石英表墊片落料沖孔彎曲級進(jìn)模設(shè)計(jì)【焊片】【說明書+CAD】
石英表墊片落料沖孔彎曲級進(jìn)模設(shè)計(jì)【焊片】【說明書+CAD】,焊片,說明書+CAD,石英表墊片落料沖孔彎曲級進(jìn)模設(shè)計(jì)【焊片】【說明書+CAD】,石英表,墊片,沖孔,彎曲,曲折,級進(jìn)模,設(shè)計(jì),說明書,仿單,cad
河南機(jī)電高等專科學(xué)校
學(xué)生畢業(yè)設(shè)計(jì)(論文)中期檢查表
學(xué)生姓名
學(xué) 號
指導(dǎo)教師
選題情況
課題名稱
沖孔—落料—彎曲級進(jìn)模
難易程度
偏難
適中
√
偏易
工作量
較大
√
合理
較小
符合規(guī)范化的要求
任務(wù)書
有
√
無
開題報(bào)告
有
√
無
外文翻譯質(zhì)量
優(yōu)
良
中
差
學(xué)習(xí)態(tài)度、出勤情況
好
一般
差
工作進(jìn)度
快
按計(jì)劃進(jìn)行
慢
中期工作匯報(bào)及解答問題情況
優(yōu)
良
中
差
中期成績評定:優(yōu)
所在專業(yè)意見:
負(fù)責(zé)人:
年 月 日
河南機(jī)電高等專科學(xué)校
畢業(yè)設(shè)計(jì)(論文)任務(wù)書
系 部:
專 業(yè):
學(xué)生姓名: 學(xué) 號:
設(shè)計(jì)(論文)題目:
起 迄 日 期: 2006 年 04 月 13 日~ 05月 14日
指 導(dǎo) 教 師:
發(fā)任務(wù)書日期: 2006年 03 月 10 日
任務(wù)書填寫要求
1.畢業(yè)設(shè)計(jì)(論文)任務(wù)書由指導(dǎo)教師根據(jù)各課題的具體情況填寫,經(jīng)學(xué)生所在專業(yè)的負(fù)責(zé)人審查、系主管領(lǐng)導(dǎo)簽字后生效。此任務(wù)書應(yīng)在畢業(yè)設(shè)計(jì)(論文)開始前一周內(nèi)填好并發(fā)給學(xué)生;
2.任務(wù)書內(nèi)容必須用黑墨水筆工整書寫或按教務(wù)處統(tǒng)一設(shè)計(jì)的電子文檔標(biāo)準(zhǔn)格式(可從教務(wù)處網(wǎng)頁上下載)打印,不得隨便涂改或潦草書寫,禁止打印在其它紙上后剪貼;
3.任務(wù)書內(nèi)填寫的內(nèi)容,必須和學(xué)生畢業(yè)設(shè)計(jì)(論文)完成的情況相一致,若有變更,應(yīng)當(dāng)經(jīng)過所在專業(yè)及系主管領(lǐng)導(dǎo)審批后方可重新填寫;
4.任務(wù)書內(nèi)有關(guān)“系”、“專業(yè)”等名稱的填寫,應(yīng)寫中文全稱,不能寫數(shù)字代碼,學(xué)生的“學(xué)號”要寫全號,請規(guī)范化填寫;
5.任務(wù)書內(nèi)“主要參考文獻(xiàn)”的填寫,應(yīng)按照國標(biāo)GB 7714—87《文后參考文獻(xiàn)著錄規(guī)則》的要求書寫,不能有隨意性;
6.有關(guān)年月日等日期的填寫,應(yīng)當(dāng)按照國標(biāo)GB/T 7408—94《數(shù)據(jù)元和交換格式、信息交換、日期和時(shí)間表示法》規(guī)定的要求,一律用阿拉伯?dāng)?shù)字書寫。如“2002年4月2日”或“2002-04-02”。
畢 業(yè) 設(shè) 計(jì)(論 文)任 務(wù) 書
1.本畢業(yè)設(shè)計(jì)(論文)課題來源及應(yīng)達(dá)到的目的:
2.本畢業(yè)設(shè)計(jì)(論文)課題任務(wù)的內(nèi)容和要求(包括原始數(shù)據(jù)、技術(shù)要求、工作要求等):
(1)制件的工藝性分析;
(2)設(shè)計(jì)方案的確定;
(3)工作零部件的計(jì)算與設(shè)計(jì);
(4)其他零部件的計(jì)算及設(shè)計(jì);
(5)模具的裝配與調(diào)試;
(6)設(shè)計(jì)小結(jié)。
所在專業(yè)審查意見:
負(fù)責(zé)人:
年 月 日
系部意見:
系領(lǐng)導(dǎo):
年 月 日
河南機(jī)電高等專科學(xué)校
畢業(yè)設(shè)計(jì)論文
論文題目:沖孔—落料—彎曲級進(jìn)模
系 部
專 業(yè)
班 級
學(xué)生姓名
學(xué) 號
指導(dǎo)教師
2006年 05 月 13 日
河南機(jī)電高等??茖W(xué)校
畢業(yè)設(shè)計(jì)(論文)開題報(bào)告
學(xué)生姓名: 學(xué) 號:
專 業(yè): 模具設(shè)計(jì)與制造
設(shè)計(jì)(論文)題目:沖孔—落料—彎曲級進(jìn)模
指導(dǎo)教師:
2006年4月8日
畢 業(yè) 設(shè) 計(jì)(論 文)開 題 報(bào) 告
1.結(jié)合畢業(yè)設(shè)計(jì)(論文)課題情況,根據(jù)所查閱的文獻(xiàn)資料,撰寫1500字左右(本科生200字左右)的文獻(xiàn)綜述(包括目前該課題在國內(nèi)外的研究狀況、發(fā)展趨勢以及對本人研究課題的啟發(fā)):
開題報(bào)告
1.課題來源:
現(xiàn)代工業(yè)的發(fā)展,對模具技術(shù)的要求也越來越高。綜觀現(xiàn)代模具技術(shù),其集合了機(jī)械、電子、化學(xué)、光學(xué)、材料、計(jì)算機(jī)、精密監(jiān)測和信息網(wǎng)絡(luò)等諸多學(xué)科,是一個(gè)綜合性多學(xué)科的系統(tǒng)工程。模具技術(shù)的發(fā)展趨勢主要是模具產(chǎn)品向著如下的方向發(fā)展趨勢:
(1)高精度現(xiàn)代模具的精度要求比傳統(tǒng)的模具精度至少要高一個(gè)數(shù)量級。
(2)長壽命現(xiàn)代模具的壽命比傳統(tǒng)模具的壽命要高出5~10倍。如現(xiàn)代模具一般均可達(dá)到500萬次以上,最高可達(dá)6億次之多。
