旋刀式割草機(jī)的改進(jìn)設(shè)計(jì)【旋刀式割草機(jī)的設(shè)計(jì)】【說明書+CAD+SOLIDWORKS+仿真】
旋刀式割草機(jī)的改進(jìn)設(shè)計(jì)【旋刀式割草機(jī)的設(shè)計(jì)】【說明書+CAD+SOLIDWORKS+仿真】,旋刀式割草機(jī)的設(shè)計(jì),說明書+CAD+SOLIDWORKS+仿真,旋刀式割草機(jī)的改進(jìn)設(shè)計(jì)【旋刀式割草機(jī)的設(shè)計(jì)】【說明書+CAD+SOLIDWORKS+仿真】,旋刀式,割草機(jī),改進(jìn),改良,設(shè)計(jì),說明書,仿單
任務(wù)書
學(xué)院
機(jī)械電氣化工程學(xué)院
班級(jí)
學(xué)生姓名
學(xué)號(hào)
課題名稱
旋刀式割草機(jī)的改進(jìn)設(shè)計(jì)
起止時(shí)間
2011年3月1日—— 2012年5月28日(共14周)
指導(dǎo)教師
職稱
講師
課題內(nèi)容
根據(jù)國內(nèi)現(xiàn)有的旋刀式割草機(jī)設(shè)計(jì)適用于草坪修剪和小型草場收獲的改進(jìn)型割草機(jī),要求結(jié)構(gòu)簡單,靈活性好,不纏草,地面仿形能力好。具體要求如下:
1.選擇合適配套動(dòng)力,設(shè)計(jì)工作裝置和行走仿形裝置。
2.繪制二維裝配圖和零件圖。
3.要求利用Solidworks繪制三維圖。
擬定工作進(jìn)度(以周為單位)
第1~2周 查閱相關(guān)文獻(xiàn),撰寫開題報(bào)告。
第3~4周 根據(jù)現(xiàn)有的小型草坪修剪機(jī)和現(xiàn)有割草機(jī)確定旋刀式割草機(jī)的總體設(shè)計(jì)方案,繪制總體結(jié)構(gòu)簡圖。
第5~6周 根據(jù)工作要求,計(jì)算并查閱相關(guān)手冊(cè),選擇和設(shè)計(jì)各零部件。
第7~9周 運(yùn)用AutoCAD軟件,繪制二維零件圖和裝配圖。
第10~11周 運(yùn)用三維設(shè)計(jì)軟件完成整機(jī)各零部件的三維建模并進(jìn)行運(yùn)動(dòng)仿真。
第12周 從工藝性能,經(jīng)濟(jì)性能,實(shí)用性能等方面對(duì)產(chǎn)品進(jìn)行綜合評(píng)價(jià)、校核、修正。
第13周 完成設(shè)計(jì)說明書。
第14周 整理材料,準(zhǔn)備答辯。
主要參考文獻(xiàn)
(說明:自己填上8個(gè)主要的)
任務(wù)下達(dá)人(簽字)
同意按此計(jì)劃進(jìn)行設(shè)計(jì)
年 月 日
任務(wù)接受人意見
任務(wù)接受人簽名
年 月 日
注:1、此任務(wù)書由指導(dǎo)教師填寫,任務(wù)下達(dá)人為指導(dǎo)教師。
2、此任務(wù)書須在學(xué)生畢業(yè)實(shí)踐環(huán)節(jié)開始前一周下達(dá)給學(xué)生本人。
3、此任務(wù)書一式三份,一份留學(xué)院存檔,一份學(xué)生本人留存,一份指導(dǎo)教師留存。
塔里木大學(xué)畢業(yè)設(shè)計(jì)
前 言
割草作為草坪修整的一項(xiàng)最基本作業(yè),人們希望使用簡單高效經(jīng)濟(jì)適用的割草機(jī)械來完成草坪修建作業(yè),并輕松完成割草作業(yè)任務(wù)。同時(shí),要考慮環(huán)境保護(hù)和可持續(xù)發(fā)展的要求,設(shè)法減輕工作中對(duì)環(huán)境的影響,盡量降低其噪音污染,不給周圍環(huán)境造成負(fù)面影響。割草的主要作用是保持草坪上草的可控性正常生長,并通過割草機(jī)的修剪,保持人們預(yù)期的生長高度以及生長形態(tài),使草坪美化環(huán)境的功能和其他功能得到充分發(fā)揮。目前,大型生態(tài)園的綠地設(shè)計(jì)已是房地產(chǎn)開發(fā)團(tuán)中一個(gè)重要環(huán)節(jié),草地是綠化的一種重要形式。目前,庭院里修整草地通常使用身背柴油機(jī)作動(dòng)力,采用尼龍繩甩打草葉;或者是使用電動(dòng)、柴油機(jī)的割草機(jī),這種割草機(jī)體積大、噪音大,適用于空曠大草坪,易夾草出故障,遇到石塊可能使刀片斷裂,發(fā)生事故。隨著國內(nèi)人們生活水平的提高,人們對(duì)居住的綠化水平要求越來越高,尤其帶花園的別墅不斷增加,更需要開發(fā)一種適合小面積草地、簡單靈活的手推式割草機(jī)。
本設(shè)計(jì)討論分析了旋刀式割草機(jī)機(jī)的基礎(chǔ)參數(shù),參考已有旋刀式割草機(jī)的參數(shù),既要保證工作要求,又要盡量減小噪音污染并提高刀片的時(shí)候用壽命。設(shè)計(jì)出一款經(jīng)濟(jì)適用,成本低廉,可大范圍推廣的割草機(jī)械,為人們的居住環(huán)境的美化提供良好的實(shí)現(xiàn)工具。
____________________________________________________________________________________________
旋刀式割草機(jī)的改進(jìn)設(shè)計(jì)
目 錄
1國內(nèi)外旋刀式割草機(jī)的發(fā)展?fàn)顩r 1
1.1割草機(jī)的分類 1
1.2國外旋刀式割草機(jī)械的發(fā)展?fàn)顩r 1
