礦山搖擺式輸送機設計
礦山搖擺式輸送機設計,礦山搖擺式輸送機設計,礦山,擺式,輸送,設計
設計
搖擺式輸送機
設計說明書
學生姓名
學 號
所屬學院
專 業(yè)
班 級
指導教師
日 期 2012.6
前言
課題設計的目的就是對大學幾年的學習做一個系統(tǒng)的總結(jié),機械畢業(yè)設計是培養(yǎng)學生具有機械系統(tǒng)運動方案設計能力的技術基礎,它是機械原理課程的重要實踐環(huán)節(jié),其目的在于系統(tǒng)地學習課本理論后,通過設計進一步鞏固和加深學生的基本概念和基本知識,培養(yǎng)學生分析和解決有關的具體機械所涉及的實際問題的能力,使學生對于機械的選型,運動方案的確定,運動學和動力學的分析和設計有一個較完整的概念,并進一步提高計算,分析,繪圖以及查閱和使用資料的綜合能力。
目錄
緒論………………………………………………………………………………………………1
1、方案設計………………………………………………………………………………2
1.1、機構(gòu)簡介…………………………………………………………………………………2
1.2、示意圖……………………………………………………………………………………2
1.3、方案設定…………………………………………………………………………………2
2、電動機的選擇與計算………………………………………………………………………4
2.1、電動機類型選擇…………………………………………………………………………4
2.2、電動機功率選擇…………………………………………………………………………4
3、傳動裝置的運動及動力參數(shù)選擇計算…………………………………………………4
3.1、傳動比……………………………………………………………………………………4
3.2、各個軸轉(zhuǎn)速計算…………………………………………………………………………4
3.2、各個軸輸入功率計算……………………………………………………………………4
4、V帶設計……………………………………………………………………………………4
4.1、計算功率P………………………………………………………………………………4
4.2、選取帶型號………………………………………………………………………………4
5、齒輪設計計算……………………………………………………………………………… 6
5.1、高速級齒輪設計…………………………………………………………………………6
5.2、低速級齒輪設計…………………………………………………………………………7
6、軸直徑校核……………………………………………………………………………………8
6.1、高速軸設計………………………………………………………………………………8
6.2、中間軸設計……………………………………………………………………………12
6.3、低速軸設計……………………………………………………………………………13
7、鍵連接選擇及計算…………………………………………………………………………13
7.1、高速軸…………………………………………………………………………………13
7.2、中間軸…………………………………………………………………………………13
7.3、低速軸………………………………………………………………………………14
8、滾動軸承的計算…………………………………………………………………………14
9、潤滑和密封方式的選擇…………………………………………………………………14
10、箱體及附件的結(jié)構(gòu)設計和計算………………………………………………………14
10.1、箱體選擇………………………………………………………………………………14
10.2、箱體結(jié)構(gòu)尺寸…………………………………………………………………………14
10.3、傳動比…………………………………………………………………………………15
10.4、各軸的輸入功率………………………………………………………………………15
10.5、各軸輸入轉(zhuǎn)矩…………………………………………………………………………15
11、擺桿分析……………………………………………………………………………………15
小結(jié)…………………………………………………………………………………………17
致謝……………………………………………………………………………………18
參考文獻………………………………………………………………………………………19
搖擺式輸送機設計
緒論
