水果單列輸送裝置的設計
水果單列輸送裝置的設計,水果單列輸送裝置的設計,水果,生果,瓜果,單列,輸送,裝置,設計
畢業(yè)設計任務書
設計課題
名稱
水果單列輸送裝置的設計
學生姓名
黃銳
院(系)
工程
專業(yè)班級
機051
指導教師
劉木華
職稱
教授
學歷
博士后
畢業(yè)設計要求:
1.完成電子文檔及答辯的PPT文檔。并打印裝訂成冊;
2.繪制零件圖和裝配圖,圖紙量不少于1.5A0;
3.按時認真完成畢業(yè)設計內容;
4.查閱相關文獻和資料,擴展知識面。
畢業(yè)設計內容與技術參數(shù):
1.水果單列輸送裝置的零部件設計;
2.繪制零件圖裝配圖,寫說明書;
3.按照技術參數(shù)計算并確定機體各零部件的結構尺寸;
4.配以圖表達清楚內容。
畢業(yè)設計工作計劃:
1、2008年12月 接受畢業(yè)設計任務,查閱資料為任務做準備;
2、2009年 1月 確定整體方案;
3、2009 年2月~4月 繪制圖紙及編寫說明書
4、2009 年5月 整理圖紙及說明書文件定稿打印,準備畢業(yè)答辯。
接受任務日期: 2008 年 月 日 要求完成日期: 2009 年 月 日
學 生 簽 名:
指導教師簽名: 院長(主任)簽名:
編 號 20050657
畢業(yè)設計材料
題 目
水果單列輸送裝置的設計
專 業(yè)
機械化及其自動化
學生姓名
黃銳
材 料 目 錄
序號
附 件 名 稱
數(shù)量
備注
1
畢業(yè)設計說明書
1
2
畢業(yè)設計任務書
2
3
CAD圖紙A0
1
4
CAD圖紙A3
1
5
CAD圖紙A4
7
二〇〇九年五月
畢業(yè)論文題目
7
本 科 畢 業(yè) 設 計
題目: 水果單列輸送裝置設計
學 院: 工 學 院
姓 名: 黃 銳
學 號: 20050657
專 業(yè): 機械化及其自動化
年 級: 機051
指導教師: 劉木華
二OO九年 五 月
13
水果單列輸送裝置設計
摘 要
該設計的水果單列輸送裝置是一種能實現(xiàn)水果自動形成單列的裝置。將兩個筒式滾子通過形成V字形的方式放置在機器的兩邊(從水果輸送進來到輸送出去的方向),滾筒利用電機帶動,當電機運轉時,帶動主動滾筒。主動滾筒通過皮帶的轉動帶動從動滾筒轉動。前后兩對滾筒的運轉速率不同,水果則可能原地不動或者運動離開。形成旋渦狀分開,所以在滾子兩邊設有坡型板,在坡型板的輔助下,類球形水果能自動形成單列進入下一級機器中。在電機的驅動下。滾子可以平穩(wěn)的運轉。能夠確保正確及可靠的供給水果、能夠為多種無聊自動成單列運輸。從而滿足特定工序的需求。例如用于水果噴蠟及拋光、水果分級、其他準球形物料的分級等裝備所需的供給機構。
關鍵詞:水果 單列輸送 水果分級
Abstract
The design of the fruit is a single delivery device to achieve the formation of separate fruit and automatic devices. The two roller tube through the formation of V-shaped manner on both sides of the machine placed in (from the fruit conveyor to come out of the direction of transmission), the use of motor driven rollers, when the motor running, the drive roller initiative. Take the initiative to drum through the drive belt driven rotating drum rotation. Two pairs of rollers before and after the operation rate of different fruit may stay put or leave the campaign. The formation of vortex-like separated, it has a roller on both sides of the slope plate, in the slope of the supporting plate, the type of spherical fruits automatically to form a separate machine to the next level.
Driven by the motor. Roller can be a smooth operation. To ensure correct and reliable supply of fruit, can be automated for a variety of boring into a single transport. Processes to meet specific needs. For example, spray wax and polishing fruit, fruit grading, and other quasi-spherical, such as materials and equipment required for the classification of supply agencies.