1.3國內(nèi)旋刀式割草機(jī)械的發(fā)展現(xiàn)狀 1
1.4國內(nèi)外旋刀式割草機(jī)械存在的問題 2
1.5割草作業(yè)的主要作用 2
1.6割草機(jī)割草的基本要求及注意事項(xiàng) 2
1.6研究的內(nèi)容和方法 3
1.7預(yù)期目標(biāo) 3
2 整機(jī)總體設(shè)計(jì)方案 3
2.1 設(shè)計(jì)原則 3
2.2 旋刀式割草機(jī)的設(shè)計(jì)方案 4
3 旋刀式割草機(jī)主要部件的設(shè)計(jì)與計(jì)算 6
3.1割草機(jī)工作部分設(shè)計(jì) 6
3.2推桿的設(shè)計(jì) 10
3.3機(jī)架的設(shè)計(jì) 10
4 旋刀式割草機(jī)傳動(dòng)系統(tǒng)設(shè)計(jì)與計(jì)算 13
4.1動(dòng)力傳遞方案 13
4.2傳動(dòng)比的計(jì)算 13
5主要部件的強(qiáng)度分析 15
6總結(jié) 15
致謝 17
參考文獻(xiàn) 18
1國內(nèi)外旋刀式割草機(jī)的發(fā)展?fàn)顩r
1.1割草機(jī)的分類
按切割器類型可以分為旋刀式、往復(fù)式、滾刀式、甩刀式、甩繩式。其中,應(yīng)用最多的是旋刀式割草機(jī)、滾刀式割草機(jī)和往復(fù)式割草機(jī)。
往復(fù)式割草機(jī)割茬低而整齊,草坪損失少,單位割幅的金屬用量和功率消耗低,因而成本較低。它的作業(yè)速度一般為6~8 km/h。提高割刀的往復(fù)次數(shù)并解決割刀的全平衡問題后,旋刀式割草機(jī)是由橫向懸掛在直立軸上的刀片高速旋轉(zhuǎn)打切草上部的葉片,它適于25~80mm范圍內(nèi)割草。由于期間各低廉,保養(yǎng)、維修方便,使用靈活,只要將刀磨快,就能達(dá)到較為理想的割草效果。因此,一般的草坪都使用旋刀式割草機(jī)作業(yè),使得旋刀式割草機(jī)稱為國內(nèi)外最流行的割草機(jī)[1] [6] 。
按配套動(dòng)力和作業(yè)方式分可以分為:手推式、手扶隨行式、手扶自行式、坐騎式和拖拉機(jī)懸掛式割草機(jī)。
按動(dòng)力驅(qū)動(dòng)方式主要分為人畜力驅(qū)動(dòng)、發(fā)動(dòng)機(jī)驅(qū)動(dòng)和電力驅(qū)動(dòng)三種形式割草機(jī)。其中,以發(fā)動(dòng)機(jī)驅(qū)動(dòng)的割草機(jī)最多,發(fā)動(dòng)機(jī)多為單缸汽油機(jī)。太陽能割草機(jī)雖然已有生產(chǎn),但應(yīng)用較少。
動(dòng)力驅(qū)動(dòng)的割草機(jī)按牽引方式或懸掛方式可分為前置式、側(cè)置式、后置式、中置式割草機(jī)。目前,也有旋刀式手推隨行式割草機(jī),大部分采用中置懸掛,而滾刀手推隨行式割草機(jī)多采用前置式掛接,大型的割草機(jī)則采用混合牽引方式。
1.2國外旋刀式割草機(jī)械的發(fā)展?fàn)顩r
在割草機(jī)問世之前,草坪的修剪主要工具是鐮刀,放牧牛羊也是保持草地平整的重要方法。隨著高爾夫球、網(wǎng)球及足球等運(yùn)動(dòng)的興起,人們擁有平整美觀的草地做運(yùn)動(dòng)場地的要求越來越迫切。1805年英國人普拉克內(nèi)特發(fā)明了第一臺(tái)收割谷物并能切割雜草的機(jī)器,由人推動(dòng)機(jī)器,通過齒輪傳動(dòng)帶動(dòng)旋刀割草,這就是旋刀割草機(jī)的雛形。1805年英國工程師托馬斯·普拉克獲得了第一臺(tái)割草機(jī)的發(fā)明專利,當(dāng)時(shí)的割草機(jī)是裝有環(huán)形刀,機(jī)體笨重且運(yùn)轉(zhuǎn)不恨理想。到1830年,埃文·馬丁制造出了類似于今天試用的手扶滾筒割草機(jī)。早期應(yīng)用普遍的是王府式割草機(jī),通過加大割幅及提高機(jī)具的前進(jìn)速度來提高機(jī)具的生產(chǎn)率。20世紀(jì)70年代各國開始研制旋刀式割草機(jī),利用高速旋轉(zhuǎn)的割刀對(duì)植株進(jìn)行無支撐切割,此類機(jī)具具有結(jié)構(gòu)簡單,維護(hù)保養(yǎng)時(shí)間少,不需磨刀、換刀等優(yōu)點(diǎn)。近年來,歐美發(fā)達(dá)國家的割草機(jī)設(shè)備更加成熟,結(jié)構(gòu)參數(shù)更加合理,可靠性、生產(chǎn)率提高很快。生產(chǎn)割草機(jī)的國際著名企業(yè)有沒過紐荷蘭、約翰迪爾、凱斯公司,英國弗格森公司,韓國成元公司,德國威格公司和前進(jìn)公司等。他們生產(chǎn)的設(shè)備無論在機(jī)械結(jié)構(gòu)、動(dòng)力配套、液壓系統(tǒng)還是控制系統(tǒng)方面都處理得很成功,一些最新的科學(xué)理論、最新的科研成果和最新的科學(xué)技術(shù)都在這些機(jī)械設(shè)備上有體現(xiàn)。例如在控制系統(tǒng)方面,單片機(jī)、可編程控制器PLC、工業(yè)控制機(jī)控制IPC等得自動(dòng)化控制手段都得到充分的應(yīng)用。一些發(fā)達(dá)國家如美國已經(jīng)發(fā)明機(jī)器人割草機(jī),實(shí)現(xiàn)了自動(dòng)化作業(yè)。
目前國外大多使用滾筒式、圓盤式、水平旋轉(zhuǎn)式或旋刀式割草機(jī),這些割草機(jī)堅(jiān)固耐用,工作速度快。這些機(jī)具一次通過就能完成割草、壓扁、成條三道工序[1] [2]。