當今社會,隨著科技的發(fā)展,人們對于各種資源的需求和消耗是非常巨大的,因此就會牽涉到資源的開采問題,如何能夠高效率,低風險,無污染的開發(fā)礦物資源是當今社會面臨的重大難題。所以針對礦產(chǎn)資源而開發(fā)的礦山搖擺式輸送機的應用就越來越廣泛。事實上人們對輸送機的研究從來沒有停止過,為了滿足不同的要求,出現(xiàn)了各式各樣的輸送機,有搖擺式輸送機和帶式輸送機等。
礦山搖擺式運輸機能夠在惡劣的生產(chǎn)條件下進行工作,可以滿足很多種工作條件,適用范圍非常廣泛。初粘性大的物料以外,一般的固體散狀物料和成件物品均可輸送。由于它的牽引構(gòu)件和承載構(gòu)件大多由金屬材料制成,因而與其他輸送機械相比所輸送物料的適應性更強。搖擺式運輸機可輸送重的、具有銳利棱邊的、磨損性及腐蝕性強的散狀物料或物品,同時適宜輸送高溫物體。另外在輸送過程中,還可以進行干燥、冷卻、分類、請選等各種工藝作業(yè)。
但是由于其結(jié)構(gòu)原因,自重大,所以消耗也多,空載功率大等原因,嚴重限制了它的推廣和發(fā)展,這些問題都是需要進行設計和優(yōu)化的。
隨著人類的進步,越來越多并且越來越好的搖擺式輸送機將會被制造出來,來滿足生產(chǎn)發(fā)展的需求,它對提高生產(chǎn)率,降低工人勞動強度具有積極的意義。
搖擺式運輸機在設計時應注意到特殊的工作環(huán)境和工作需求,?轉(zhuǎn)運是礦用運輸機故障較多的一個環(huán)節(jié),以德國佩雷斯露天煤礦為例,皮帶運輸機每年因轉(zhuǎn)運站故障停車的時間平均達70小時,而由其它環(huán)節(jié)的故障引起的停車時間卻很少.因此,在確定運輸機系統(tǒng)時應盡量減少物料的轉(zhuǎn)運次數(shù).而在設計轉(zhuǎn)運站時,則應特別注意此類問題。
我國搖擺式運輸機,自上世紀七十年代中期開發(fā)以來,取得長足進步,但是與國外相比,仍存在較大的差距。首先是整機性能的落后,生產(chǎn)輸送能力相對較低,事故率高;再者使用壽命短,關鍵零部件使用壽命短,可靠性低;還有生產(chǎn)自動化程度不高,過載保護張力調(diào)節(jié)能力不足。
國外搖擺式運輸機技術發(fā)展很快,其主要表現(xiàn)在兩個方面;一方面是搖擺式運輸機的功能的多元化,應用范圍擴大化,發(fā)展成在各個領域可以使用的運輸機械。另一方面是搖擺式運輸機本身技術與裝備有了巨大的發(fā)展,尤其是長距離、大運量、高速率運輸機已成為運輸機發(fā)展的主要方向。
搖擺式運輸機是為了適合礦山采礦等目的而設計的,因此就要解決人力問題,最大限度的解放人力勞動,提高礦產(chǎn)資源的開采效率,增大產(chǎn)量是設計的主要任務。
在對搖擺式運輸機的性能和總體結(jié)構(gòu)有了大致了解之后,要對其實際的工作環(huán)境和工作能力進行分析,為了實現(xiàn)預期目標,我們先要明確作業(yè)的特性和主要任務,根據(jù)這些特性和所需的任務來確定方案,試選原動機,傳動裝置,執(zhí)行元件,傳送裝置的選擇等。例如在選擇原動機和傳送帶的時候要考慮載荷、工作環(huán)境、可靠性、費用、安全性及其操作難度等。
本設計采用電動機,其優(yōu)點是躁聲小,初始成本低,運轉(zhuǎn)費用低,維護要求較少。通過減速箱和傳動裝置連接,傳動系統(tǒng)的基本任務是將原動機輸出的速度降低或增大,以滿足執(zhí)行機構(gòu)的要求,采用變速傳動來滿足執(zhí)行機構(gòu)經(jīng)常變速的要求,將原動機輸出的轉(zhuǎn)矩變換為執(zhí)行機構(gòu)所需要的轉(zhuǎn)矩和力。在根據(jù)傳動裝置和帶的連接實現(xiàn)帶的運動,通過調(diào)節(jié)減速箱來確定帶的運輸速度,通過以上機構(gòu)可以實現(xiàn)課題的要求。
通過對運輸機進行初步的分析后,發(fā)現(xiàn)其設計的主要問題和需要重點研究的方向是產(chǎn)品的動力機構(gòu)和傳動機構(gòu)。由于搖擺式運輸機一般是在工作條件較惡劣的環(huán)境下工作,所以它所遇到的突發(fā)故障可能性就大大的提高了,因此這些問題都是要在設計時進行考慮,這樣就可以降低機器的故障發(fā)生率,使其能夠進行正常的工作生產(chǎn)。在選擇電動機時,應該在合適的范圍內(nèi)盡量保持運輸機能有較大的工作負載,這樣就可以防止因為過載而產(chǎn)生故障;其次在對傳動機構(gòu)進行設計時,要考慮其穩(wěn)定性,保證機器的傳動比。另外,由于搖擺式運輸機一般對質(zhì)量較大的物體進行運輸,所以就要考慮各個傳動部件的磨損問題,以延長運輸機的工作壽命。
在考慮對這些問題進行解決時,我們就要有針對性的進行研究,例如在選擇動力時,首先對運輸機的額定功率進行分析,選擇能夠保證功率的電動機,這樣就可以防止過載而不能正常工作。在對傳動機構(gòu)進行分析時也要對總體的傳動比進行分析,進而設計每個傳動環(huán)節(jié)的傳動比,這樣就能比較合理的設計出能夠滿足傳動比的運輸機械。