Key words: fruits, fruit grading conveyor separate
Translated text目 錄
1 緒 論 1
1.1 引言 1
1.2 水果分級機器的市場 1
1.3 水果分級的意義 1
2零部件的設計與選擇 2
2.1框架主體的設計 2
2.2輸送帶的選擇 3
2.3滾筒的設計 4
2.4電機承載的設計 5
2.5皮帶托板與滾筒軸撐架的設計 5
2.6滾筒支承座的設計 6
2.7 軸的設計 6
2.8 坡形板的設計 7
2.8滾筒中軸承的選擇 7
2.9電動機的選擇 8
2.10輪子的選擇 8
3輸送機械的計算 9
3.1工作條件 9
3.2輸送能力的計算 9
3.3電動機帶輪的計算 9
3.4滾筒軸軸承的計算 9
3.5軸的強度計算 10
總結 11
參考文獻
致 謝
1 緒 論
1.1 引言
當代生活中,人們對果品的要求是不只是實用,而且要外觀好看。包裝精美。故此水果分級機器營運而生,水果分級機器的目的是為了把水果按照外形,尺寸,重量按等級分開來,已達到產(chǎn)生更多利潤的目的。
本種水果分級機,由機架、整理排列皮帶輸送機及裝于其上的前段整理排列裝置、檢測分選皮帶輸送機及裝于其上的對射式光電傳感器光電檢測裝置和以壓縮空氣為動力的噴氣頭自動選別裝置組成;傳感器和噴氣頭之間有控制線電連接;整理排列皮帶輸送機的出料端接檢測分選皮帶輸送機進料端;前段整理排列裝置為底部有出口的無底框形結構,水果直接堆放在皮帶上??啥沤^機械分級易造成傷果現(xiàn)象的發(fā)生,適應性好,對硬皮類、表皮薄弱的水果同樣適用;且調整靈活,分級精度高,不會出現(xiàn)大小“串級”的混亂現(xiàn)象。
1.2 水果分級機器的市場
近20年來,世界水果生產(chǎn)高速發(fā)展,總產(chǎn)量從80年代初的年產(chǎn)2.7億t到1999年則達到5.35億t。在供求關系上,名優(yōu)水果及果汁消費量迅速增長,水果需求種類多樣化趨勢明顯。在區(qū)域分布上,南半球諸國的參與促進了水果的周年供應,發(fā)展中國家的參與大大增加了熱帶水果的供給,亞洲是水果生產(chǎn)和消費增長速度最快的地區(qū),也是目前水果產(chǎn)量最多的地區(qū)
水果分級現(xiàn)在已經(jīng)成為市場中水果流通環(huán)節(jié)所必須的一個項目,是現(xiàn)在廣泛的應用于各個大型果園及個人小型果園的的必要機械。起著實現(xiàn)各生產(chǎn)環(huán)節(jié)的連續(xù)性和自動化的作用,大大提高了勞動生產(chǎn)率,減輕了勞動強度。與傳統(tǒng)的人工分級相比,具有工作平穩(wěn)可靠,操作維護方便,避免傷害果皮,輸送距離長,提高工作效率,運轉費用低等優(yōu)點。
根據(jù)目前的水果市場的需求,用機器水果分級成為果園的頭等需求,為了贏取更多的利潤空間,水果分級機器是比人工分級更好的選擇。
1.3 水果分級的意義
水果分級是根據(jù)水果的尺寸,色澤。和重量分級,分級的目的是便于使每一種不同的水果形成自己的經(jīng)濟效益。例如:按照尺寸分類,可以將大小一致的水果聚集到一起,然后再按色澤分類。最后裝成果盒。以此提高水果的價值,比單一大批的進行水果出售可以賺取更多的利潤。而一些色澤不勻稱,重量。大小不一的水果則可以進行加工,制成罐頭或者水果附加產(chǎn)品。提高水果的價值。為水果種植戶提供更豐厚的利潤。也為不同的水果需求人群提供更加多變的選擇。
2零部件的設計與選擇
2.1框架主體的設計
框架主體做為支撐和連接各個部件的部分。根據(jù)需要,考慮到本機器一般是為小型果園準備的,從價格和經(jīng)濟性方面選取,故選取鋁型材。而擠壓好的鋁合金型材,其表面耐蝕性不強,須通過陽極氧化進行表面處理以增加鋁材的抗蝕性、耐磨性及外表的美觀度(鋁型材就是鋁棒通過熱熔,擠壓.從而得到不同截面形狀的鋁材料)。
如圖1所示:
考慮到支撐的重量和性能因素,取直徑是50mm的型材截面。具體尺寸見裝配圖。框架之間的連接采用一固定零件與螺母共同固定在鋁型材四面的槽中。固定零件。 圖2:角固定件
材料選擇為15號不需無工藝要求。
2.2輸送帶的選擇
輸送帶用來傳遞牽引力和承放被運貨物,因此要求它強度高、抗磨耐用、伸長率小和便于安裝修理。帶式輸送機使用的輸送帶有橡膠帶、塑料帶、鋼帶、金屬網(wǎng)帶等,最常用的是橡膠帶。橡膠輸送帶有棉織芯,合成纖維芯,鋼絲繩芯等多種。塑料輸送帶有層芯和整芯之分。各種芯材和不同的覆蓋膠可組成各種類型的光面或花紋輸送帶。
在進行系統(tǒng)設計時,應認真研究輸送量,輸送距離,輸送速度及輸送帶寬度之間的關系。
根據(jù)輸送帶的工作條件,合理確定安全系數(shù),經(jīng)濟合理的選擇輸送帶的帶芯材料和帶芯層數(shù)。輸送帶的安全系數(shù)應考慮安全,可靠,壽命,制造質量,經(jīng)濟成本,接頭效率,啟動系數(shù),現(xiàn)場條件,使用經(jīng)驗等因素。
