè)計和主要零部件結(jié)構(gòu)設(shè)計可以畫出裝配圖,校核所選壓力機的可用性,確定模具主要零件的加工工藝等。通過以上設(shè)計,使我掌握了模具設(shè)計的大體步驟,為以后的工作,學習打下了一定的基礎(chǔ)。
模具是大批量生產(chǎn)同形產(chǎn)品的工具,是工業(yè)生產(chǎn)的主要工藝裝備。模具工業(yè)是國民經(jīng)濟的基礎(chǔ)工業(yè)。
利用模具成型零件的方法,實質(zhì)上是一種少切削、無切削、多工序重合的生產(chǎn)方法,采用模具成型的工藝代替?zhèn)鹘y(tǒng)的切削加工工藝,可以提高生產(chǎn)效率,保證零件的質(zhì)量,節(jié)約材料,降低成本,從而取得很高的經(jīng)濟效益。因此,模具成型方法在現(xiàn)代工業(yè)的主要部門,如機械、電子、輕工、交通和國防工業(yè)中得到了極其廣泛的應(yīng)用。例如70%以上的汽車、拖拉機、電機、電器、儀表零件,80%以上的塑料制品,70%以上的日用五金及耐用消費品零件,都采用模具成型的方法來生產(chǎn)。由此可見,;利用模具生產(chǎn)零件的方法已經(jīng)成為工業(yè)上進行成批或大批生產(chǎn)的主要技術(shù)手段,它對保證制件質(zhì)量,縮短試制周期,進而爭先占領(lǐng)市場,以及產(chǎn)品更新?lián)Q代和產(chǎn)品開發(fā)都具有決定性意義。因此德國把模具成為“金屬加工中的帝王”,把模具工業(yè)視為“關(guān)鍵工業(yè)”,美國把模具成為“美國工業(yè)的基石”,把模具工業(yè)視為“不可估量其力量的工業(yè)”,日本把模具說成是“促進社會富裕繁榮的動力”,把模具工業(yè)視為“整個工業(yè)發(fā)展的秘密”。
由于模具工業(yè)的重要性,模具成型工業(yè)工藝在各個部門得到了廣泛的應(yīng)用,是模具行業(yè)的產(chǎn)值已經(jīng)大大超過機床工業(yè)的產(chǎn)值。這一情況充分說明在國民經(jīng)濟蓬勃發(fā)展的過程中,在各個工業(yè)發(fā)達國家對世界市場進行激烈的爭奪中,愈來愈多地采用模具來進行生產(chǎn),模具工業(yè)明顯地成為技術(shù)、經(jīng)濟和國力發(fā)展的關(guān)鍵。
從我國的情況來看,不少工業(yè)產(chǎn)品質(zhì)量上不去,新產(chǎn)品開發(fā)不出來,老產(chǎn)品更新速度太慢,能源消耗指標高,材料消耗量大,這些都與我國模具生產(chǎn)技術(shù)落后,沒有一個強大的、先進的模具工業(yè)密切相關(guān)。
因此,要使國民經(jīng)濟各個部門或得高速發(fā)展,加速實現(xiàn)社會主義的現(xiàn)代化,就必須盡快將模具工業(yè)搞上去,使模具生產(chǎn)形成一個獨立的工業(yè)部門,從而充分發(fā)揮模具工業(yè)在國民經(jīng)濟中的關(guān)鍵作用模具的出現(xiàn)可以追溯到幾千年前的陶器燒制和青銅器鑄造,但其大規(guī)模應(yīng)用卻是隨著現(xiàn)代工業(yè)的崛起而發(fā)展起來的。19世紀,隨著軍火工業(yè)、鐘表工業(yè)、無線電工業(yè)的發(fā)展,模具開始得到廣泛使用。第二次世界大站后,隨著世界經(jīng)濟的飛速發(fā)展,它又成了大量生產(chǎn)家用電器、車、電子儀器、照相機、鐘表等零件的最佳方式。從世界范圍看,當時美國的沖壓技術(shù)走在最前列,而瑞士的精沖、德國的冷擠壓技術(shù),蘇聯(lián)對塑性加工的研究也處于世界先進行列。20世紀50年代中期以前,模具設(shè)計多憑經(jīng)驗,參考已經(jīng)有圖紙和感性認識,根據(jù)用戶的要求,制作能滿足產(chǎn)品要求的模具,但對所設(shè)計模具零件的機械性能缺乏了解。從1955年到1965年,人們通過對模具主要零件的機械性能和受力狀況進行數(shù)學分析,對金屬塑性加工工藝及原理進行深入討論,使得沖壓技術(shù)得到迅猛發(fā)展。在此期間歸納出的模具設(shè)計原則,使得壓力機械、沖裁材料、加工方法、模具結(jié)構(gòu)、模具材料、模具制造方法、自動化裝置等領(lǐng)域面貌一新,并向?qū)嵱没较蛲七M。進入20世紀70年代,不斷涌現(xiàn)出各種高效率、高精度、高壽命的多功能自動模具。其代表是五十多個工位的級進模和十幾個工位傳遞模。在此期間,日本以“模具加工精度進微米級”而站 了世界工業(yè)的最先列。從20世紀70年代中期至今,計算機逐漸進入模具生產(chǎn)設(shè)計的各個領(lǐng)域,顯著的提高了模具工業(yè)的水平。