1.方案設計
1.1機構(gòu)簡介
搖擺式輸送機是一種傳送材料用的礦山運輸機械,其機構(gòu)運動簡圖如圖。電動機通過二級圓錐圓柱齒輪減速器使曲柄回轉(zhuǎn),再經(jīng)過六連桿機構(gòu)使輸料車作往復移動,放置在車上的物料借助摩擦力隨輸料槽一起運動。物料的輸送是利用機構(gòu)在某些位置輸料車8有相當大的加速度,使物料在慣性力的作用下克服摩擦力而發(fā)生滑動,滑動的方向恒自左往右,從而達到輸送物料的目的
1.2 搖擺式輸送機的結(jié)構(gòu)示意圖
圖1-1搖擺式輸送機示意圖
1、電機 2、傳動裝置 3、執(zhí)行機構(gòu)
1.3初步計算和設計方案的確定
根據(jù)要求礦石重量G(滑塊5的重量都可忽略不計),及其繞重心的轉(zhuǎn)動慣量Jsi與輸?shù)V槽、礦物的重量G6` 、G7;托滾8的半徑及其滾動摩擦系數(shù)f,和每次運送礦石3000N的數(shù)據(jù)經(jīng)初步的計算和分析。確定各運動副中反作用力及曲柄上所需的平衡力矩,和一些桿件的基本參數(shù)。參考《機械原理電算程序設計》(哈工大出版)第二章有關內(nèi)容。
初定的一些數(shù)據(jù)為
減速器的輸出轉(zhuǎn)速:
110轉(zhuǎn)/分鐘
桿Lo1A長為:91毫米
桿LAB長為:302毫米
桿Lo2B長為:160毫米
桿Lo2長為: 270毫米
對以下兩種機構(gòu)進行對比分析:圖1-2為六桿機構(gòu),直接通過電動機帶動曲柄滑塊轉(zhuǎn)動從而是連桿2擺動最終使滑塊左右運動,從而達到輸送貨物的效果。其優(yōu)點是成本比較低,結(jié)構(gòu)簡便,缺點是摩擦大,耗費能量多。圖1-3是通過送料的往復運動我們用曲柄滑塊機構(gòu)實現(xiàn),當輸入構(gòu)件等速轉(zhuǎn)動時,輸出構(gòu)件帶動滑塊作往復移動,機構(gòu)具有急回功能,但該方案不但設計計算比較復雜,滑塊5和作平面復雜運動的連桿2和4的動平衡也比較困難 。
方案一
圖1-2
方案二
圖1-3
2
圖1-4 輸送機結(jié)構(gòu)圖
搖擺式輸送機由電動機,減速器,絞鏈機構(gòu),和拖扳組成,其中電動機與減速器之間由皮帶輪聯(lián)結(jié)傳動。電動機輸出軸上再加裝飛輪裝置使其工作平穩(wěn)。
2電動機的選擇與計算
2.1電動機類型的選擇
電動機類型根據(jù)動力源和工作條件,選用 Y系列三相異步電動機
2.2電動機功率的選擇
F=38300X0.35=13405N
取拖動板和寬為0.3m,礦石高為0.15m根跟要求每小時540噸計算出礦石的平均速度為0.7m/s
工作機所需要的有效功率:
Pw=F·v/1000=3000×0.35×1.7÷1000=2.35(KW)
傳動裝置總效率(見課程設計指導書2-5)
Pd=Pw/η =1.83/0.76=.35(KW)
根據(jù)JB3074-82 查選電動機。選用Y100L,其額定功率為 3KW,滿載轉(zhuǎn)速nm=2870r/min,同步轉(zhuǎn)速V=3000r/min。再經(jīng)查表得:電動機的中心高H=100mm,外伸軸頸圍 28mm,軸外伸長度為 60mm。
3 傳動裝置的運動及動力參數(shù)的選擇及計算
3.1 傳動比
總傳動比:i總=n/ n12=2870/110=26
各級傳動比分配:
初定 ,,
3.2 各個軸的轉(zhuǎn)速計算
n1=nm/i1=2870 r/min
n2=n1/i2=1095 r/min
n3=n2/i3=110 r/min
3.3 各軸的輸入功率計算
P1=pdη8η7 =3×0.95×0.99=2.52
P2=p1η6η5=2.52×0.97×0.99=2.42
P3=p2η4η3=2.42×0.97×0.99=2.33
P4=p3η2η1=2.33×0.99×0.99=2.28
4 V 帶的設計計算
4.1 計算功率P:據(jù)(表 4—10)取工況系數(shù)KA=1.1,則P=KA·P=3.36(KW)
4.2 選取V帶型號:根據(jù)PC=3.36KW和n=2870r/min
查表5-12a(機設)選A型V帶。
確定帶輪直徑
參考表5-12a(機設)及表5-3(機設)選取小帶輪直徑
(電機中心高符合要求)
4.3 驗算帶速 由式5-7(機設)
4.4 從動帶輪直徑
查表5-4(機設) 取
4.5 傳動比
;
4.6 從動輪轉(zhuǎn)速
4.7 確定中心距和帶長
(1)、按式(5-23機設)初選中心距 ;
取
(2)、按式(5-24機設)求帶的計算基礎準長度L0