本機器中運送的物料為水果。選取滌綸帆布的輸送帶, PP-90型。滌綸帆布厚度為1.0mm,扯斷強度為90N/(mm·層),層數(shù)為1.上下覆蓋膠厚度為0.5mm。輸送帶厚度為2.0mm。重量為1.35kg/㎡。輸送帶寬取100mm.所以選擇兩對滾筒承載輸送帶處寬度為104mm,其他尺寸詳見零件圖
輸送帶的厚度 輸送帶厚度(mm)=布層數(shù)×每層厚度(mm)+上厚膠(mm)+下厚膠(mm)
輸送帶的最大張緊工作張力:=
式中---輸送帶的最大工作張力,N
B---帶寬,mm
Z---輸送帶的芯層帆布層數(shù);
---輸送帶縱向扯斷強度,N/(mm·層)
n---輸送帶的安全系數(shù)。
表1
計算項目
符號
單位
計算公式和參數(shù)選定
計算結果
計算功率
W
500
帶 速
m/s
0.3
初定中心距
m
根據(jù)結構而定
1700
單位帶寬離心拉力
N/m
1.6
帶寬
m
0.1
作用在軸上的力
N
1666.7
2.3滾筒的設計
傳動滾筒一般為傳送機構的主要部件。滾筒表面有裸露光鋼面,人字形和菱形花紋橡膠覆面,小功率。小帶寬及環(huán)境干燥時可采用裸露光鋼面滾筒。本設計中即選擇了裸露光鋼面滾筒。而滾筒表面要求精度不高,與皮帶間產(chǎn)生摩擦力使輸送帶不至于打滑即可。但在輸送帶繞過滾筒處又會使輸送帶發(fā)生疲勞磨損。所以滾筒直徑不能太小,本機器中有兩對滾筒。一對為主動滾筒。一對為從動滾筒。主動滾筒中有V帶槽。從動滾筒為對稱結構。兩對滾筒均用滾動軸承內襯(軸承選擇見下面)。因為機械為水平傳送所以兩個的直徑可以相同。僅是在是否有V槽方面不同。
圖3.從動滾筒 圖4.主動滾筒
2.4電機承載的設計
定在托板上。故要求此支撐板有一般的負載的支撐能力。另外電機震動較大,。要求有一定的延伸率和強度,易于沖壓和焊接,故選用30做為托板材料。因為電機帶動兩個滾筒的運動是呈V字狀態(tài),所以電機支撐板也呈V狀。
圖5電機承載板
2.5皮帶托板與滾筒軸撐架的設計
在皮帶下面安裝一托板,托板的作用是用于支承傳送帶及輸送帶上的所承載的物料,保證輸送帶穩(wěn)定運行的裝置。
因為此機器主要分級的為橙子一類的低重量水果。(即使在機器上放滿橙子也只有10KG的重量。)選取兩節(jié)式槽型輸送機比較方便。在兩傳送帶間放置一皮帶托板即可,
圖6后藍色的為滾筒支撐架
皮帶托板可選擇08承受一般載荷的材料,因為用量不多。
輸送帶從此V板上下穿過,則輸送帶可以利用板的承載能力承受橙子的重量。
滾筒支撐架主要是用來放置滾筒并且支撐皮帶支撐架的。承受一般大小的力。而在形狀上需要呈現(xiàn)V字形,并且兩端有固定伸出,為焊接件。因為在機器上受輕負荷。磨損無關緊要,而且要求的機械性能不高,材料選擇45鋼。
圖6水果托板
2.6滾筒支承座的設計
滾筒為固定在滾筒支承座上,并且滾筒支承座固定在滾筒支撐架上,因為有2對從動輪。所以做2對滾筒支承座,用以固定滾筒。底板和旁邊支架為焊接,
材料選擇為30無特殊要求。滾筒支撐座尺寸詳見裝配圖。 圖7滾筒支撐架
2.7 軸的設計
軸的材料一般是經(jīng)過軋制或鍛造的碳素鋼或合金鋼,有條件的可直接用冷拔鋼材。根據(jù)需要,一般軸要經(jīng)過熱處理或表面強化處理。以提高其力學性能及耐磨性等,在一般溫度下合金鋼和碳鋼的彈性模量相差很小,故采用合金鋼不能提高軸的剛度。
本設計中主要是滾筒處采用軸,考慮到是輸送水果,故對于軸的各方面要求不高。而且為滾筒轉,軸不轉的方式。所以選取鋼45,因為軸的直徑尺寸小于100mm,所以用正火處理,硬度為170~217.。
2.8 坡形板的設計
在整體機械中安裝左右兩個坡形板,在坡形板的輔助下。水果可以聚攏在中間。并且可以形成一列,輸送到下一機構中,進行分級,達到水果分級的目的。
圖8 坡形板
后蓋板的作用是阻止水果落出裝置外面,而且在機械上方可以掀開蓋板方便維修。
圖9后蓋板
2.8滾筒中軸承的選擇
通過與滑動軸承的對比,滾動軸承油如下優(yōu)點:
1. 摩擦系數(shù)小,能使機器靈活輕快的旋轉,提高工作效率。
2. 滾動軸承一般都是鋼材制造的。因此經(jīng)久耐用。
3. 滾動軸承的尺寸標準化,不像滑動軸承在更換時需要裝配,因此安裝盒拆卸比較
方便。
缺點是滾動軸承沖擊負荷的能力較差,因為是整體的,安裝在長軸的中部困難,徑向向尺寸比滑動軸承大,而且在高速運轉時聲響較大。
但是這些缺點不影響滾動軸承在本機器中的使用。
2.9電動機的選擇
機選用的是型號為MBW07,功率為0.75千瓦的減速電動機。
2.10輪子的選擇
本設計中選擇的輪子為平板式腳輪,輪子直徑為130mm型號為ZP130WS2-160
3輸送機械的計算
3.1工作條件
考慮到本機器為一般小型果園所用,所以可以放在房間中,工作環(huán)境為室內,并且可以保持干燥。環(huán)境溫度為室溫,水果的來源一般是由上一級輸送裝置送來,隱藏避免了大量卸料,即可以控制水果來源的速度。
3.2輸送能力的計算
成件物品的輸送能力= (kg/s)
式中 G----單件物品質量,kg;
T----物品在輸送機上的間距,m;
v----帶速,m/s.