1.3國內(nèi)旋刀式割草機(jī)械的發(fā)展現(xiàn)狀
隨著社會(huì)的進(jìn)步和經(jīng)濟(jì)的發(fā)展,人們對(duì)生存環(huán)境的要求也越來越高,城市環(huán)境的保護(hù)得到越來越多的重視。我國草坪建設(shè)也得到了迅速的發(fā)展。草坪美化環(huán)境,固土護(hù)坡,凈化空氣多種功能已經(jīng)成為人們的共識(shí)。
我國生產(chǎn)割草機(jī)起步較晚,生產(chǎn)企業(yè)規(guī)模普遍較小,產(chǎn)品用途較為單一,均沒有形成規(guī)模批量,所以長期以來,割草機(jī)均以進(jìn)口為主。據(jù)統(tǒng)計(jì),到1999年底我國各種園林機(jī)械保有量達(dá)10萬臺(tái),1999年的割草機(jī)銷售量在3萬臺(tái)左右,其中80%為進(jìn)口。
改革開放以來,我國的草坪業(yè)由興起到長足發(fā)展,只有十幾年的時(shí)間,卻為草坪機(jī)械業(yè)的發(fā)展帶來了勃勃生機(jī) 。首先是機(jī)械先進(jìn),90%以上為進(jìn)口產(chǎn)品,其次外從草坪建植到養(yǎng)護(hù)生產(chǎn)環(huán)節(jié)機(jī)械配套齊全,基本上實(shí)現(xiàn)了全程機(jī)械化,再次是產(chǎn)品品種多、系列化程度高。而在草坪機(jī)械中割草機(jī)發(fā)展最快,我國引進(jìn)使用的割草機(jī)有美國和日本等十幾個(gè)國家的幾十種機(jī)型,我國也已經(jīng)開始生產(chǎn)割草機(jī),目前國內(nèi)外所用的割草機(jī)種類繁多,其分類方法也多樣化。
我國目前生產(chǎn)的割草機(jī)以刀具類型可分為滾刀式和旋刀式兩大類。
據(jù)調(diào)查,國內(nèi)生產(chǎn)割草機(jī)的廠家大約有50家左右。多數(shù)為園藝系統(tǒng)的公司以及轉(zhuǎn)產(chǎn)割草機(jī)的機(jī)械廠。市場上草坪修剪機(jī)的品牌很多,有進(jìn)口的產(chǎn)品,也有國內(nèi)制造和中外合資的,從功率2.6~1.2千瓦,剪幅從43.2~127厘米。
中美合資江蘇淮陰泛亞園林機(jī)械有限公司,生產(chǎn)力特牌—NEAT草坪割草機(jī),占國內(nèi)市場50%的市場份額,現(xiàn)年產(chǎn)量達(dá)5000臺(tái)。目前正這首進(jìn)行年產(chǎn)5萬臺(tái)的割草機(jī)技術(shù)改造,氣動(dòng)力選用日本本田發(fā)動(dòng)機(jī)。
南通機(jī)床為轉(zhuǎn)產(chǎn)生產(chǎn)割草機(jī)的廠家。其產(chǎn)品為草地王系列產(chǎn)品:56cm自走式草坪割草機(jī);84cm隨進(jìn)式割草機(jī);84nm電啟動(dòng)式割草機(jī);122cm坐騎式剪草機(jī)。該廠生產(chǎn)除發(fā)動(dòng)機(jī)以外的零部件,發(fā)動(dòng)機(jī)多選用美國產(chǎn)品,1999年已有產(chǎn)品出口美國。
山東省萊州市仲院宇峰鍘草機(jī)廠研制出全新微型電動(dòng)鍘草機(jī),該機(jī)以單相照明電為動(dòng)力,無電地區(qū)或停電時(shí)用165、175、180等型號(hào)柴油機(jī)為動(dòng)力,適宜鍘切玉米秸、麥秸、稻草以及青貯飼料,每小時(shí)鍘草量300~400 kg,切草長度為1.5~2 cm。整機(jī)結(jié)構(gòu)緊湊,體積小,重量輕,全機(jī)重僅32 kg,移動(dòng)方便,并具有切碎均勻、出料順暢、揚(yáng)程遠(yuǎn)、噪音低等特點(diǎn)。
安徽飛彩車輛股份有限公司“十五”期間進(jìn)行了技術(shù)改造,改造后計(jì)劃年產(chǎn)6萬臺(tái)割草機(jī)。其中代表產(chǎn)品之一是手扶式寬幅割草機(jī)系列,年產(chǎn)5萬臺(tái),以22161型為例,發(fā)動(dòng)機(jī)為4沖程,4.8,割草寬度53cm,自走式;代表產(chǎn)品之二是駕乘式割草機(jī)系列,年產(chǎn)1萬臺(tái),以16-38HXL型為例,為4沖程,11.7 kW,97cm循環(huán)割草,帶驅(qū)動(dòng)。
目前,我國已經(jīng)研制開發(fā)出來草坪割草機(jī)試驗(yàn)臺(tái),草坪割草機(jī)為現(xiàn)代城市綠化的重要設(shè)備,目前市場上國產(chǎn)的機(jī)器均有一定的市場,但質(zhì)量參差不齊。對(duì)于草坪割草機(jī)的安全指標(biāo),僅有檢測方法,沒有現(xiàn)成的撞擊試驗(yàn)專用設(shè)備。為了對(duì)其進(jìn)行科學(xué)的測試,北京市農(nóng)機(jī)試驗(yàn)鑒定推廣站研制成功草坪割草機(jī)專用試驗(yàn)臺(tái)。該試驗(yàn)臺(tái)自動(dòng)化程度高,采用了氣動(dòng)傳動(dòng)技術(shù)、機(jī)-電安全鎖定機(jī)構(gòu)及氣動(dòng)調(diào)速技術(shù),可對(duì)國內(nèi)各型草坪割草機(jī)進(jìn)行安全性能試驗(yàn),能夠完成草坪機(jī)的撞擊試驗(yàn)和刀片護(hù)罩強(qiáng)度試驗(yàn)。試驗(yàn)結(jié)果表明,該專用試驗(yàn)臺(tái)達(dá)到國內(nèi)先進(jìn)水平,檢測快捷,安全性高[10] [11]。