查圖.5-7(機設)取帶的基準長度Ld=1400mm
(3)、按式(5-25機設)計算中心距:a
(4)、按式(5-26機設)確定中心距調(diào)整范圍
4.8 驗算小帶輪包角α1
(由機械設計公式5-11)
4.9 確定V帶根數(shù)Z
(1)、由表(5-7機設)查得dd1=112, n1=2870r/min時,單根V帶的額定功率為1.6KW,用線性插值法求n1=2870r/min時的額定功率P0值。
(2)、所以要用的皮帶個數(shù)為3/1.6=2根,取Z=2根
4.10 計算單根V帶初拉力F0,由式(5-29)機設。
4.11 計算對軸的壓力FQ,
由式(5-30機設)得
4.12 確定帶輪的結(jié)構(gòu)尺寸,給制帶輪工作圖
小帶輪基準直徑d1=90mm采用實心式結(jié)構(gòu)。大帶輪基準直徑d2=224mm,采用腹板式結(jié)構(gòu),基準圖見工作圖。
5 齒輪的設計計算
5.1 高速級減速齒輪設計(直齒圓柱齒輪)
5.1.1齒輪的材料,精度和齒數(shù)選擇
因傳遞功率不大,轉(zhuǎn)速不高,材料按表7-1選取,都采用45號鋼,鍛選項毛坯,大齒輪、正火處理,小齒輪調(diào)質(zhì),均用軟齒面。齒輪精度用8級,輪齒表面精糙度為Ra3.2,軟齒面閉式傳動,失效形式為占蝕,考慮傳動平穩(wěn)性,齒數(shù)宜取多些,取Z1=34 則Z2=Z1× i=34×2.62=89
5.1.2設計計算。
(1)設計準則,按齒面接觸疲勞強度計算,再按齒根彎曲疲勞強度校核。
(2)按齒面接觸疲勞強度設計,由式(7-9)
T1=9.55×106×P/n=9.55×106×3.36/384=10125 N·mm
由機械設計表(7-1)選取材料的接觸疲勞,極限應力為
б1=580 б2=560
由機械設計表7-3選取材料彎曲疲勞極陰應力
бHILim=230 бHILin=210
由機械設計表3-4查得接觸疲勞壽命系數(shù);ZN1=1.1 ZN2=1.04
由表7-2查得接觸疲勞安全系數(shù):SFmin=1.4 又YST=2.0 試選Kt=1.3
由式(7-1)(7-2)求許用接觸應力和許用彎曲應力
將有關值代入式得
則V1=(πd1tn1/60×1000)=1.3m/s
Z1 V1/100)=1.3×(34/100)m/s=0.44m/s
查表7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.則KH=KAKVKβKα=1.42 ,
修正
M=d1/Z1=1.96mm
由表7-6取標準模數(shù):m=2mm
(3) 計算幾何尺寸
d1=mz1=2×34=68mm
19
d2=mz2=2×89=178mm
a=m(z1+z2)/2=123mm
b=φddt=1×68=68mm
取b2=65mm b1=b2+10=75
(4) 校核齒根彎曲疲勞強度
由表7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7
由式(7-12)校核大小齒輪的彎曲強度.
5.2 低速級減速齒輪設計(直齒圓柱齒輪)
5.2.1齒輪的材料,精度和齒數(shù)選擇,因傳遞功率不大,轉(zhuǎn)速不高,材料按表7-1選取,都采用45號鋼,鍛選項毛坯,大齒輪、正火處理,小齒輪調(diào)質(zhì),均用軟齒面。齒輪精度用8級,輪齒表面精糙度為Ra3.2,軟齒面閉式傳動,失效形式為占蝕,考慮傳動平穩(wěn)性,齒數(shù)宜取多些,取Z1=34
則Z2=Z1×i=34×3.7=104
5.2.2設計計算。
設計準則,按齒面接觸疲勞強度計算,再按齒根彎曲疲勞強度校核。
按齒面接觸疲勞強度設計,由式(7-9)
T1=9.55×106×P/n=9.55×106×5.20/148=335540 N·mm
由表7-6選取材料的接觸疲勞,極限應力為б1=580 б2=560
由表7-7選取材料彎曲疲勞極陰應力б3=230 б4=210
應力循環(huán)次數(shù)N由式(7-3)計算
N1=60n at=60×148×(8×360×10)=2.55×109
N2= N1/u=2.55×109/3.07=8.33×108
由表7-8查得接觸疲勞壽命系數(shù);ZN1=1.1 ZN2=1.04
由表7-2查得接觸疲勞安全系數(shù):試選Kt=1.3
由式(7-1)(7-2)求許用接觸應力和許用彎曲應力
將有關值代入式得
則V1=(πd1tn1/60×1000)=0.55m/s
( Z1 V1/100)=0.55×(34/100)m/s=0.19m/s
查表7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.