(3)高生產(chǎn)率由于采用多工位的級進(jìn)模、多能模、多腔注塑模和層疊注塑模等先進(jìn)模具,可以極大地提高生產(chǎn)率,從而帶來顯著的經(jīng)濟(jì)效益。如用四工位的注塑模生產(chǎn)塑料汽水瓶,每小時(shí)可生產(chǎn)8000件以上。
(4)結(jié)構(gòu)復(fù)雜隨著社會(huì)需求的多樣化和個(gè)性化以及許多新材料、新工藝的廣泛應(yīng)用,對現(xiàn)代模具的結(jié)構(gòu)形式和型腔要求也日益復(fù)雜。若采用傳統(tǒng)的模具制造方法,不僅成本高、生產(chǎn)率低,而且很難保證模具的質(zhì)量要求。
傳統(tǒng)模具設(shè)計(jì)制造技術(shù),根本不能滿足市場對模具的要求。因此,研制和開發(fā)新的模具設(shè)計(jì)、制造技術(shù)勢在必行。模具CAD/CAM和RT技術(shù)正是在這種形勢下被 開發(fā)出來的,并在現(xiàn)代模具的生產(chǎn)中發(fā)揮了重要作用。因此模具產(chǎn)品的技術(shù)含量不斷提高,模具制造周期不斷縮短,模具生產(chǎn)朝著信息化、無圖化、精細(xì)化、自動(dòng)化的方向發(fā)展,模具企業(yè)向著技術(shù)集成化、設(shè)備精良化、產(chǎn)批品牌化、管理信息化、經(jīng)營國際化的方向發(fā)展?;诖?,合理的設(shè)計(jì)模具有著極為重要和深遠(yuǎn)的意義。
2.研究目的和意義
盡管改革開放以來,模具工業(yè)有了較大發(fā)展,但無論是數(shù)量還是質(zhì)量仍滿足不了國內(nèi)市場的需求。造成產(chǎn)需矛盾突出的原因:一是專業(yè)化、標(biāo)準(zhǔn)化程度低,除少量標(biāo)準(zhǔn)件外購?fù)?,大部分工作量均需模具廠去完成,再有企業(yè)管理的體制上的約束,造成模具制造周期長,不能適應(yīng)市場要求;二是設(shè)計(jì)和工藝技術(shù)落后,如模具CAD/CAM技術(shù)采用不普遍,加工設(shè)備數(shù)控化率低等,亦造成模具生產(chǎn)效率不高、周期長。因此我們必須意識到,對模具設(shè)計(jì)的研究的目的和意義在于能夠更好的認(rèn)識模具工業(yè)在國民經(jīng)濟(jì)中的地位的重要性。利用模具生產(chǎn)零件的方法已經(jīng)成為工業(yè)上進(jìn)行成批或大批生產(chǎn)的主要技術(shù)手段,它對保證制品質(zhì)量,縮短試用周期,進(jìn)而爭先占領(lǐng)市場,以及產(chǎn)品更新?lián)Q代和新產(chǎn)品開發(fā)都具有決定性的意義。因此德國把模具稱為“金屬加工中的帝王”,把模具工業(yè)視為“關(guān)鍵工業(yè)”,美國把模具稱為“美國工業(yè)的基石”,把模具工業(yè)視為“不可估量其力量的工業(yè)”,日本把模具說成是“促進(jìn)社會(huì)富裕繁榮的動(dòng)力”,把模具視為“整個(gè)工業(yè)發(fā)展的秘密”。
因此,要使國民經(jīng)濟(jì)各個(gè)部門獲得高速發(fā)展,加速實(shí)現(xiàn)社會(huì)主義四個(gè)現(xiàn)代化,就必須盡快將模具工業(yè)搞上去,使模具生產(chǎn)形成一個(gè)獨(dú)立的工業(yè)部門,從而充分發(fā)揮模具工業(yè)在國民經(jīng)濟(jì)中的關(guān)鍵作用。
3. 國內(nèi)外現(xiàn)狀和發(fā)展趨勢
3.1 我國模具工業(yè)發(fā)展主要成就
我國模具工業(yè)起步較晚,基礎(chǔ)薄弱,長期以來模具制造一直作為保證企業(yè)產(chǎn)品生產(chǎn)的手段被視為生產(chǎn)后方,因此發(fā)展緩慢。1984年,我國成立了中國模具工業(yè)協(xié)會(huì),1987年模具首次被列入機(jī)電產(chǎn)品目錄,當(dāng)時(shí)全國共有模具生產(chǎn)廠點(diǎn)約6?000家,總產(chǎn)值約30億元。隨著我國改革開放的日益深化,市場經(jīng)濟(jì)進(jìn)程的加快,獨(dú)立于產(chǎn)品制造企業(yè)的模具及其標(biāo)準(zhǔn)件、配套件企業(yè)大量出現(xiàn),模具產(chǎn)業(yè)得到快速發(fā)展,在市場競爭中,模具企業(yè)生產(chǎn)技術(shù)不斷提高和規(guī)模不斷擴(kuò)大,模具行業(yè)得到很快發(fā)展。目前,我國模具產(chǎn)值已排名世界第三,2005年達(dá)到500億元。
1988年~1992年,由原國家經(jīng)貿(mào)委下達(dá)計(jì)劃,由機(jī)械部和中國模具工業(yè)協(xié)會(huì)實(shí)施,在全國范圍內(nèi)組織了上百個(gè)模具企業(yè)和有關(guān)科研單位、大專院校,共同進(jìn)行模具技術(shù)攻關(guān),取得了豐碩成果。這些成果主要有:沖壓模具的設(shè)計(jì)制造技術(shù)、塑料模具的設(shè)計(jì)制造技術(shù)、鑄壓模具的設(shè)計(jì)制造技術(shù)、鍛造模具的設(shè)計(jì)制造技術(shù)、模具表面處理技術(shù)、模具材料、模具計(jì)算機(jī)輔助設(shè)計(jì)與制造(CAD/CAM)技術(shù)、模具標(biāo)準(zhǔn)件、模具加工關(guān)鍵設(shè)備、模具壽命研究等方面。由于這些成果的取得及推廣應(yīng)用,使我國模具技術(shù)前進(jìn)了一大步。
“七五”后期和“八五”期間,國家對模具工業(yè)加大了投入,分批分期改造了一批具有特色專長的專業(yè)模具廠和模具標(biāo)準(zhǔn)件廠,引進(jìn)了一大批模具加工關(guān)鍵設(shè)備及精密塑料模、級進(jìn)模、精沖模等設(shè)計(jì)制造技術(shù),對提高我國模具生產(chǎn)技術(shù)水平起到了推動(dòng)作用。同時(shí),許多大專院校開始設(shè)立模具專業(yè),由前聯(lián)邦德國、日本援建及我國自己投資興辦的模具技術(shù)培訓(xùn)中心也陸續(xù)建立,模具技術(shù)人員及技術(shù)工人的培養(yǎng)開始步入軌道。