1.4國內(nèi)外旋刀式割草機(jī)械存在的問題
雖然旋刀式割草機(jī)的理論和制造技術(shù)已經(jīng)相當(dāng)成熟,但是結(jié)構(gòu)簡單,操作方便、低噪音、高性能的割草機(jī)并不多。
旋刀式割草機(jī)的配套動(dòng)力有汽油發(fā)動(dòng)機(jī)(有電纜或蓄電池供電)和汽油機(jī)兩種?;诎踩矫娴脑蛴呻娎|供電的割草機(jī)只能在小面積上使用,而蓄電池供電的割草機(jī),因機(jī)器重量較大,且蓄電池需經(jīng)常充電(一般完成700平方米后需進(jìn)行充電)。所以,在小型割草機(jī)上(2.2 kW以下)常采用汽油發(fā)動(dòng)機(jī)作為配套動(dòng)力機(jī)。而在2.2 kW以上的割草機(jī)多采用汽油機(jī)作為配套動(dòng)力機(jī)。以汽油機(jī)作為動(dòng)力的旋刀式割草機(jī),其噪聲污染比較嚴(yán)重,它的噪聲源為汽油機(jī)和旋刀裝置。
目前,國內(nèi)外采用的都是合金彈簧鋼,經(jīng)普通淬火加中、高溫回火后得回火索氏體或回火屈氏體,硬度在HRC40~45,以保證一定的強(qiáng)度和韌性。但生產(chǎn)上遇到的最大難題是合金彈簧鋼如65Mn鋼加工硬化率高,冷彎成型性差。此外,這樣的熱處理工藝并不能很好地滿足刀片強(qiáng)韌性和耐磨性的要求,主要失效形式是磨損。如鉸接式刀片往往是3天就要卸下來磨一次。有時(shí)遇到土質(zhì)不好,有鐵絲石頭等硬物時(shí),還經(jīng)常發(fā)生刀片斷裂[2] [3] [10]。
1.5割草作業(yè)的主要作用
割草作為草坪修整的一項(xiàng)最基本作業(yè),要求使用簡單高效的割草機(jī)械,保質(zhì)保量完成割草作業(yè)任務(wù)。同時(shí),盡量降低其噪音污染,不給周圍環(huán)境造成負(fù)面影響。割草的主要作用是保持草坪上草的可控性正常生長,并通過割草機(jī)的修剪,保持人們預(yù)期的生長高度以及生長形態(tài),使草坪美化環(huán)境的功能和其他功能得到充分發(fā)揮。目前,大型生態(tài)園的綠地設(shè)計(jì)已是房地產(chǎn)開發(fā)團(tuán)中一個(gè)重要環(huán)節(jié),草地是綠化的一種重要形式。目前,庭院里修整草地通常使用身背柴油機(jī)作動(dòng)力,采用尼龍繩甩打草葉;或者是使用電動(dòng)、柴油機(jī)的割草機(jī),這種割草機(jī)體積大、噪音大,適用于空曠大草坪,易夾草出故障,遇到石塊可能使刀片斷裂,發(fā)生事故。隨著國內(nèi)人們生活水平的提高,人們對(duì)居住的綠化水平要求越來越高,尤其帶花園的別墅不斷增加,更需要開發(fā)一種適合小面積草地、簡單靈活的手推式割草機(jī)[3]。
1.6割草機(jī)割草的基本要求及注意事項(xiàng)
1.6.1基本要求
(1)割草高度可根據(jù)要求調(diào)整,適應(yīng)高度調(diào)整范圍大,當(dāng)草坪要求修剪很低能達(dá)到要求。
(2)割草整齊、平整,同一行程前后割草高度一致,兩次作業(yè)行程銜接平滑、無接茬。
(3)對(duì)地形的適應(yīng)能力強(qiáng),仿行能力強(qiáng),隨地形變化前后剪草高度一致。
(4)割草機(jī)對(duì)草坪碾壓輕、傷害少。
(5)草屑收集干凈,或被切割部分細(xì)碎性能好(草屑撒在草坪中當(dāng)肥料時(shí)),以便于灑落在草坪下及時(shí)腐爛。
(6)割草機(jī)質(zhì)量好,故障少,節(jié)省燃料、效率高。
(7)易于操作、輕便靈活、維修調(diào)試方便,零部件通用性和互換性好。
(8)正確掌握修剪草坪的時(shí)間并且制定科學(xué)的修剪高度和修剪頻率[8]。
1.6.2注意事項(xiàng)
(1)不可以將手動(dòng)割草機(jī)用于割除攀藤植物、屋頂或陽臺(tái)上的青草等,那樣有可能傷害到身體。
(2)每次使用之前都需要進(jìn)行一次檢查,確認(rèn)所有的螺栓、螺母、工具都沒有磨損或損壞,對(duì)于磨鈍或損壞了的刀片應(yīng)當(dāng)更換。
(3)再檢查一下要割草的草坪表面,要清除干凈石頭、木塊、電線等其他堅(jiān)硬的物體,這些物品碰到刀具時(shí)會(huì)飛甩出去而無法控制。
(4)旁邊有人,尤其是兒童和動(dòng)物的時(shí)候,不要使用該割草機(jī)。
(5)割草時(shí)一定要穿用防滑底做成的結(jié)實(shí)靴子。
(6)旋轉(zhuǎn)的刀片轉(zhuǎn)筒可能會(huì)造成人身傷害,刀片轉(zhuǎn)筒和操作人員之間的安全距離是通過導(dǎo)桿隔開的,一定要一直保持這個(gè)安全距離。在堤岸或斜坡上割草時(shí)尤其要注意,一定要順著斜坡的方向割。
(7)當(dāng)后退拉動(dòng)割草機(jī)時(shí)要特別小心,有絆倒的危險(xiǎn)。
(8)任何時(shí)候都不要將手或腳放在運(yùn)動(dòng)部件的上方或下方。
(9)如果刀具或割草機(jī)遇到障礙或堅(jiān)硬的物體時(shí),一定要適當(dāng)全面地檢查割草機(jī)。
(10)只有在能見度好,視野清晰的時(shí)候才可以進(jìn)行工作[8]。
1.6研究的內(nèi)容和方法