取Kα=1.05.則KH= =1.377 ,
修正
M=d1/Z1=2.11mm
由表7-6取標準模數(shù):m=2.5mm
(3) 計算幾何尺寸
d1=mz1=2.5×34=85mm
d2=mz2=2.5×104=260mm
a=m(z1+z2)/2=172.5mm
b=φdt=1×85=85mm
取b2=85mm b1=b2+10=95
(4).校核齒根彎曲疲勞強度
由表7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7
由式(7-12)校核大小齒輪的彎曲強度.
總結(jié):高速級 z1=34 z2=89 m=2;低速級 z1=34 z2=104 m=2.5
6 軸的直徑計算及校核
6.1高速軸的設計
6.1.1 選擇軸的材料及熱處理
由于減速器傳遞的功率不大,對其重量和尺寸也無特殊要求故選擇常用材料45鋼,調(diào)質(zhì)處理。
6.1.2初估軸徑
按扭矩初估軸的直徑,查表10-2,得c=106至117,考慮到安裝聯(lián)軸器的軸段僅受扭矩作用。取c=110則:
D1min=
D2min=
D3min=
6.1.3初選軸承
(1)軸選軸承為6208
(2)軸選軸承為6209
(3)軸選軸承為6212
根據(jù)軸承確定各軸安裝軸承的直徑為:
D1=40mm
D2=45mm
D3=60mm
6.1.4結(jié)構(gòu)設計
為了拆裝方便,減速器殼體用剖分式,軸的結(jié)構(gòu)形狀如圖所示。確定高速軸和各段直徑和長度。
(1)初估軸徑后,句可按軸上零件的安裝順序,從左端開始確定直徑.該軸軸段1安裝軸承6008,故該段直徑為40mm。2段裝齒輪,為了便于安裝,取2段為44mm。齒輪右端用軸肩固定,計算得軸肩的高度為4.5mm,取3段為53mm。5段裝軸承,直徑和1段一樣為40mm。4段不裝任何零件,但考慮到軸承的軸向定位,及軸承的安裝,取4段為42mm。6段應與密封毛氈的尺寸同時確定,查機械設計手冊,選用JB/ZQ4606-1986中d=36mm的毛氈圈,故取6段36mm。7段裝大帶輪,取為32mm>dmin 。
(2)各軸段長度的確定
軸段1的長度為軸承6008的寬度和軸承到箱體內(nèi)壁的距離加上箱體內(nèi)壁到齒輪端面的距離加上2mm,l1=32mm。2段應比齒輪寬略小2mm,為l2=73mm。3段的長度按軸肩寬度公式計算l3=1.4h;去l3=6mm,4段:l4=109mm。l5和軸承6008同寬取l5=15mm。l6=55mm,7段同大帶輪
同寬,取l7=90mm。其中l(wèi)4,l6是在確定其它段長度和箱體內(nèi)壁寬后確定的。
于是,可得軸的支點上受力點間的跨距L1=52.5mm,L2=159mm,L3=107.5mm。
(3)軸上零件的周向固定
為了保證良好的對中性,齒輪與軸選用過盈配合H7/r6。與軸承內(nèi)圈配合軸勁選用k6,齒輪與大帶輪均采用A型普通平鍵聯(lián)接,分別為16*63 GB1096-1979
(4)軸上倒角與圓角
為保證6208軸承內(nèi)圈端面緊靠定位軸肩的端面,根據(jù)軸承手冊的推薦,取軸肩圓角半徑為1mm。其他軸肩圓角半徑均為2mm。根據(jù)標準GB6403.4-1986,軸的左右端倒角均為1*45。。
(5) 軸的受力分析
圖6-1軸的受力圖
畫軸的受力簡圖。計算支座反力。
Ft=2T1/d1=
Fr=Fttg20。=3784
FQ=1588N
在水平面上
F=
FR2H=Fr-FR1H=1377-966=411N
在垂直面上
FR1V=
Fr2V=Ft- FR1V=1377-352=1025N
畫彎矩圖
在水平面上,a-a剖面左側(cè)
MAh=FR1Hl3=96652.5=50.715N·m
a-a剖面右側(cè)
M’Ah=FR2Hl2=411153=62.88 N·m
在垂直面上
MAv=M’AV=FR1Vl2=352×153=53.856 N·m
合成彎矩,a-a剖面左側(cè)
a-a剖面右側(cè)
畫轉(zhuǎn)矩圖
轉(zhuǎn)矩 3784×(68/2)=128.7N·m
(6).判斷危險截面
顯然,如圖所示,a-a剖面左側(cè)合成彎矩最大、扭矩為T,該截面左側(cè)可能是危險截面;b-b截面處合成灣矩雖不是最大,但該截面左側(cè)也可能是危險截面。若從疲勞強度考慮,a-a,b-b截面右側(cè)均有應力集中,且b-b截面處應力集中更嚴重,故a-a截面左側(cè)和b-b截面左、右側(cè)又均有可能是疲勞破壞危險截面。
(7).軸的彎扭合成強度校核
由表10-1查得
1)a-a剖面左側(cè)
3=0.1×443=8.5184m3
=14.57
2)b-b截面左側(cè)
3=0.1×423=7.41m3
b-b截面處合成彎矩Mb:
=174 N·m
=27
(8).軸的安全系數(shù)校核在a-a截面左側(cè)
WT=0.2d3=0.2×443=17036.8mm3
由附表10-1查得由附表10-4查得絕對尺寸系數(shù);軸經(jīng)磨削加工, 由機械設計附表10-5查得質(zhì)量系數(shù).則
彎曲應力
應力幅
平均應力
切應力
安全系數(shù)
查表10-6得許用安全系數(shù)=1.3~1.5,顯然S>,故a-a剖面安全.