20世紀(jì)90年代以來,在國內(nèi)汽車行業(yè)的模具設(shè)計(jì)制造中開始采用CAD/CAM技術(shù)。國家科委“863”計(jì)劃將東風(fēng)汽車公司作為CIMS應(yīng)用示范廠,由華中理工大學(xué)作為技術(shù)依托單位,開發(fā)了汽車車身與覆蓋件模具CAD/CAM軟件系統(tǒng),在模具和設(shè)計(jì)制造中實(shí)際應(yīng)用,取得顯著效益。
3.2 模具檢測、加工設(shè)備向精密、高效和多功能方向發(fā)展
(1) 模具檢測設(shè)備的日益精密、高效精密、復(fù)雜、大型模具的發(fā)展,對檢測設(shè)備的要求越來越高?,F(xiàn)在精密模具的精度已達(dá)2~3μm,目前國內(nèi)廠家使用較多的有意大利、美國、日本等國的高精度三坐標(biāo)測量機(jī),并具有數(shù)字化掃描功能。
(2) 數(shù)控電火花加工機(jī)床日本沙迪克公司采用直線電機(jī)伺服驅(qū)動(dòng)的AQ325L具有驅(qū)動(dòng)反應(yīng)快、傳動(dòng)及定位精度高、熱變形小等優(yōu)點(diǎn)。瑞士夏米爾公司的NCEDM具有P-E3自適應(yīng)控制、PCE能量控制及自動(dòng)編程專家系統(tǒng)。另外有些EDM還采用了混粉加工工藝、微精加工脈沖電源及模糊控制等技術(shù)。
(3)高速銑削機(jī)床銑削加工是型腔模具加工的重要手段。而高速銑削具有工件溫升低、切削力小、加工平穩(wěn)、加工質(zhì)量好、加工效率高及可加工硬材料等諸多優(yōu)點(diǎn)。因而在模具加工中日益受到重視。
畢 業(yè) 設(shè) 計(jì)(論 文)開 題 報(bào) 告
2.本課題的研究思路(包括要研究或解決的問題和擬采用的研究方法、手段(途徑)及進(jìn)度安排等):
研究內(nèi)容、途徑及技術(shù)路線
(1) 了解落料拉深沖孔復(fù)合模具的特點(diǎn);
(2) 對復(fù)合模具進(jìn)行工藝分析,設(shè)計(jì)模具,模具制圖等;
(3) 技術(shù)路線:通過查閱,收集的資料的研究方法。
工作的主要階段、速度和技術(shù)指標(biāo)
(1) 在1到6周完成搜索、整理資料。重要找參考資料和網(wǎng)址;
(2) 在7到13周完成建模、計(jì)算和撰寫畢業(yè)論文,提交初稿及修改等;
(3) 在14到15周完成論文資料的完善并提交論文成果,準(zhǔn)備畢業(yè)答辯;
(4) 在16周 教師批閱、評閱論文成果。
現(xiàn)有條件及必須采取的措施
在這四年里的專業(yè)學(xué)習(xí)及實(shí)習(xí),使我對這課題有了一定的認(rèn)識。由于還處于學(xué)生階段,理論和實(shí)踐不能夠很好的統(tǒng)一起來,同時(shí)專業(yè)水平也不是很高,我必須不斷的復(fù)習(xí)和查閱相關(guān)資料,聽取指導(dǎo)老師的批評和建議,按部就班的完成各個(gè)階段的任務(wù),盡自己最大的能力完成畢業(yè)設(shè)計(jì)。
參考文獻(xiàn)
1、盧吉連著,我國模具應(yīng)用技術(shù)現(xiàn)狀與發(fā)展,模具技術(shù),2000
2、胡石玉 龔光容著,模具制造技術(shù),南京 東南大學(xué)出版社,1997
3、黃毅宏著,模具知道工藝,北京 機(jī)械工業(yè)出版社,2000
4、李發(fā)致著,模具先進(jìn)制造技術(shù),北京 機(jī)械工業(yè)出版社,2003
5、陳良杰著,國外模具技術(shù)發(fā)展動(dòng)態(tài),模具工業(yè),2005
6、高佩福著,實(shí)用模具制造技術(shù),第二版,北京 中國輕工業(yè)出版社,2000
7、萬戰(zhàn)勝著,沖壓工藝及模具設(shè)計(jì),北京 中國鐵道出版社,1995
8、馮曉曾 王家瑛 何世禹著,模具壽命指南,機(jī)械工業(yè)出版社,1994
9、郭廣興著,拉深模具磨耗分析及解決,天津汽車,2002
10、王德俊著,板料拉深的新工藝與新模具,機(jī)電工程技術(shù) 2005
畢 業(yè) 設(shè) 計(jì)(論 文)開 題 報(bào) 告
指導(dǎo)教師意見:
1.對“文獻(xiàn)綜述”的評語:
本綜述具有一定的廣度,說明作者在撰寫的過程中查閱了大量的相關(guān)文獻(xiàn),對目前先進(jìn)的工藝進(jìn)行了調(diào)查研究,并針對課題進(jìn)行初步分析,提出了可行的設(shè)計(jì)方案。
2.對本課題的研究思路、深度、廣度及工作量的意見和對設(shè)計(jì)(論文)結(jié)果的預(yù)測:
查閱資料充分,研究思路新穎,能達(dá)到預(yù)期的設(shè)計(jì)目的。
指導(dǎo)教師:
年 月 日
所在專業(yè)審查意見:
負(fù)責(zé)人:
年 月 日
畢業(yè)設(shè)計(jì)(論文)成績
畢業(yè)設(shè)計(jì)成績
指導(dǎo)老師認(rèn)定成績
小組答辯成績
答辯成績
指導(dǎo)老師簽字
答辯委員會(huì)簽字
答辯委員會(huì)主任簽字
插圖清單
圖1 工件…………………………………………………………………1
圖2 彎曲件的展開圖……………………………………………………2
圖3 沖孔落料彎曲工件工序圖………………………………………….5
圖4 同時(shí)卡在凹模的工件(或廢料)示意圖…………………………….8
圖5 (a)大凸模的壓力中心圖……………………………………….11
圖5 (b)總的壓力中心圖…………………………………………….12
圖6 圓形沖孔凸模示意圖………………………………………………15