每小時的輸送的件數(shù):n=3600
3.3電動機帶輪的計算
帶輪直徑小可以使傳動尺寸進場,但是直徑過小,會使帶的彎曲應力過大,壽命降低,所以帶輪的尺寸要適中。V帶的設計主要是要求質量小,結構工藝性能好。無過大的鑄造內應力,質量均勻分布。轉速高時要經(jīng)過動平衡,輪槽的功過面粗糙度合理。以減少帶的磨損,輪槽尺寸和槽面角應保持一定的精度。以使載荷分布較為均勻等。帶輪的主要材料是鑄鐵。常用牌號為HT150,HT200,最大的圓周速度為25m/s.
=(1.8-2)d.d為軸的直徑
C’=(1/7-1/4)B
=0.8
s=c’
帶傳動查手冊選擇Y型的直徑為25mm的小帶輪。選擇實心式的帶輪、
為了考慮后一級機器的分級能力,所以考慮大約每秒鐘走過的水果大概是直徑為60mm的水果5個左右。
單列水果輸送則是兩根皮帶的速度不同。假設一邊v=50r/s則通過輸送能力公式得出,另邊的輸送速度為100r/s,
3.4滾筒軸軸承的計算
滾動軸承的摩擦主要有:滾動體與滾道之間的滾動摩擦和滑動摩擦;保持架與滾動體及套圈引導面之間的滑動摩擦;滾子端面和套圈當邊之間的摩擦;潤滑劑的粘性阻力;密封裝置的滑動摩擦等。其大小取決與軸承的類型,尺寸,負荷,轉速,潤滑,密封等因素。軸承的摩擦力矩一般可按照如下公式計算:
M=
式中 M——軸承的摩擦力矩, ;
——軸承摩擦系數(shù);
F——軸承負荷(),N;
d——軸承內徑,mm.
根據(jù)計算比較,本機器選擇單列向心球軸承,查機械手冊選擇101型特輕(1)系列。
基本尺寸為d=15,D=32,B=8,mm
基本額定負載C=4.32,C=2.50 kN
極限轉速 脂18000,油24000r/min
重量W≈0.025
軸承型號7000102,
其他尺寸r=0.3
安裝尺寸dmin=0.3,Dmax=29.6,rmax=0.3 mm
3.5軸的強度計算
滾筒中所選用的軸為實心軸,按扭轉強度計算有公式:d=17.2=A
d—軸端直徑,mm
T—軸所傳遞的扭矩,N·m T=9550
P—軸所傳遞的功率,KW
n—軸的工作轉速,r/min
[]許用扭轉剪應力,N / 查機械設計手冊中表6-1-3選取
[]許用扭轉角,(°)/m查機械設計手冊 表6-1-4
A— 系數(shù),查機械設計手冊中表6-1-3選取
B— 系數(shù),查機械設計手冊 表6-1-4選取
表2
軸的材料
Q235——A.20
Q275 35
1Cr18Ni9Ti
45
40Cr,35SiMn,42SiMn
[],N /
15-25
20-35
25-45
35-55
A
149-126
135-112
126-103
112-97
總結
在當今生活中,機械越來越多的進入當代人的生活中,當大家都離不開機械的時候,人們就要努力去完善我們的機械,或者說,要進一步開發(fā)機械的更多的能力。
在現(xiàn)代人用水果滿足自己口腹之欲的時候,水果的附加價值也得到充分的重視。或者說水果的禮品價值,所以這臺機器應運而生。
在本機機械的設計當中,我設計的部分主要是水果輸送過程中水果單列輸送,在設計過程中,了解到了很多關于水果分級的優(yōu)點,也學習到了許多運動原理。例如本機器中,前一個裝置是將大批量水果運送上來。但是大批量水果無法分級,則通過本裝置進行分級裝置當中的兩個傳送帶的速度不同,則此裝置即可以使水果在不同位置有不同的速度,再通過速度不同,進行旋轉。從而使水果摩擦之后形成單列,方便下一級的機構進行分級。
此裝置可以運用到實際的生產(chǎn)生活中,產(chǎn)生經(jīng)濟效益。
在遇到了很多書本上知識無法解決的問題,通過解決問題,學習到了新的知識,也從新復習了以前的知識,通過這個設計讓我從新掌握了機械制圖這門課程的內容,在設計過程中也查閱了很多機械手冊,對于機械的零部件也了解到更多的知識,而且在做裝置的時候選擇用PRO-E作為輔助工具,也認識到了機械裝置定位的重要性。
參 考 文 獻
[1]楊明忠,朱家誠 .機械設計.武漢理工大學出版社 , 2001.10
[2]卜炎. 機械傳動裝置設計手冊(下). 機械工業(yè)出版社 , 1998
[3]成大先. 機械設計圖冊零部件的結構與組合. 化學工業(yè)出版社, 1997
[4]李文哲 ,許綺川. 汽車拖拉機學. 中國農(nóng)業(yè)出版社, 2006
[5]于永泗,齊民主. 機械工程材料. 大連理工大學, 2003
[6]譚建榮,張樹有,陸國棟,施岳定。 圖學基礎教程。 高等教育出版社,1999
[7]曾志新,呂明. 機械制造技術基礎. 武漢理工大學出版社,2004
[8]余桂英,郭紀林. AutoCAD 2006中文版使用教程. 大連理工大學出版社,2006