1)b-b截面右側(cè)
抗彎截面系數(shù)3=0.1×533=14.887m3
抗扭截面系數(shù)WT=0.2d3=0.2×533=29.775 m3
又Mb=174 N·m,故彎曲應力
切應力
由附表10-1查得過盈配合引起的有效應力集中系數(shù) 則
顯然S>,故b-b截面右側(cè)安全。
2)b-b截面左側(cè)
WT=0.2d3=0.2×423=14.82 m3
b-b截面左右側(cè)的彎矩、扭矩相同。
彎曲應力
切應力
由附表10-2查得圓角引起的有效應力集中系數(shù)。由附表10-4查得絕對尺寸系數(shù)。又。則
顯然S>
6.2中間軸的設計
6.2.1確定中軸的各軸直徑和長度
初估軸徑后,句可按軸上零件的安裝順序,從左端開始確定直徑.該軸軸段1安裝軸承6209,故該段直徑為45mm。2段裝齒輪,為了便于安裝,取2段為50mm。齒輪右端用軸肩固定,計算得軸肩的高度為5mm,取3段為60mm。4段裝齒輪,為了便于安裝,取段為50mm。5段裝軸承,直徑和1段一樣為45mm。
6.2.2各軸段長度的確定
軸段1的長度為軸承6209的寬度和套筒的距離,取l1=32mm。2段應比齒輪寬略小2mm,為l2=63mm。3段的長度按軸肩寬度l3=27mm,4段:l4=93mm。l5和軸承6209同寬取l5=32mm。
6.2.3軸上零件的周向固定
為了保證良好的對中性,齒輪與軸選用過盈配合H7/r6。與軸承內(nèi)圈配合軸勁選用k6,齒輪與大帶輪均采用A型普通平鍵聯(lián)接,分別為16*63 GB1096-1979及鍵10*80 GB1096-1979。
6.2.4軸上倒角與圓角
為保證6209軸承內(nèi)圈端面緊靠定位軸肩的端面,根據(jù)軸承手冊的推薦,取軸肩圓角半徑為1mm。其他軸肩圓角半徑均為2mm。根據(jù)標準GB6403.4-1986,軸的左右端倒角均為1*45
6.3 低速軸的設計
6.3.1確定低速軸的各軸直徑和長度
初估軸徑后,句可按軸上零件的安裝順序,從左端開始確定直徑.該軸軸段1安裝軸承6212,故該段直徑為60mm。2段裝齒輪,為了便于安裝,取2段為68mm。齒輪右端用軸肩固定,計算得軸肩的高度為4.5mm,取3段為72mm。5段裝軸承,直徑和1段一樣為60mm。4段不裝任何零件,但考慮到軸承的軸向定位,及軸承的安裝,取4段為65mm。6段應與密封毛氈的尺寸同時確定,查機械設計手冊,選用JB/ZQ4606-1986中d=58mm的毛氈圈,故取6段58mm。7段裝大帶輪,取為52mm>dmin 。
6.3.2各軸段長度的確定
軸段1的長度為軸承6212的寬度和套筒的距離l1=37mm。2段應比齒輪寬略小2mm,為l2=83mm。3段的長度按軸肩寬度公式計算l3=1.4h;去l3=6mm,4段:l4=94mm。l5和軸承6212同寬和套筒長度取l5=32mm。l6=55mm,7段同大帶輪同寬,取l7=90mm。其中l(wèi)4,l6是在確定其它段長度和箱體內(nèi)壁寬后確定的。
6.3.3軸上零件的周向固定
為了保證良好的對中性,齒輪與軸選用過盈配合H7/r6。與軸承內(nèi)圈配合軸勁選用k6,齒輪與大帶輪均采用A型普通平鍵聯(lián)接,分別為16*63 GB1096-1979
6.3.4軸上倒角與圓角
為保證6212軸承內(nèi)圈端面緊靠定位軸肩的端面,根據(jù)軸承手冊的推薦,取軸肩圓角半徑為1mm。其他軸肩圓角半徑均為2mm。根據(jù)標準GB6403.4-1986,軸的左右端倒角均為1*45。。
7鍵連接的選擇及計算
7.1高速軸
鍵1 10×8 L=80 GB1096-79
則強度條件為
查表許用擠壓應力
所以鍵的強度足夠
鍵2 12×8 L=63 GB1096-79
則強度條件為
查表許用擠壓應力
所以鍵的強度足夠
7.2中間軸
鍵1 14×9 L=56 GB1096-79
則強度條件為
查表許用擠壓應力, 所以鍵的強度足夠
鍵2 14×9 L=80 GB1096-79
則強度條件為
查表許用擠壓應力,所以鍵的強度足夠
7.3低速軸
鍵1 18×11 L=70 GB1096-79
鍵2 12×8 L=63 GB1096-79
同上校核所得鍵,所以鍵的強度足夠