圖7 沖孔凸模刃口示意圖………………………………………………15
圖8 螺孔到凹模邊界的示意圖…………………………………………16
圖9 凹?!?9
圖10 始用擋料塊…………………………………………………………20
圖11 始用擋料銷的位置示意圖…………………………………………21
圖12 固定擋料銷…………………………………………………………21
圖13 擋料銷位置示意圖…………………………………………………22
圖14 導(dǎo)正銷示意圖………………………………………………………23
圖15 導(dǎo)板…………………………………………………………………24
圖16 模架…………………………………………………………………25
圖17 總裝配圖……………………………………………………………27
表格清單
機(jī)械加工工藝卡 30
機(jī)械加工工藝卡 31
沖孔—落料—彎曲級進(jìn)模具
摘要
此次設(shè)計(jì)為沖孔—落料—彎曲級進(jìn)模,設(shè)計(jì)本模具充分利用了網(wǎng)上資源,圖書館藏書,更重要的是老師的諄諄教導(dǎo),才成就了此模具。
在模具的設(shè)計(jì)過程中,首先,簡要地概述了沖壓模具在社會(huì)發(fā)展領(lǐng)域中的作用及其以后的發(fā)展前途。點(diǎn)明了模具的設(shè)計(jì)意義。然后進(jìn)行工件的工藝分析,進(jìn)而確定了工藝方案。計(jì)算出了模具工作部分的尺寸公差,設(shè)計(jì)出零部件,然后依據(jù)設(shè)計(jì)要求選擇各個(gè)標(biāo)準(zhǔn)件。最后設(shè)計(jì)出模具的總裝配圖。在設(shè)計(jì)過程中需要計(jì)算沖壓力,落料力,彎曲力及推件力,卸料力。從而判斷模具各部件是否能承受壓力機(jī)的作用。更重要的是模具工作零件的設(shè)計(jì),以此為核心的問題,工作零件的誤差將直接影響制件的質(zhì)量。最后利于繪圖工具AutoCAD制作了裝配圖和零件圖,而節(jié)省了許多時(shí)間。
通過此次設(shè)計(jì)使我不僅掌握了沖壓模具設(shè)計(jì)的一般流程,更好的學(xué)習(xí)好多在課本上沒有學(xué)習(xí)的知識。
關(guān)鍵詞 : 沖孔 彎曲 計(jì)算機(jī)繪圖 工藝分析
Blunt bore- fall to anticipate- flection the class enters the molding tool
Abstract
This time design for blunt bore- fall to anticipate- flection the class enters the mold, the design was originally the molding tool to make use of the on-line resources well, the library library, the more important teacher earnestly instruct, just achieving this molding tool.
In the design process of the molding tool, first, the synopsis ground says to hurtle to press the molding tool all after society develop the function in the realm and it of development prospect.Order the design meaning of understand the molding tool.Then carry on the craft analysis of the work piece, then made sure the craft project.Compute the molding tool work part of size business trip, design zero partses of, then request to choose the each standard piece according to the design.Design a total assemble diagram of molding tool finally.The demand computes the blunt pressure in design process, falling to anticipate the dint, the flection dint and push a dint, unload to anticipate the dint.Thus judge whether each parts of molding tool can bear the function of the pressure machine or not.The design of the more important molding tool work spare parts, with this for core of problem, work spare parts of error margin will affect the quantity of make the piece directly.Finally the benefit manufactures to assemble the diagram and the spare parts diagrams in the painting tool AutoCAD, but saved many time.
Pass this time design make me not only controled to hurtle the general process of press the molding tool design, the better study is a lot of in the lesson originally up have no knowledge of study.