[9]劉鴻文. 材料力學. 高等教育出版社, 2004
[10]邵立新,夏素民,孫江宏.Pro/ENGINEER Wildfire 3.0 清華大學出版社,2007
致 謝
這次畢業(yè)設計可以圓滿的結束離不開劉木華老師的親切關懷和耐心的指導,在整個畢業(yè)設計的過程中,劉老師對我的悉心指導和嚴格要求給我創(chuàng)造了良好的學習氛圍;他嚴謹?shù)目茖W態(tài)度,嚴謹?shù)闹螌W精神,精益求精的工作作風,給我留下了深刻的印象,對我產(chǎn)生了巨大的影響,使我掌握了更多的理論知識。而且在分析問題和解決問題的能力上有了很大的提高。
在設計的過程中,我認識到自己的不足,深刻的領會到掌握好專業(yè)知識的重要性。而且通過這次團隊的設計,讓我感受到團隊的力量。在此要感謝我的同組成員,他們在了解自己的機械的基礎上,幫我了解我的裝置,和我一起解決我遇到的問題。
在專業(yè)知識方面我有欠缺。班級的其他同學也幫助我補齊我的知識,給于我耐心的幫助。在此要感謝我的同學。
當然,作為一個本科生,盡管有導師的督促指導,以及一起工作的同學們的支持,但由于經(jīng)驗的匱乏,難免有許多考慮不周全的地方,設計中難免有錯誤和缺點,希望各位老師和同學能夠批評指正。
最后要感謝我的父母,他們給我上大學的機會,我還要感謝大學里的所有老師,他們教給我專業(yè)知識和做人的道理。為這次畢業(yè)設計打下了很好的基礎。
再次感謝所有幫助過我的人,在你們的幫助下才有我今天的成績。謝謝。
編號
無錫太湖學院
畢業(yè)設計(論文)
相關資料
題目: 工業(yè)窯爐的設計(輸送裝置)
信機 系 機械工程及自動化 專業(yè)
學 號: 0923220
學生姓名: 李 歡
指導教師: 徐偉明(職稱: 教 授 )
(職稱: )
2013年5月25日
目 錄
一、畢業(yè)設計(論文)開題報告
二、畢業(yè)設計(論文)外文資料翻譯及原文
三、學生“畢業(yè)論文(論文)計劃、進度、檢查及落實表”
四、實習鑒定表
無錫太湖學院
畢業(yè)設計(論文)
開題報告
題目: 工業(yè)窯爐的設計(輸送裝置)
信機系 機械工程及自動化 專業(yè)
學 號: 0923220
學生姓名: 李 歡
指導教師: 徐偉明(職稱: 教 授 )
(職稱: )
2012年11月20日
課題來源
本課題來源于導師布置的任務導老師
科學依據(jù)(包括課題的科學意義;國內外研究概況、水平和發(fā)展趨勢;應用前景等)
輸送裝置的設計是機械工程及其自動化專業(yè)所包含的一個較為基礎的內容,選擇輸送裝置方向的畢業(yè)設計題目完全符合本專業(yè)的要求,從應用性方面來說,輸送裝置又是很多機器所必不可少的一個部分。有效保證輸送裝置的功率及穩(wěn)定性能夠達到設計的要求,具有很好的發(fā)展前途和應用前景。
研究內容
1、 選擇電動機,計算傳動裝置的運動和動力參數(shù);
2、 擬定、分析傳動裝置的運動和動力參數(shù);
3、 進行傳動件的設計計算,校核軸、軸承、聯(lián)軸器、鍵等;
4、 繪制減速器裝配圖及典型零件圖(圖紙數(shù)達到3張或以上);
5、 完成設計說明一份,分析明晰,計算正確,闡述清楚。適合的生產(chǎn)加工工 藝
擬采取的研究方法、技術路線、實驗方案及可行性分析
首先確定整體設計方案,由公式的演算得到電動機的動力和運動分析,在以此推算相配的傳動件,軸系零部件的尺寸規(guī)格。綜上計算可以得到相關尺寸,再根據(jù)力學性能對所得零部件尺寸進行校驗從而驗證整體方案是否可行。
研究計劃及預期成果
研究計劃:
2012年11月 布置任務。
2013年1月 對課題研究方向進行學習
2013年2月~3月 擬定方案,提出專機總體方案,供討論
2013年4月5日~10日 確定方案,專機總體布置
11日~20日 整機設計、部件設計
21日~30日 改進并完成設計
2013年5月1日~10日 撰寫設計說明書
11日~15日 總結
預期成果:圖紙、設計說明書
特色或創(chuàng)新之處
帶式輸送機本身便具有價格便宜,標準化程度高特點,使成本大幅降低。高速級齒輪常布置在遠離扭矩輸入端的一邊,以減小因彎曲變形所引起的載荷沿齒寬分布不均現(xiàn)象。
已具備的條件和尚需解決的問題
與指導老師的溝通中,對自己所做課題有了整體的認識,清晰了思路。指導老師提供了論文指導,從而使自己明確了每一步的方向。因第一次繪制復雜的裝配圖,所以在繪圖方面還有待提高。
指導教師意見
同意作為本專業(yè)學生畢業(yè)設計課題,其難度和工作量均合適。
指導教師簽名:
年 月 日
教研室(學科組、研究所)意見
教研室主任簽名:
年 月 日
系意見
主管領導簽名:
年 月 日
英文原文
Esign of Speed Belt Conveyors
G. Lodewijks, The Netherlands.
This paper discusses aspects of high-speed belt conveyor design. The capacity of a belt conveyor is determined by the belt speed given a belt width and troughing angle. Belt speed selection however is limited by practical considerations, which are discussed in this paper. The belt speed also affects the performance of the conveyor belt, as for example its energy consumption and the stability of it's running behavior. A method is discussed to evaluate the energy consumption of conveyor belts by using the loss factor of transport. With variation of the belt speed the safety factor requirements vary, which will affect the required belt strength. A new method to account for the effect of the belt speed on the safety factor is presented. Finally, the impact of the belt speed on component selection and on the design of transfer stations is discussed.
Belt machine by conveyor belt continuous or intermittent motion to transport all kinds of different things ,Can transport all kinds of bulk materials, but also transport a variety of cardboard boxes, packaging bags, weight of single pieces of small goods, a wide range of uses . Belt conveyor belt material: rubber, silicone, PVC, PU and other materials, in addition to ordinary material conveying, but also to meet the transmission oil resistant, corrosion resistance, antistatic and other special requirements for material. Belt conveyor structure: groove belt machine, flat belt conveyor, climbing belt machine, turning machines and other forms belt, conveyor belt can also be created to enhance the tailgate, skirts and other accessories, can meet a variety of technological requirements.The belt conveyor drive: deceleration motor drive, electric drive roller.Belt conveyor mode: frequency control, stepless transmission.The belt rack material: carbon steel, stainless steel, aluminum profile.Scope of application: light industry, electronics, food, chemical, wood, etc..Belt machine equipment characteristics: belt conveyor is stable, the material and the conveyor belt there is no relative motion, to avoid damage to the carrier material. Low noise, suitable for quiet work environment requirements. Simple structure, easy maintenance. Low energy consumption, low use cost.
Conveyor is a common don't have flexible traction component continuous conveying machinery, also called continuous conveyor.It is a material handling equipment, it with handling ability strong, persistent, direction, flexible, and other advantages in industrial production in large being applied. Although many types of belt conveyor, but its working principle is basic similar, most are driving draught device and drive transmission container transport materials. Conveyor can undertake level, the tilt and vertical conveyor, also can make the space transport routes, transmission lines is usually fixed, is a modern production and logistics transport indispensable important mechanical equipment. It has transmission capacity is strong, long distance transportation etc.
With the development of industry, conveyor also obtained fast development, conveyor products have been also gradually improved. With the emergence of the power equipment of similar principle is applied, conveyor continuing into the 19th century, britons use basketwork, wire rope for traction belt conveyor. The principle of belt conveyor, when applied in the 17th century also recorded conveyor, in 1880 German company developed driven by steam belt conveyor. Then the British and German and launched inertial conveyor, if the conveyor belt, the application of the principle, creating a tilt of the belt conveyor, belt, traction with chains. All sorts of conveyor during this time arise conveyor, based on human, hydraulic power drive such. All the structures conveyor successively appeared. In 1887 americans produced the screw conveyor, make enterprise internal, between enterprise and inter-city transportation possible. The development history of belt conveyor, they very ancient instead of the original motive for conveyor provide driving force. Ancient people began to use water overturned and high TongChe conveyor, in turn after the water conservancy project's belt conveyor begin in power. Quick-tempered exalts
According to the mode of operation conveying machinery can be divided into: 1: belt conveyor 2: screw conveyor 3: dou pattern lift machine
The future of large scale, will toward belt use scope, energy consumption, low pollution less, material automatically grading, etc.