我國的模具工業(yè)發(fā)展到今天經(jīng)歷了一個艱辛的歷程。
我國模具工業(yè)是19世紀末20世紀初隨軍火和鐘表業(yè)引進的壓力機發(fā)展起來的。從那時到20世紀50年代初,模具多采用作坊式生產(chǎn),憑工人經(jīng)驗,用簡單的加工手段制造。在以后的幾十年中,隨著國民經(jīng)濟的大規(guī)模發(fā)展,模具工業(yè)進步很快。當時我國大量引進蘇聯(lián)的圖紙、設(shè)備和先進經(jīng)驗,其水平不低于當時工業(yè)發(fā)達的國家。此后直到20世紀70年代末,由于錯過了世界經(jīng)濟發(fā)展的大浪潮,我國模具業(yè)沒有跟上世界發(fā)展的步伐。20世紀80年代末,伴隨家電、輕工、汽車生產(chǎn)線模具的大量進口和模具國產(chǎn)化的呼聲日益高漲,我國先后引進了一批現(xiàn)代化模具加工機床。在此基礎(chǔ)上,參照以后的進口模具,我國成功地復(fù)制了一批替代品。如汽車覆蓋件模具等。模具的國產(chǎn)化雖然使我國模具制造水平逐漸趕上了國際先進水平,但計算機應(yīng)用方面仍然存在很大的差距。
我國模具工業(yè)起步晚,基礎(chǔ)差,就總量來看,大型、精密、復(fù)雜、長壽命模具產(chǎn)需矛盾仍然十分突出。為了進一步振興模具工業(yè),國家有關(guān)部門進一步部署。相信在政府的大力支持下,通過本行業(yè)和相關(guān)行業(yè)以及廣大模具工作者的共同努力,我國模具工業(yè)水平必將大大提高,為國家經(jīng)濟建設(shè)作出更大的貢獻。
參考文獻
1. 王孝培主編。沖壓手冊。北京:機械工業(yè)出版社,1990
2. 肖景容,姜奎華主編。沖壓工藝學。北京:機械工業(yè)出版社,1996
3. 劉建超,張寶忠主編。沖壓模具設(shè)計與制造。高等教育出版社,2002
4. 翟德梅主編。模具制造技術(shù)。河南機電高等專科學校,2002
5. 楊占堯主編。沖壓模具圖冊。高等教育出版社,2002
6. 寇世瑤主編。機械制圖。河南機電高等??茖W校,2003
7. 王秀鳳,萬良輝主編。冷沖壓模具設(shè)計與制造,北京航空航天大學出版社,2004
8. 高為國主編。模具材料。北京:機械工業(yè)出版社,2003
9. 王運炎,葉尚川主編。機械工程材料。北京:機械工業(yè)出版社,1991
10. 陳劍鶴主編。沖壓工藝與模具設(shè)計。北京:機械工業(yè)出版社,2002
11. 薛彥成主編 .公差配合與技術(shù)測量.北京:機械工業(yè)出版社1992
12.程培源,趙仲治主編.模具壽命與材料.武漢:武漢工學院教材出版中心.1994
13.黃毅宏主編.模具制造工藝(第二版).北京:械工業(yè)出版社1996
畢 業(yè) 設(shè) 計(論 文)開 題 報 告
2.本課題的研究思路(包括要研究或解決的問題和擬采用的研究方法、手段(途徑)及進度安排等):
本課題是設(shè)計生產(chǎn)空調(diào)墊片的模具,設(shè)計中采用級進模,根據(jù)始用擋料銷先沖Φ26孔,然后利用此孔作為落料時的導(dǎo)正孔,模具工作時先由活動擋料銷粗定距,再由導(dǎo)正銷精定距,這樣保證了零件的精度,使制件的質(zhì)量得到了保證。通過排樣設(shè)計,該模具的材料利用率達到了85.4%,材料的利用率高,提高了經(jīng)濟效益,同時模具采用下出件方式,提高了工作效率。通過對該模具沖壓設(shè)備的校核,所選的沖壓設(shè)備比較普遍,且該模具的制造難度也較底,所以模具容易得到普遍應(yīng)用。
但是由于設(shè)計水平和實踐經(jīng)驗的局限,設(shè)計中難免出現(xiàn)錯誤,比如模具工作零件材料的價格較高,模具的制造成本較高,而且級進模的導(dǎo)向精度要求較高,在工作過程中不易得到保證。
畢 業(yè) 設(shè) 計(論 文)開 題 報 告
指導(dǎo)教師意見:
1.對“文獻綜述”的評語:
2.對本課題的研究思路、深度、廣度及工作量的意見和對設(shè)計(論文)結(jié)果的預(yù)測:
指導(dǎo)教師:
年 月 日
所在專業(yè)審查意見:
負責人:
年 月 日