Keyword: Blunt bore Flection The calculator painting The craft analysis
機(jī)械加工工藝過程卡
機(jī)械加工工藝過程卡片
產(chǎn)品型號
零(部)件圖號
03
產(chǎn)品名稱
凹模
零(部)件名稱
共( )頁第( )頁
材料牌號
40 Cr
毛坯
種類
鍛造毛坯
毛坯外型尺寸
220mmx80mm
每個(gè)毛坯可制件數(shù)
1
每臺(tái)
件數(shù)
備注
工序號
工序名稱
工 序 內(nèi) 容
車間
工段
設(shè)備
工 藝 裝 備
工時(shí)
準(zhǔn)終
單件
1
下料
下料:Ф80mm×70mm
備料車間
鋸床
2
鍛造
鍛至尺寸Ф60mm×80mm
鍛造車間
空氣錘C41—250 加熱爐
3
退火
退火
鍛造車間
加熱爐
4
刨
模具車間
刨床
5
刨
模具車間
刨床
6
銑
銑圓弧面及各平面尺寸至公差要求
模具車間
銑床
7
鉆孔
鉆小型芯孔、推桿孔
模具車間
鉆床
8
磨
磨型芯表面
模具車間
磨床
9
拋光
鉗工
設(shè)計(jì)日期
審核日期
標(biāo)準(zhǔn)化日期
會(huì)簽
日期
標(biāo)記
記數(shù)
更改文
件號
簽字
日期
標(biāo)記
處數(shù)
更該文件號
2006.5.12
機(jī)械加工工藝過程卡
機(jī)械加工工藝過程卡片
產(chǎn)品型號
零(部)件圖號
03
產(chǎn)品名稱
凸模
零(部)件名稱
型芯
共( )頁第( )頁
材料牌號
40 Cr
毛坯
種類
鍛造毛坯
毛坯外型尺寸
220mmx80mm
每個(gè)毛坯可制件數(shù)
1
每臺(tái)
件數(shù)
備注
工序號
工序名稱
工 序 內(nèi) 容
車間
工段
設(shè)備
工 藝 裝 備
工時(shí)
準(zhǔn)終
單件
1
下料
下料:Ф80mm×70mm
備料車間
鋸床
2
鍛造
鍛至尺寸Ф60mm×80mm
鍛造車間
空氣錘C41—250 加熱爐
3
退火
退火
鍛造車間
加熱爐
4
刨
模具車間
刨床
5
刨
模具車間
刨床
目錄
緒論 1
1.1現(xiàn)狀 1
1.2 未來沖壓模具制造技術(shù)發(fā)展趨勢 2
1 零件的沖壓工藝性分析 5
2 工藝方案的確定及工藝計(jì)算 6
2.1 工藝方案的確定 6
2.2 排樣設(shè)計(jì) 7
2.2.1 毛坯的尺寸計(jì)算 7
2.2.2 確定零件的排樣方案 7
3 工藝計(jì)算 10
3.1 沖裁工序總力的計(jì)算 10
3.2、彎曲力的計(jì)算 11
3.3、彈性橡膠板的計(jì)算 12
4 壓力機(jī)的選擇 13
4.1 初選壓力機(jī) 13
4.2 壓力中心的計(jì)算 13
5 工作零部件的設(shè)計(jì)與標(biāo)準(zhǔn)化 16
5.1 工作零部件的計(jì)算 16
6 主要工作機(jī)構(gòu)的設(shè)計(jì)與標(biāo)準(zhǔn)化 25
6.1 定位裝置的設(shè)計(jì)與標(biāo)準(zhǔn)化 25
6.1.1 始用擋料裝置的設(shè)計(jì)與標(biāo)準(zhǔn)化 25
6.1.2 固定擋料銷的設(shè)計(jì)與標(biāo)準(zhǔn)化 25
6.1.3 導(dǎo)正銷的設(shè)計(jì)與標(biāo)準(zhǔn)化 26
6.1.4 導(dǎo)料板的設(shè)計(jì)與標(biāo)準(zhǔn)化 27
6.2 標(biāo)準(zhǔn)模架的選用 28
6.3 卸料裝置的設(shè)計(jì)與標(biāo)準(zhǔn)化 28
7 裝配圖及壓力機(jī)的校核 30
7.1 裝配圖 30
7.2 壓力機(jī)的選擇與校核 30
8 模具的裝配與調(diào)試 31
8.1,模具的裝配 31
8.2模具的調(diào)試 31
8.2.1 凸,凹模間隙的調(diào)試 31
8.2.2 沖模的試沖 31
8.2.3 試沖過程中的調(diào)整 32
設(shè)計(jì)總結(jié) 33
參考文獻(xiàn) 34
致謝 35
2
河南機(jī)電高等??茖W(xué)校
畢業(yè)設(shè)計(jì)(論文)評語
學(xué)生姓名:班級: 班 學(xué)號:
題 目:沖孔—落料—彎曲級進(jìn)模
綜合成績:
指導(dǎo)者評語:
指導(dǎo)者(簽字):
年 月 日
畢業(yè)設(shè)計(jì)(論文)評語
評閱者評語:
評閱者(簽字):
年 月 日
答辯委員會(huì)(小組)評語:
。
答辯委員會(huì)(小組)負(fù)責(zé)人(簽字):
年 月 日
附件5:
畢業(yè)設(shè)計(jì)(論文)的內(nèi)容及裝訂程序
畢業(yè)設(shè)計(jì)說明書(論文)的內(nèi)容及裝訂程序依次為:
1.封面(含作者、論文題名、指導(dǎo)教師姓名、專業(yè)技術(shù)職務(wù)等)
2.摘要(含中、外文摘要及關(guān)鍵詞)
3.目錄
4.插圖和附表清單(需要時(shí))
5.符號、標(biāo)志、縮略詞、首字母、術(shù)語等匯集表(需要時(shí))
6.正文(含引言或緒論)
7.結(jié)論
8.致謝
9.參考文獻(xiàn)
10.附錄(需要時(shí))
11.結(jié)尾部分(需要時(shí))
河南機(jī)電高等??茖W(xué)校模具設(shè)計(jì)與制造專業(yè)畢業(yè)生質(zhì)量追蹤調(diào)查表
畢業(yè)時(shí)間(屆): 學(xué)生姓名 調(diào)查時(shí)間
滿意
比較滿意
基本滿意
不滿意
備注
1.思想表現(xiàn)
2.敬業(yè)精神
3.工作態(tài)度
4.專業(yè)知識
5.工作能力與水平
6.創(chuàng)新精神
7.與同時(shí)協(xié)作精神
8.工作實(shí)績
綜合評價(jià)
對該畢業(yè)生總體評價(jià)及對學(xué)校人才培養(yǎng)的意見及建議:
被調(diào)查單位(蓋章):
被調(diào)查人簽字:
年 月 日
Annals of the CIRP Vol. 56/1/2007 -269- doi:10.1016/j.cirp.2007.05.062 Design of Hot Stamping Tools with Cooling System H. Hoffmann 1 (2), H. So 1 , H. Steinbeiss 1 1 Institute of Metal Forming and Casting, Technische Universitt Mnchen, Garching, Germany Abstract Hot stamping with high strength steel is becoming more popular in automotive industry. In hot stamping, blanks are hot formed and press hardened in a water-cooled tool to achieve high strength. Hence, design of the tool with necessary cooling significantly influences the final properties of the blank and the process time. In this paper a new method based on systematic optimization to design cooling ducts in tool is introduced. The optimization procedure was coupled with FE analysis and a specific evolutionary algorithm. Through this procedure each tool component was separately optimized. Subsequently, the hot stamping process was simulated both thermally and thermo-mechanically with the combination of optimized solutions. Keywords: Hot Stamping, Finite element method (FEM), Optimization 1 INTRODUCTION In recent years, weight reduction while maintaining safety standards has been strongly emphasized in the automotive industry for building new models. Hot stamping of high strength steels for automotive inner body panels offers the possibility of fuel saving by weight reduction and enhances passenger safety due to its higher strength. In order to achieve high strength by hot stamping with high strength steels, blanks should be heated above austenitic temperature and then cooled rapidly such that the martensitic transformation will occur. Normally, the tools are heated up to 200C without active cooling systems in serial production 1. However, in hot forming processes, the tool temperature must maintain below 200C to achieve high strength. So far, very few studies have been conducted regarding the design of cooling systems in a hot stamping tool. This paper presents a systematic method to design hot stamping tools with cooling systems in optimal and fast manners, in which the cooling system is optimized with the help of FE analysis and a specific evolutionary algorithm. Subsequently, a series of hot forming processes was simulated thermally as well as thermo-mechanically to observe the heat transfer and the cooling rate through the optimized cooling system. In the hot stamping process the tool motion requires relatively short time compared to the whole process time. Therefore, thermal analysis of a series of hot stamping processes without considering the tool motion could be sufficient with reasonable accuracy and shorter computation time for quick design of the hot stamping tools with cooling system. However, thermo- mechanical analyses that include the motion of the punch and the forming process are necessary to enhance the accuracy of the predictions. In this paper, a crash relevant hot stamped component of a vehicle and its corresponding prototype of hot stamping tool are introduced in chapter 2. And the optimization procedure with FE analysis and evolutionary algorithm is introduced in chapter 3. Subsequently, the results of thermal and thermo-mechanical analyses with the optimized hot stamping tool are presented. 