根據(jù)我國割草機(jī)的發(fā)展現(xiàn)狀和存在的問題以及人們草坪割草機(jī)的更高要求,對(duì)現(xiàn)有的割草機(jī)進(jìn)行改進(jìn)。在旋刀式割草機(jī)的基礎(chǔ)上,通過對(duì)其做減噪處理和刀片的優(yōu)化處理,利用現(xiàn)代設(shè)計(jì)方法,設(shè)計(jì)出一款結(jié)構(gòu)簡單、操作方便、低噪音、高效率的旋刀式草坪割草機(jī)。
設(shè)計(jì)旋刀式草坪割草機(jī)的整體結(jié)構(gòu),主要由汽油發(fā)動(dòng)機(jī)、傳動(dòng)軸、工作軸、割草機(jī)機(jī)架、手把、行走膠輪、旋刀刀片組成。
汽油發(fā)動(dòng)機(jī)機(jī)提供動(dòng)力,通過傳動(dòng)軸和工作軸為旋刀裝置提供動(dòng)力。旋刀裝置主要部件為旋刀刀片。
討論分析了旋刀式割草機(jī)機(jī)的基礎(chǔ)參數(shù),參考已有旋刀式割草機(jī)的參數(shù),既要保證工作要求,又要盡量減小噪音污染并提高刀片的時(shí)候用壽命。根據(jù)選定的有關(guān)參數(shù),由經(jīng)驗(yàn)公式計(jì)算出旋刀式割草機(jī)所需的功率,根據(jù)該功率選擇適合的汽油發(fā)動(dòng)機(jī)型號(hào)。
該課題應(yīng)用的研究方法:理論設(shè)計(jì)、繪制模擬樣機(jī)并進(jìn)行仿真模擬。既要保證割草機(jī)的使用要求,又要盡量減小噪音污染,并提到刀片的使用壽命。
1.7預(yù)期目標(biāo)
(1)整機(jī)結(jié)構(gòu)簡單,維護(hù)方便,質(zhì)量輕,尺寸小,機(jī)動(dòng)性好。
(2)汽油發(fā)動(dòng)機(jī)為工作動(dòng)力源,人作為行走動(dòng)力,造價(jià)低、可靠性高、使用簡便,具有節(jié)省能源,降低污染的特點(diǎn)。
(3)適于一般草坪維護(hù),成本低廉,有利于大規(guī)模推廣應(yīng)用。
2 整機(jī)總體設(shè)計(jì)方案
2.1 設(shè)計(jì)原則
對(duì)于旋刀式割草機(jī)的總體設(shè)計(jì),要遵循的設(shè)計(jì)原則
(1)首先滿足農(nóng)藝要求并適應(yīng)小區(qū)草坪的面積限制,具有良好的轉(zhuǎn)向性和操作靈活性。
(2)吸收國內(nèi)外設(shè)施農(nóng)業(yè)作業(yè)機(jī)械的新技術(shù),采用新原理、新結(jié)構(gòu)、新工藝、做到設(shè)計(jì)合理、使用可靠、優(yōu)質(zhì)高效、物美價(jià)廉,能廣泛推廣。
(3)零部件的通用化、標(biāo)準(zhǔn)化程度高。
(4)整機(jī)結(jié)構(gòu)簡單、成本低廉、操作簡便、維修方便、質(zhì)量輕、機(jī)動(dòng)性好。
2.2 旋刀式割草機(jī)的設(shè)計(jì)方案
圖2-1旋刀式割草機(jī)
圖2-2旋刀式割草機(jī)簡圖
1.工業(yè)腳輪 2.工業(yè)腳輪架 3.下機(jī)架 4.上機(jī)架
5.發(fā)動(dòng)機(jī)6.推桿7.工業(yè)走輪架 8.工業(yè)走輪9.工作軸 10.刀片
如圖 2-2 所示,旋刀式割草機(jī)主要工業(yè)腳輪、下機(jī)架、發(fā)動(dòng)機(jī)、上機(jī)架、推桿、工作軸、工業(yè)走輪和刀片等組成。汽油發(fā)動(dòng)機(jī)提供動(dòng)力,其輸出軸通過花鍵與裝配有刀片的工作軸相連,帶動(dòng)旋刀工作,使其實(shí)現(xiàn)割草動(dòng)作,發(fā)動(dòng)機(jī)有油門控制旋鈕,通過旋轉(zhuǎn)旋鈕控制發(fā)動(dòng)機(jī)的轉(zhuǎn)速以及停止,從而實(shí)現(xiàn)控制選到的工作轉(zhuǎn)速,實(shí)現(xiàn)對(duì)旋刀的工作控制。
手推式割草機(jī)的動(dòng)力是來源于行走輪驅(qū)動(dòng),即靠人的推力來驅(qū)動(dòng)。查閱《人機(jī)工程手冊(cè)》,人步行速度約為3~5千米/時(shí),即48~64米/分,考慮到要推動(dòng)割草機(jī)進(jìn)行切割,選取人的步行速度為48米/分,即0.8米/秒。
查閱《機(jī)械設(shè)計(jì)手冊(cè)》得到以下數(shù)據(jù):
成年男性身高:
18—25周歲 1554~1830毫米
26—35周歲 1545~1851毫米
36—60周歲 1553~1798毫米
平均身高:
18—60周歲 1543~1814毫米
成年女性身高:
18—25周歲 1457~1709毫米
26—35周歲 1449~1698毫米
36—60周歲 1445~1683毫米
平均身高:
18—60周歲 1449~1697毫米
成年男性臂長:
18—25周歲 279~350毫米
26—35周歲 280~349毫米
36—60周歲 278~348毫米
平均臂長:
18—60周歲 279~349毫米
成年女性臂長:
18—25周歲 253~319毫米
26—35周歲 253~320毫米
36—60周歲 251~317毫米
平均臂長:
18—60周歲 252~319毫米
立姿工作崗位工作高度:
男性:
950~1050~1150毫米
1050~1200~1300毫米
女性:
850~950~1050毫米
1000~1100~1200毫米
綜合以上因素,設(shè)計(jì)推桿機(jī)支架的尺寸,并且根據(jù)不同性別和不同年齡將推桿的高度和傾斜角度設(shè)計(jì)成可以調(diào)節(jié)的。站立工作時(shí)操作的有關(guān)尺寸,以及人體需要的可能活動(dòng)空間.