8滾動軸承的計算
FR2H=Fr-FR1H=1377-966=411N
Fr2V=Ft- FR1V=1377-352=1025N
軸承的型號為6208,Cr=16.2 kN
FA/COr=0
計算當量動載荷
查表得fP=1.2徑向載荷系數(shù)X和軸向載荷系數(shù)Y為X=1,Y=0
=1.2×(1×352)=422.4 N
驗算6208的壽命
驗算右邊軸承
9 潤滑和密封方式的選擇
減速器齒輪選擇油潤滑,潤滑油型號為CKC220,采用油池潤滑,浸油深度為H=124mm。由于齒輪圓周速度 V1 =1.659m/s, V2 =0.739m/s,均小于 2m/s,軸承采用脂潤滑。
10 箱體及附件的結(jié)構(gòu)設計和選擇
10.1箱體的選擇
箱體有鑄造箱體和焊接箱體兩種。鑄造箱體的剛性較好,外形比較美觀,而且易于切削加工,可以吸收振動和消除噪聲,但是鑄造的箱體重量比較大,鑄造還適用于批量生產(chǎn),生產(chǎn)效率比較高。焊接的箱體針對于單體或小批量生產(chǎn)的箱體,采用鋼板通過焊接而成,箱體壁薄,重量小,可以節(jié)省材料,生產(chǎn)周期也比較短但是要求的技術含量比較高。本題傳動有輕微振動,考慮到技術性能而應該采用鑄造箱體更適合此設計。
10.2、箱體的結(jié)構(gòu)尺寸
箱體壁厚
箱蓋壁厚
箱座凸緣厚度b=15mm
箱蓋凸緣厚度b1=15mm
箱座底凸緣厚度b2=25mm
地腳螺栓直徑df=M16
地腳螺栓數(shù)目n=4
軸承旁聯(lián)接螺栓直徑d1=M12
聯(lián)接螺栓d2的間距l(xiāng)=150mm
軸承端蓋螺釘直徑d3=M8
定位銷直徑d=6mm
df 、d1 、d2至外箱壁的距離C1=18mm、18 mm、13 mm
df、d2至凸緣邊緣的距離C2=16mm、11 mm
軸承旁凸臺半徑R1=11mm
凸臺高度根據(jù)低速軸承座外半徑確定
外箱壁至軸承座端面距離L1=40mm
大齒輪頂圓與內(nèi)箱壁距離△1=10mm
齒輪端面與內(nèi)箱壁距離△2=10mm
箱蓋,箱座肋厚m1=m=7mm
軸承端蓋外徑D2 :凸緣式端蓋:D+(5~5.5)d3
以上尺寸參考機械設計課程設計P17~P21
10.3傳動比
原始分配傳動比為:i1=2.62 i2=3.07 i3=2.5
修正后 :i1=2.5 i2=2.62 i3=3.07
各軸新的轉(zhuǎn)速為 :n1=960/2.5=3.84
n2=384/2.61=147
n3=147/3.07=48
10.4各軸的輸入功率
P1=pdη8η7 =3×0.95×0.99=2.52
P2=p1η6η5=2.52×0.97×0.99=2.42
P3=p2η4η3=2.42×0.97×0.99=2.33
P4=p3η2η1=2.33×0.99×0.99=2.28
10.5各軸的輸入轉(zhuǎn)矩
T1=9550Pdi1η8η7/nm=9550×2.52×2.5×0.95×0.99=128.65
T2= T1 i2η6η5=128.65×2.42×0.97×0.99=323.68
T3= T2 i3η4η3=323.68×2.33×0.97×0.99=954.25
T4= T3 η2η1=954.23×0.99×0.99=935.26
齒輪的結(jié)構(gòu)尺寸
兩小齒輪采用實心結(jié)構(gòu)
兩大齒輪采用復板式結(jié)構(gòu)
齒輪z1尺寸 z=34 d1=68 m=2 d=44 b=75 d1=68
齒輪z2的尺寸d2=178 z2=89 m=2 b=65 d4=49
齒輪3尺寸d=49 d3=85 z3=34 m=2.5 b=95
齒輪4尺寸 d=64 d4=260 z4=104 m=2.5 b=85
11擺桿分析
根據(jù)各軸的輸出轉(zhuǎn)矩的計算結(jié)果得
T3=454.25N.m
既裝有搖桿輸出矩為 T3=454.25N.m
取搖桿在一個較特殊的位置作分析
當搖桿在豎直位置時桿的傳動角近似為90度
即f1*Lab=T3
F1=T3/Lab=454.25/0.09=5047 N
根據(jù)力矩平衡求F2
圖11-1擺桿受力分析