2 COOLING OF HOT STAMPING TOOL 2.1 Motivation To enhance the economical production procedure and good characteristics of the formed parts, hot stamping tools need to be designed optimally. Therefore, the main objective of this study is the optimal designing of an economical cooling system in hot stamping tools to obtain efficient cooling rate in the tool. So far, very few researches have been conducted regarding the design of cooling systems in hot stamping tools. Therefore, an advanced design method is required. Also, an adequate simulation model is required to perform the optimization and investigation of tools and products as fast and accurate as possible. 2.2 Characteristics of 22MnB5 In direct hot forming process, the quenchable boron- manganese alloyed steel 22MnB5 is commonly used. Also, 22MnB5 is one of the representative materials of ultra high strength steels. Therefore, in this study, aluminium pre-coated 22MnB5 sheet (Arcelors USIBOR) was considered as the blank material. The material 22MnB5 has a tensile strength of 600MPa approximately at the delivery state, and the tensile strength can be significantly increased by hot stamping process. Higher tensile strength is achieved in the hot stamping process by a rapid cooling at least at the rate of 27C/s 2. The initial sheet of 22MnB5 consisting of ferritic-perlitic microstructure must be austenitized before forming process in order to achieve a ductility of blank sheet. As the austenite cools very fast during quenching process martensite transformation will occur. This microstructure with martensite provides the hardened final product with a high tensile strength up to 1500 MPa. 2.3 Tool component and test part The components of the prototype hot stamping tool and its kinematics are shown in Figure 1 and the initial blank and the proposed test part in Figure 2. The initial blank has the dimension of 170mm x 430mm x 1.75mm and the draw depth of the proposed test part is 30mm. -270- faceplate counter punch blank holder punch faceplate table table blank distance bolts die barells plunger Figure 1: Schematic of a test hot stamping tool. Initial thickness: 1.75mm 4 3 0 m m1 7 0 m m 4 0 0 m m 1 0 0 m m Draw depth: 30mm Figure 2: Initial blank and drawn part. 2.4 Cooling systems in stamping tools The tool must be designed to cool efficiently in order to achieve maximum cooling rate and homogeneous temperature distribution of the hot stamped part. Hence, a cooling system needs to be integrated into the tools. The cooling system with cooling ducts near to the tool contour is currently well known as an efficient solution. However, the geometry of cooling ducts is restricted due to constraints in drilling and also the ducts should be placed as near as possible for efficient cooling but sufficiently away form the tool contour to avoid any deformation in the tool during the hot forming process. To guarantee good characteristics of the drawn part, the whole active parts of the tool (punch, die, blank holder and counter punch) need to be designed to cool sufficiently. 3 DESIGNING OF COOLING SYSTEMS 3.1 Optimization with Evolutionary Algorithm x s a boring position minimum distance between loaded contour and cooling duct (x) between unloaded contour and cooling duct (a) between cooling ducts (s) loaded contour unloaded contour coolant bore Constraints sealing plug input parameters of cooling system number of cooling channels and coolant bores diameter of cooling duct evaluation criteria cooling intensity and uniform cooling Optimization (Evolutionary Algorithm) 1 solution per given input separate optimization Solution Figure 3: Optimization procedure for each tool. The optimization procedure for design of a cooling system is presented in Figure 3. In this procedure, cooling channels can be optimized in each tool by a specific Evolutionary Algorithm (EA), which was developed at ISF (Institut fr Spannende Fertigung, Universitt Dortmund, Germany) for the optimization of injection molding tools and adapted for design of cooling systems in hot stamping tools 3,4. As constraints for optimization, the available sizes of connectors and plugs, the minimum wall thicknesses as well as the nonintersection of drill holes were considered. The admissible minimal distance between cooling duct and unloaded/loaded tool contour (a/x) and the minimal distance between cooling ducts (s) were determined through FE analyses. Parameters of the cooling system such as the number of channels (a chain of sequential drill holes), drill holes per channel and the diameter of the holes for each tool component were also provided as input parameters to the optimization. These input parameters can be obtained from existing design guidelines or through FE simulations. Based on the input parameters initial solution is generated randomly by EA or manually by the user. From the initial solution, the EA generates new solutions by recombination of current solutions and modifying them randomly. The defined constraints were subsequently used for the correction of the generated solutions and the elimination of inadmissible solutions. All the generated solutions were evaluated by optimum criteria such as efficient cooling rate and uniform cooling. Finally, the best solution was selected as optimized cooling channels for a selected tool component. 