由《人機(jī)工程手冊(cè)》查得,人體身高尺寸(成年男性)多在170 cm左右。因此,推桿距地面的高度取為1000毫米,且可在850~1300毫米之間調(diào)節(jié),符合人體作業(yè)適應(yīng)度。
設(shè)計(jì)原則:工作場地的高度取決于作用力、操作者的身高、操作者操作物件的尺寸、以及視野范圍。
A:精密工作,靠肘支撐工作。(設(shè)計(jì)尺寸針對(duì)男性:105~115毫米 針對(duì)女性:100~110毫米)
B:虎鉗固定在工作臺(tái)上的高度:113毫米
C:輕手工工作。(男性:95~100毫米 女性:90~95毫米)
D:用勁大的工作。(男性:80~95毫米 女性:75~90毫米)
本設(shè)計(jì)屬于D范圍內(nèi)的設(shè)計(jì)。
又因?yàn)樵摳畈輽C(jī)是手推式的,動(dòng)力來源于人的行走以及推力。應(yīng)考慮到其結(jié)構(gòu)尺寸方面的因素,因而行走輪直徑不宜過大。其旋刀刀尖速度要求達(dá)到71~97 m/s,在這個(gè)速度范圍能使選到旋轉(zhuǎn)引起的噪聲降到比較合理的水平,并能正常工作。
如果輪子直徑過大,將會(huì)使機(jī)具底盤抬高,影響整機(jī)的協(xié)調(diào)性,如果輪子直徑過小,則推行比較費(fèi)力,不能達(dá)到設(shè)計(jì)要求,要滿足人的推力在200 N左右都能推動(dòng)這部割草機(jī)才行。
初步選取外輪直徑D=80 mm,
由《人機(jī)工程手冊(cè)》查得,人體身高尺寸(成年男性)多在170 cm左右。因此,推桿距地面的高度取為100 cm,且可在100~140cm之間調(diào)節(jié),符合人體作業(yè)適應(yīng)度。
功率消耗計(jì)算
本設(shè)計(jì)割草機(jī)的功率消耗為割草作業(yè)的功率消耗,行走動(dòng)力由人提供,不列入計(jì)算。旋刀式割草機(jī)在平坦地面上的割草消耗功率計(jì)算公式為,
式中 —機(jī)器前進(jìn)速度(m/s);
B —機(jī)器割副(m);
—切割每平方米面積的莖干所需的功率,一般取=200~300。
割草機(jī)所需功率為。
則選用1.5馬力的發(fā)動(dòng)機(jī)。
由以上分析確定割草機(jī)的各項(xiàng)參數(shù):
割草機(jī)的整體寬度:495mm;
割草機(jī)的割幅:400mm;
割草高度:25~80mm;
旋刀寬度:B=58mm;
旋刀厚度:l=3mm;
機(jī)架離地高度:h=200mm;
發(fā)動(dòng)機(jī)轉(zhuǎn)速:n=3600r/min;
旋刀的轉(zhuǎn)速:n=3600r/min=75.4m/s;
旋刀的刀尖速度:v=71~97m/s;
切割速度介于71~97ms之間,合適;
人的持續(xù)推力為15~20kg,取F=200N;
則p=Fv=200×0.8=0.16;
集草類型:就地灑落。
選取HONDA本田GX35汽油機(jī),其主要技術(shù)參數(shù)如表2-1所示:
3 旋刀式割草機(jī)主要部件的設(shè)計(jì)與計(jì)算
3.1割草機(jī)工作部分設(shè)計(jì)
圖3-1刀組結(jié)構(gòu)圖
表2-1 本田GX35汽油機(jī)技術(shù)參數(shù)
項(xiàng)目
技術(shù)參數(shù)
汽油機(jī)型號(hào)
GX35
汽油機(jī)型式
單缸、四沖程
氣缸直徑(mm)
39.0
活塞直徑(mm)
30.0
排量(mL)
31
標(biāo)定轉(zhuǎn)速(r/min)
3600
最大功率(ps)
1.5
旋轉(zhuǎn)方向
逆時(shí)針方向(面向輸出軸)
化油器型式
膜片式
點(diǎn)火系統(tǒng)
晶體化,無觸點(diǎn)
火花塞編號(hào)
GMR5H(NGK)
起動(dòng)方式
手拉反沖起動(dòng)
外形尺寸(長×寬×高)(mm)
198×234×240
調(diào)速器型式
離心重錘式
燃油箱容量(L)
1
凈重(kg)
3.4(無離合器)
如圖3-1所示:旋刀通過螺紋圓柱銷定位用螺母固定在工作軸上,工作軸通過花鍵與發(fā)動(dòng)機(jī)輸出軸連接,軸向定位在軸上開兩個(gè)11 mm深的孔用螺紋圓柱銷定位。工作部件由一組這樣的機(jī)構(gòu)構(gòu)成,旋刀可以隨時(shí)更換。
3.1.1 旋刀的設(shè)計(jì)
圖3-1旋刀
圖3-2旋刀結(jié)構(gòu)圖
旋刀的結(jié)構(gòu)圖如圖3-2,材料是65Mn鋼,等溫淬火后硬度為42~50HRC,,。
3.1.2 傳動(dòng)軸的設(shè)計(jì)