圖11-2搖桿受力分析
即 F1*LO2B=F2*L2OC
F2=F1*LO2B/LO2C=5047x0.16/0.27=2990N
即 F0=F1-F2=5047-2990=2057N
可知應力集中處為F1受力點
即最大彎矩 M=F0*Lab=4319.62x0.16=691.14 N.m
桿件的形狀為長方形長寬比為2
圖11-3桿件截面尺寸
即 a=2b ,
求 慣性矩為Ix=1/2ba3=1/12x8*b4=2/4b4
最大拉應力δ=M*a/2Ix=3M/2b3=1036.71/b3
桿件材料為45鋼正火處理 δmin=300MPa
取安全系數(shù)1.2 即1.2δ<δmin
即 1.2x1036.71/b3 <300x106
b>=
b>=0.016m=16mm
取 b 為16mm 既a=2b=32mm
小結(jié)
機械設畢業(yè)設計是機械課程當中一個重要環(huán)節(jié),通過這次畢業(yè)設計,我從各個方面都受到了機械設計的訓練,對機械的有關各個零部件有機的結(jié)合在一起得到了深刻的認識。
由于在設計方面我們沒有經(jīng)驗,理論知識學的不牢固,在設計中難免會出現(xiàn)這樣那樣的問題,如:在選擇計算標準件是可能會出現(xiàn)誤差,如果是聯(lián)系緊密或者循序漸進的計算誤差會更大,在查表和計算上精度不夠準
在設計的過程中,培養(yǎng)了我綜合應用機械設計課程及其他課程的理論知識和應用生產(chǎn)實際知識解決工程實際問題的能力,在設計的過程中還培養(yǎng)出了我們的團隊精神,大家共同解決了許多個人無法解決的問題,在這些過程中我們深刻地認識到了自己在知識的理解和接受應用方面的不足,在今后的學習過程中我們會更加努力和團結(jié)。
致謝
這次畢業(yè)設計得到了很多老師和同學的幫助,其中我的導師劉媛媛老師對我的關心和支持尤為重要,而劉老師每次不管忙或閑,總會抽空來找我面談,然后一起商量解決的辦法。
另外,感謝校方給予我這樣一次機會,能夠獨立地完成一個課題,并在這個過程當中,能夠更多學習一些實踐應用知識,增強了我們實踐操作和動手應用能力,提高了獨立思考的能力。再一次對我的母校表示感謝。
最后,感謝所有在這次畢業(yè)設計中給予過我?guī)椭娜恕?對上述同學老師朋友,再一次真誠地表示感謝
參考文獻
[1] 龔桂義,羅圣國主編.《機械設計課程設計指導書》第二版:高等教育出版社,2010.
[2] 吳宗澤,羅圣國主編.《機械設計課程設計手冊》第三版:高等教育出版社,2006.
[3] 大連理工大學工程圖學教研室編.《機械制圖》第六版:高等教育出版社,2007.
[4] 孫桓,葛文杰主編.《機械原理》第七版:高等教育出版社,2006.
[5] 濮良貴,紀名剛主編.《機械設計》第八版:高等教育出版社,2006.
[6] 王忠主編. 《機械工程材料》第一版:清華大學出版社,2005.
[7] 韓進宏主編.《互換性與技術測量》 第一版:機械工業(yè)出版社,2004.
[8] 于俊一,鄒青主編.《機械制造技術基礎》第二版:機械工業(yè)出版社,2009.
[9] 嚴紹華主編.《熱加工工藝基礎》第二版:高等教育出版社,2004.
[10] 單祖輝主編.《材料力學》第二版:高等教育出版社,2004.
[11] 楊有道,錢瑞明.I、Ⅱ型曲柄搖桿機構(gòu)的運動性能研究、機械制造與研究,2004.
[12] 閔劍青,徐梓斌.鉸鏈六連桿機構(gòu)力學分析系統(tǒng),2005
壓縮包目錄 | 預覽區(qū) |
|
請點擊導航文件預覽
|
編號:21037645
類型:共享資源
大?。?span id="ievbyqtbdd" class="font-tahoma">603.66KB
格式:ZIP
上傳時間:2021-04-22
40
積分
積分
- 關 鍵 詞:
- 礦山搖擺式輸送機設計 礦山 擺式 輸送 設計
- 資源描述:
-
礦山搖擺式輸送機設計,礦山搖擺式輸送機設計,礦山,擺式,輸送,設計展開閱讀全文
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.820124.com/article/21037645.html