3.2 Optimized cooling channels In our research, the selected diameters of ducts were 8mm and 12mm for punch, 8mm, 12mm and 16mm for die, 8mm and 10mm for counter punch and 8mm for blank holder. EA was used to place the cooling channels optimally according to the given input and constraints for each tool component. The optimized profiles of the channels for duct diameter of 8mm are shown in Figure 4. c a b 4 0 0 m m 100mm 145 mm pu n c h cou n ter p un ch die b l an k h o ld er a b a b c a b 5 1 0 m m 260 mm a b c 70mm 510mm ab 260 mm a 110mm cooling medium plug 380mm a 70mm 250 mm b c b direction of cut view Figure 4: Optimized cooling channels with 8mm duct diameter. 4 EVALUATION OF THE OPTIMUM COOLING CHANNEL DESIGNS The design of cooling channels was generated by EA for each tool component with different bore diameters and their cooling performances were evaluated by using FE simulations. 4.1 Thermal analysis In the design and development phase of hot stamping tools, it is important to estimate the hot stamping process qualitatively and quantitatively within a short time for -271- economic manufacturing of tools. For this purpose, two transient thermal simulations were carried out with ABAQUS/standard, which uses an implicit method. In this analysis steel 1.2379 was selected as a tool material. The simulation model comprises 4 tool components: punch, die, blank holder and counter punch. In Table 1, the selected combinations of tool components with optimized cooling channels are presented. The variant V1 is the combination of optimized tools with small cooling duct diameters, whereas variant V2 with large cooling duct diameters. V1 V2 punch counter punch blank holder 8mm 8mm 8mm 8mm 12mm 10mm 16mm 8mm diameter of cooling duct die Table 1: Combinations of designed tools for FE analysis. In order to represent a series of production processes, a number of cycles of the hot stamping processes were simulated as a cycle heat transfer analysis. The Figure 5 shows the FE model including boundary conditions. cooling duct (c) T c = 20C h c = 4700W/m 2 C tool (t) T t,0 = 20C environment (e) T e = 20C h e = 3.6W/m 2 C counter punch blank holder punch blank die blank (b) T b,0 = 850C blank - tool D c = f (d,P) Figure 5: FE model and boundary conditions. This hot forming process for the prototype part was designed such that the cycle time is 30 sec. In a cycle, the punch movement for forming requires 3 sec, the tool is closed for 17 sec for quenching the blank and it takes another 10 sec for opening the tool and locating the next blank on the tool. However, in this thermal analysis, the tool motion and deformation of the blank was not considered to reduce the computation time. Hence, only heat transfer analysis was performed in a closed tool. In thermal analysis, the quenching process takes places 20 sec instead of 17 sec, because the motion of punch was not considered. It was assumed that the blank has an initial homogeneous temperature (T b,0 ) of 850C due to free cooling from 950C during the transfer in environment. The initial tool temperature (T t,0 ) was assumed as 20C at the first cycle and changes from cycle to cycle. The temperature of the cooling medium (T c ) was assumed as room temperature. Beside the boundary conditions, the required material properties of 22MnB5 were obtained from hot tensile test conducted at LFT (Lehrstuhl fr Fertigungstechnologie, Universitt Erlangen-Nrnberg, Germany), with whom a joint research on hot stamping is being conducted 2. In this analysis, convection from blank and tools to the environment (h e ), conduction within each tool, convection from tool into cooling channels (h c ) and heat transfer from hot blank to tool (D c ) were considered. Here, D c , is the contact heat transfer coefficient (CHTC) which describes the amount of heat flux from blank into tools. This coefficient usually depends on the gap d between tool and blank and the contact pressure P. It increases usually as the contact pressure increases. However, in thermal analysis the pressure dependent CHTC was not available, but a gap dependent coefficient was used. CHTC was assumed as 5000W/m 2 C at zero distance between blank and tool (gap) and keeps constant until the gap increases beyond critical value. 4.2 Thermo-mechanical analysis Simulation of hot forming is different from conventional sheet metal forming simulation, in which the distribution of temperatures or stresses in tools is neglected. For fast and easy way to analyze the hot forming process the tool and the blank were modelled with shell elements as in other studies 5,6. In these studies, the temperatures could be distributed along the thickness of the shell element with the user-defined function of temperature, but the temperature within the tool was not considered. Also, in this simulation model the heating of tools in a series of hot stamping processes were not considered. Furthermore, the shell model for thermal contact problems is just adequate for relatively short contact time 6. Therefore, in our studies the tools and the blank were modelled with volume elements to simulate the sequential heat transfer in a series of processes. The thermo- mechanical simulation was conducted with ABAQUS/explicit. In comparison to the thermal analysis, the whole forming and quenching process were modelled and the dynamic temperature and stress responses of tools in contact with hot blank were simulated by using time-temperature dependent flow stress curves. The heat transfer could be more accurately expressed using pressure dependent CHTC at contact places which change during forming process. In addition, temperature dependent thermal conductivity and specific heat were also considered. However, in thermo-mechanical analysis, as the number of elements increases, the complexity of the FE problem significantly increases. In conventional forming simulation an adaptive mesh can be normally used to spare the simulation time and to obtain a more accurate solution in the contact area. However, adaptive mesh refinement causes instability during computation in thermo- mechanical analysis. Therefore, a refined mesh with higher punch velocity was considered to reduce the simulation time. The heat transfer coefficients were scaled accordingly to obtain the same heat flux 7. 