材料是合金結(jié)構(gòu)鋼40MnB,調(diào)質(zhì)處理,硬度為28HRC,,
,,軸上一端為內(nèi)花鍵,結(jié)構(gòu)如圖3-3。
圖3-3傳動(dòng)軸圖
(1)軸徑的初步計(jì)算
根據(jù)軸的扭轉(zhuǎn)強(qiáng)度條件 ,式中:
——扭轉(zhuǎn)相應(yīng)切力,;
——軸所受的扭矩,;
——軸的抗扭截面系數(shù),;
——軸的轉(zhuǎn)速,;
——軸傳遞的功率,;
——計(jì)算截面處軸的直徑,。
已知。其中,
得,
對(duì)于空心軸,,式中為空心軸的內(nèi)徑與外徑之比,通常取=0.5~0.6。
已知P =1.25,n=3600 r/min,軸的材料選用 40MnB, 。
將其代入式中,得實(shí)心軸軸徑;
空心軸軸徑。
故輸出軸的實(shí)心部分最小軸徑要大于7.73mm,空心部分最小軸徑要大于7.90mm,
(2) 軸的結(jié)構(gòu)設(shè)計(jì)
圖3-4傳動(dòng)結(jié)構(gòu)軸
傳動(dòng)軸的結(jié)構(gòu)簡圖如上圖3-4,一有內(nèi)花鍵,另一端直接與發(fā)動(dòng)機(jī)的輸出軸相連;通過花鍵連接將動(dòng)力傳導(dǎo)至工作軸。
3.1.3 工作軸的設(shè)計(jì)
材料是合金結(jié)構(gòu)鋼40MnB,調(diào)質(zhì)處理,硬度為28HRC,,
,,軸上一端為外花鍵,結(jié)構(gòu)如下圖3-5。
圖3-5工作軸
軸徑的初步計(jì)算同上,工作軸最小軸徑要大于7.90mm。
軸的結(jié)構(gòu)設(shè)計(jì)
圖3-6工作軸結(jié)構(gòu)圖
傳動(dòng)軸的結(jié)構(gòu)簡圖如上圖3-6,一端有加工有外花鍵,與傳動(dòng)軸相連,另一端連接旋刀,帶動(dòng)旋刀進(jìn)行割草作業(yè)。
3.1.4傳動(dòng)機(jī)構(gòu)設(shè)計(jì)
傳動(dòng)軸和工作軸通過花鍵連接,以此調(diào)整旋刀離地的高度,實(shí)現(xiàn)對(duì)割草高度的調(diào)節(jié)。
圖3-7傳動(dòng)機(jī)構(gòu)
3.2推桿的設(shè)計(jì)
材料是低合金結(jié)構(gòu)鋼Q345做成的鋼管,有推桿和推桿套兩部分組成,可伸縮滿足不同身高的人對(duì)割草機(jī)的操縱,結(jié)構(gòu)如下3-8。
圖3-8推桿結(jié)構(gòu)圖
3.3機(jī)架的設(shè)計(jì)
3.3.1萬向輪的設(shè)計(jì)
割草機(jī)的行走輪,采用工業(yè)腳輪和工業(yè)車輪的設(shè)計(jì)理念,充分考慮割草機(jī)低速行駛的特點(diǎn),行走輪材料采用聚甲醛POM,材料選擇依據(jù):聚甲醛耐磨性和剛性高于尼龍,尤其是彈性模量高、硬度高,這事其他塑料所不能比的;聚甲醛自潤滑性能好,耐磨性好,摩擦因數(shù)為0.15~0.35,極限值為;聚甲醛有較小的蠕變性和吸濕性,故其尺寸穩(wěn)定性好;長期使用溫度為-40~100℃;用聚四氟乙烯填充的聚甲醛,可顯著降低米擦因數(shù),提高耐磨性極限值。因此聚甲醛聚甲醛常被用來制作相對(duì)強(qiáng)度有一定要求的一般結(jié)構(gòu)零件,適用于在輕載荷、霧潤滑或少潤滑條件下工作的各種耐磨受力傳動(dòng)零件,以及制作間摩擦自潤滑零件。
走輪的大小尺寸應(yīng)與割草機(jī)的整體形狀和尺寸緊緊相連。根據(jù)機(jī)具整體設(shè)計(jì)方案并參考GB/T 14688-1993等相關(guān)國標(biāo)數(shù)據(jù),割草機(jī)的前輪采用萬向輪,以方便割草機(jī)的轉(zhuǎn)向,以實(shí)現(xiàn)機(jī)動(dòng)靈活的割草作業(yè),后輪采用腳輪形式。
萬向輪的外徑是,其具體形狀參照《機(jī)械設(shè)計(jì)手冊(cè)》中工業(yè)腳輪的形狀和尺寸。結(jié)構(gòu)采用萬向輪支架裝配,萬向輪支架材料選用HT200,并將支架焊接在割草機(jī)機(jī)架上。由公式得:外輪的轉(zhuǎn)速
萬向輪結(jié)構(gòu)如圖3-9。
圖3-9萬向輪結(jié)構(gòu)圖
3.3.2 腳輪的設(shè)計(jì)
輪子材料是聚甲醛POM,支架材料為HT200,由于萬向輪和腳輪的支架結(jié)構(gòu)尺寸不相同,為了是機(jī)架在平地上保持水平,取腳輪的外徑為170mm,其具體形狀參照《機(jī)械設(shè)計(jì)手冊(cè)》中工業(yè)車輪的形狀和尺寸。結(jié)構(gòu)采用腳輪支架裝配,同樣焊接在割草機(jī)底部底部。結(jié)構(gòu)如圖3-10。