Past research has shown the economical feasibility of using narrower, faster running conveyor belts versus wider, slower running belts for long overland belt conveyor systems. See for example [I]-[5]. Today, conveyor belts running at speeds around 8 m/s are no exceptions. However, velocities over 10 m/s up to 20 m/s are technically (dynamically) feasible and may also be economically feasible. In this paper belt speeds between the 10 and 20 m/s are classified as high. Belt speeds below the 10 m/s are classified as low.
Using high belt speeds should never be a goal in itself. If using high belt speeds is not economically beneficial or if a safe and reliable operation is not ensured at a high belt speed then a lower belt speed should be selected.
Selection of the belt speed is part of the total design process. The optimum belt conveyor design is determined by static or steady state design methods. In these methods the belt is assumed to be a rigid, inelastic body. This enables quantification of the steady-state operation of the belt conveyor and determination of the size of conveyor components. The specification of the steady-state operation includes a quantification of the steady-state running belt tensions and power consumption for all material loading and relevant ambient conditions. It should be realized that finding the optimum design is not a one-time effort but an iterative process [6].
Design fine-tuning, determination of the optimum starting and stopping procedures, including determination of the required control algorithms, and determination of the settings and sizes of conveyor components such as drives, brakes and flywheels, are determined by dynamic design methods. In these design methods, also referred to as dynamic analyses, the belt is assumed to be a three-dimensional (visco-) elastic body. A three dimensional wave theory should be used to study time dependent transmission of large local force and displacement disturbances along the belt [7]. In this theory the belt is divided into a series of finite elements. The finite elements incorporate (visco-) elastic springs and masses. The constitutive characteristics of the finite elements must represent the rheological characteristics of the belt. Dynamic analysis produces the belt tension and power consumption during non-stationary operation, like starting and stopping, of the belt conveyor.
This paper discusses the design of high belt-speed conveyors, in particular the impact of using high belt speeds on the performance of the conveyor belt in terms of energy consumption and safety factor requirements. Using high belt speeds also requires high reliability of conveyor components such as idlers to achieve an acceptable component life. Another important aspect of high-speed belt conveyor design is the design of efficient feeding and discharge arrangements. These aspects will be discussed briefly.
Many methods of analyzing a belt’s physical behavior as a rheological spring have been studied and various techniques have been used. An appropriate model needs to address:
1. Elastic modulus of the belt longitudinal tensile member
2. Resistances to motion which are velocity dependent (i.e. idlers)
3. Viscoelastic losses due to rubber-idler indentation
4. Apparent belt modulus changes due to belt sag between idlers
Since the mathematics necessary to solve these dynamic problems are very complex, it is not the goal of this presentation to detail the theoretical basis of dynamic analysis. Rather, the purpose is to stress that as belt lengths increase and as horizontal curves and distributed power becomes more common, the importance of dynamic analysis taking belt elasticity into account is vital to properly develop control algorithms during both stopping and starting.
Using the 8.5 km conveyor in Figure 23 as an example, two simulations of starting were performed to compare control algorithms. With a 2x1000 kW drive installed at the head end, a 2x1000 kW drive at a midpoint carry side location and a 1x1000kW drive at the tail, extreme care must be taken to insure proper coordination of all drives is maintained.
Figure 27 illustrates a 90 second start with very poor coordination and severe oscillations in torque with corresponding oscillations in velocity and belt tensions. The T1/T2 slip ratio indicates drive slip could occur. Figure 28 shows the corresponding charts from a relatively good 180 second start coordinated to safely and
smoothly accelerate the conveyor.
Figure 27-120 Sec Poor Start
BELTSPEED
BELT SPEED SELECTION
The lowest overall belt conveyor cost occur in the range of belt widths of 0.6 to 1.0 m [2]. The required conveying capacity can be reached by selection of a belt width in this range and selecting whatever belt speed is required to achieve the required flow rate. Figure 1 shows an example of combinations of belt speed and belt width to achieve Specific conveyor capacities. In this example it is assumed that the bulk density is 850 kg/m3 (coal) and that the trough angle and the surcharge angle are 35' and 20' respectively.
Figure 1: Belt width versus belt speed for different capacities.
Belt speed selection is however limited by practical considerations. A first aspect is the troughability of the belt. In Figure 1 there is no relation with the required belt strength (rating), which partly depends on the conveyor length and elevation. The combination of belt width and strength must be chosen such that good troughability of the belt is ensured. If the troughability is not sufficient then the belt will not track properly. This will result in unstable running behavior of the belt, in particular at high belt speeds, which is not acceptable. Normally, belt manufacturers expect a sufficiently straight run if approximately 40% of the belt width when running empty, makes contact with the carrying idlers. Approximately 10% should make tangential contact with the center idler roll.
A second aspect is the speed of the air relative to the speed of the bulk solid material on the belt (relative airspeed). If the relative airspeed exceeds certain limits then dust will develop. This is in particular a potential problem in mine shafts where a downward airflow is maintained for ventilation purposes. The limit in relative airspeed depends on ambient conditions and bulk material characteristics.
A third aspect is the noise generated by the belt conveyor system. Noise levels generally increase with increasing belt speed. In residential areas noise levels are restricted to for example 65 dB. Although noise levels are greatly affected by the design of the conveyor support structure and conveyor covers, this may be a limiting factor in selecting the belt speed.