5 SIMULATION RESULTS AND DISCUSSION 5.1 Thermal analysis Figure 6 shows the temperature changes in the tool components for 10 cycles at tool combination V1 and V2. T C 400 300 100 0 030100 0 300100 die punch t s t s V1 V2 Figure 6: Temperature changes in heat transfer analysis. The results show that the hottest temperatures of the tools at the end of each cycle do not change almost after some cycles. The obtained cooling rates of the blank at the hottest point from 850C to 170C are 40C/s with V1 and 33C/s with V2 at 10th cycle and these are greater than the required minimum cooling rate of 27C/s. Furthermore, V1 leads to a more efficient cooling performance than V2. Better cooling performance for V1 compared to V2 can be explained with the geometric restrictions and the minimal wall thickness. A cooling duct with small diameter can be placed closer to the tool surface in a convex area and the amount of the cooling channels can be increased additionally. Usually, the heat dissipation in the convex area is slower than in concave area 6. The result shows also that the temperature of convex area in the punch -272- cools down slower than the concave areas in the die. Due to this fact, it can be concluded that the efficient cooling is most desired at convex area. 5.2 Thermo-mechanical analysis The heat transfer with optimized tool components was simulated thermally at first. However, there was a simplification of a hot stamping process in thermal analysis. Therefore, a thermo-mechanical analysis for V1 was performed to observe the differences and the significance of modelling the punch movement. Temperature change curves at the hottest point from the end of the first cycle in the blank, die and punch are shown in Figure 7. The tool cooled further 10 sec after quenching and the temperature changes in the die and punch were presented for 30 sec. A coupled thermo- mechanical analysis was done using gap-pressure dependent CHTC. The results from thermal analysis shows a cooling rate of 92C/s from 850C to 170C in comparison to 75C/s from thermo-mechanical analysis. 400 300 100 0 die punch 05 20 1000 800 400 T C 200 Thermal analysis Thermo-mechanical analysis t s 15 blank 0 0 5 30 0 5 25 30t s10 202510 20t s T C Figure 7: Temperature changes in thermal and thermo- mechanical analysis (1th cycle). To verify the accuracy of a thermal analysis or to predict a serial production process more accurately a series of thermo-mechanical analysis was done. For this analysis the punch velocity was increased 10 times and 10 hot stamping processes were simulated. In Figure 8, the temperature change curves at the hottest point of the die and punch from a thermal and thermo-mechanical analysis are compared for 10 cycles. Finally, the temperature distributions in the blank at the end of the 10th cycle are shown in Figure 9. 400 300 100 0 TC 030ts100 030ts100 die punch thermal thermo-mechanical Figure 8: Temperature changes for 10 cycles. (b) T C (a) 130 60 102 74 88 116 T C 140 70 112 84 98 126 Figure 9: Temperature fields of blanks at the end of 10th cycle: (a) thermal and (b) thermo-mechanical analysis. In Figure 8, the temperature differences at the end of 10th cycle between the thermal and thermo-mechanical analyses were 7C in the die and 3C in the punch. Subsequently, the Figure 9 indicates that the maximum temperature of the blank from the thermal analysis is slightly greater than that of the thermo-mechanical about 10C. Nonetheless, the temperature fields of blanks from both analyses are very similar. As a consequence, the thermal analysis for a series of hot stamping processes is relatively accurate compared to the thermo-mechanical analysis. Furthermore, a thermal heat transfer analysis could be used to design and develop the hot stamping tools in the early phase due to its timesaving computation. 6 CONCLUSION AND FUTURE WORK A systematic method has been developed for optimizing the geometrical design of the cooling systems of hot stamping tools. This methodology was successfully applied to design of cooling channels in a prototype tool for efficient cooling performance. This indicates that the method can be used for designing cooling systems in other stamping tools as well. This paper presented both thermal and thermo- mechanical simulations to represent a series of hot stamping processes. The thermal analysis could be used for an optimization and investigation of hot stamping processes especially in the developing stage. However, a thermo-mechanical analysis is needed to predict more accurately but it is still time consuming to analyze the processes within adequate time period. To resolve this problem, an alternative simulation model will be further studied. Also, a more accurate contact condition for thermo-mechanical analysis remains to be studied. To validate this proposed method and its corresponding FE model, a prototype tool is currently being built and experiments will be carried out for validation. 7 ACKNOWLEDGMENTS We extend our sincere thanks to all joint project researchers of LFT and ISF. 8 REFERENCES 1 Sik
收藏
鏈接地址:http://www.820124.com/article/20848868.html