BELT SPEED VARIATION
The energy consumption of belt conveyor systems varies with variation of the belt speed, as will be shown in Section 3. The belt velocity can be adjusted with bulk material flow supplied at the loading point to save energy. If the belt is operating at full tonnage then it should run at the high (design) belt speed. The belt speed can be adjusted (decreased) to the actual material (volume) flow supplied at the loading point. This will maintain a constant filling of the belt trough and a constant bulk material load on the belt. A constant filling of the belt trough yields an optimum loading-ratio, and lower energy consumption per unit of conveyed material may be expected. The reduction in energy consumption will be at least 10% for systems where the belt speed is varied compared to systems where the belt speed is kept constant [8].
Varying the belt speed with supplied bulk material flow has the following advantages:
Less belt wear at the loading areas
Lower noise emission
Improved operating behavior as a result of better belt alignment and the avoidance of belt lifting in concave curve by reducing belt tensions
Drawbacks include:
Investment cost for controllability of the drive and brake systems
Variation of discharge parabola with belt speed variation
Control system required for controlling individual conveyors in a conveyor system
Constant high belt pre-tension
Constant high bulk material load on the idler rolls
An analysis should be made of the expected energy savings to determine whether it is worth the effort of installing a more expensive, more complex conveyor system.
ENERGY CONSUMPTION
Clients may request a specification of the energy consumption of a conveyor system, for example quantified in terms of maximum kW-hr/ton/km, to transport the bulk solid material at the design specifications over the projected route. For long overland systems, the energy consumption is mainly determined by the work done to overcome the indentation rolling resistance [9]. This is the resistance that the belt experiences due to the visco-elastic (time delayed) response of the rubber belt cover to the indentation of the idler roll. For in-plant belt conveyors, work done to overcome side resistances that occur mainly in the loading area also affects the energy consumption. Side resistances include the resistance due to friction on the side walls of the chute and resistance that occurs due to acceleration of the material at the loading point.
The required drive power of a belt conveyor is determined by the sum of the total frictional resistances and the total material lift. The frictional resistances include hysteresis losses, which can be considered as viscous (velocity dependent) friction components. It does not suffice to look just at the maximum required drive power to evaluate whether or not the energy consumption of a conveyor system is reasonable. The best method to compare the energy consumption of different transport systems is to compare their transport efficiencies.
TRANSPORT EFFICIENCY
There are a number of methods to compare transport efficiencies. The first and most widely applied method is to compare equivalent friction factors such as the DIN f factor. An advantage of using an equivalent friction factor is that it can also be determined for an empty belt. A drawback of using an equivalent friction factor is that it is not a 'pure' efficiency number. It takes into account the mass of the belt, reduced mass of the rollers and the mass of the transported material. In a pure efficiency number, only the mass of the transported material is taken into account.
The second method is to compare transportation cost, either in kW-hr/ton/km or in $/ton/km. The advantage of using the transportation cost is that this number is widely used for management purposes. The disadvantage of using the transportation cost is that it does not directly reflect the efficiency of a system.
The third and most "pure" method is to compare the loss factor of transport [10]. The loss factor of transport is the ratio between the drive power required to overcome frictional losses (neglecting drive efficiency and power loss/gain required to raise/lower the bulk material) and the transport work. The transport work is defined as the multiplication of the total transported quantity of bulk material and the average transport velocity. The advantage of using loss factors of transport is that they can be compared to loss factors of transport of other means of transport, like trucks and trains. The disadvantage is that the loss factor of transport depends on the transported quantity of material, which implies that it can not be determined for an empty belt conveyor.
The following are loss factors of transport for a number of transport systems to illustrate the concept:
Continuous transport:
Slurry transport around 0.01
Belt conveyors between 0.01 and 0.1
Vibratory feeders between 0.1 and 1
Pneumatic conveyors around 1 0
Discontinuous transport:
Ship between 0.001 and 0.01
Train around 0.01
Truck between 0.05 and 0.1
INDENTATION ROLLING RESISTANCE
For long overland systems, the energy consumption is mainly determined by the work done to overcome the indentation rolling resistance. Idler rolls are made of a relatively hard material like steel or aluminum whereas conveyor belt covers are made of much softer materials like rubber or PVC. The rolls therefore indent the belt's bottom-cover when the belt moves over the idler rolls, due to the weight of the belt and bulk material on the belt. The recovery of the compressed parts of the belt's bottom cover will take some time due to its visco-elastic (time dependent) properties. The time delay in the recovery of the belt's bottom cover results in an asymmetrical stress distribution between the belt and the rolls, see Figure 2. This yields a resultant resistance force called the indentation rolling resistance force. The magnitude of this force depends on the visco-elastic properties of the cover material, the radius of the idler roll, the vertical force due to the weight of the belt and the bulk solid material, and the radius of curvature of the belt in curves in the vertical plane.
Figure 2: Asymmetric stress distribution between belt and roll [7].
It is important to know how the indentation rolling resistance depends on the belt velocity to enable selection of a proper belt velocity, [11].
Figure 3: Loss factor (tanb) of typical cove
收藏