圖3-10腳輪結(jié)構(gòu)圖
3.3.3 機(jī)架的設(shè)計(jì)
(1)機(jī)架材料是低合金結(jié)構(gòu)鋼Q345做成的結(jié)構(gòu)用冷彎空心型鋼,由下機(jī)架和上機(jī)架兩部分組成,可通過調(diào)節(jié)銷軸實(shí)現(xiàn)對(duì)機(jī)架高度的調(diào)節(jié),從而實(shí)現(xiàn)對(duì)旋刀離地高度的調(diào)節(jié),實(shí)現(xiàn)對(duì)割草高度的調(diào)節(jié)。結(jié)構(gòu)如下3-11。
圖3-11機(jī)架結(jié)構(gòu)圖
(2)銷軸的選擇
銷主要分為用于固定零件之間相對(duì)位置的定位銷,用于連接的連接銷和用于安全裝置中的過載剪斷元件的安全銷。本設(shè)計(jì)中上機(jī)架和下機(jī)架的鉸接處用銷軸連接。銷軸材料選用35鋼,調(diào)質(zhì)處理,硬度為28~38HRC,表面氧化。根據(jù)具體的情況要求以及方便操作的要求,選用銷軸(GB/T 882-2000),開口銷(GB/T 91-2000)??紤]到割草機(jī)工作時(shí)對(duì)銷軸有一些沖擊,故取許用剪切應(yīng)力,許用壓應(yīng)力,抗拉強(qiáng)度。
發(fā)動(dòng)機(jī)的質(zhì)量為3.4kg,燃油箱容量為1L,裝滿燃油時(shí)燃油質(zhì)量為0.725kg,上機(jī)架材料采用16Mn。其質(zhì)量為1.6kg。故作用在每個(gè)銷軸上的力為
銷軸工作面的擠壓應(yīng)力 ,
計(jì)算結(jié)果:的強(qiáng)度條件,安全。
銷軸的剪切應(yīng)力 。
計(jì)算結(jié)果:的強(qiáng)度條件,安全。
銷軸的彎曲應(yīng)力 。
計(jì)算結(jié)果:的強(qiáng)度條件,安全。
3.4.4刀殼的設(shè)計(jì)
外殼材料選用HT100,選用依據(jù)是HT100有一定的強(qiáng)度,抗壓強(qiáng)度非常高,有良好的吸振性、減振性和潤滑性,有良好的切削加工性與鑄造性,可用于制造外罩、手把等形狀簡單、對(duì)強(qiáng)度無要求的零件。
圖3-12外殼結(jié)構(gòu)圖
外殼的外形上方下圓,外殼的頂部有四個(gè)孔,可使用螺釘將其固定在機(jī)架底部。起到安全防護(hù)和收集草屑的作用。在外殼的一端有延伸的排草口。因?yàn)樾督Y(jié)構(gòu)設(shè)計(jì)上,在兩端有刃口和翼片,當(dāng)旋刀旋轉(zhuǎn)割草作業(yè)時(shí),翼片可將刀殼內(nèi)的空氣排出,這時(shí)刀殼內(nèi)形成負(fù)壓,當(dāng)草長的較高,割草機(jī)前進(jìn)時(shí),刀殼前部下緣會(huì)把草按倒;當(dāng)草長得茂盛而發(fā)生倒伏時(shí),刀殼外的空氣刀殼內(nèi)時(shí),可對(duì)倒伏的草起到提升的作用。翼片旋轉(zhuǎn)形成的氣流可將刀刃切下的草屑懸浮到氣流中,經(jīng)排草口排除刀殼,就地灑落。從而避免出現(xiàn)草屑在刀殼內(nèi)堵塞的現(xiàn)象。
4 旋刀式割草機(jī)傳動(dòng)系統(tǒng)設(shè)計(jì)與計(jì)算
本次設(shè)計(jì)的手推旋刀式割草機(jī)的傳動(dòng)部分采用花鍵連接的軸組成。當(dāng)發(fā)動(dòng)機(jī)工作使得輸出軸轉(zhuǎn)動(dòng)時(shí),通過花鍵連接的工作軸旋轉(zhuǎn),使得旋刀也一起轉(zhuǎn)動(dòng),通過旋刀的高速旋轉(zhuǎn)動(dòng)作,將草坪上多余高度的草割斷。
4.1動(dòng)力傳遞方案
動(dòng)力傳動(dòng)方案如圖4-1所示:
圖4-1動(dòng)力傳動(dòng)方案
4.2傳動(dòng)比的計(jì)算
電動(dòng)機(jī)的轉(zhuǎn)速為3600r/min,用n表示,旋耕刀的轉(zhuǎn)速為 3600 r/min,用表示,則割草機(jī)的傳動(dòng)比。
4.3傳動(dòng)系統(tǒng)計(jì)算與工作軸設(shè)計(jì)
割草機(jī)的傳動(dòng)軸和輸出軸之間用花鍵連接,花鍵連接有外花鍵和內(nèi)花鍵組成,花鍵連接具有受力均勻、可承受較大載荷、對(duì)中性好、導(dǎo)向性好等特點(diǎn),花鍵連接的齒數(shù)尺寸、配合等均按標(biāo)準(zhǔn)選取。本設(shè)計(jì)采用定心精度越高,定心的穩(wěn)定性好的矩形花鍵,矩形花鍵的定心方式為小徑定心。
4.3.1載荷計(jì)算
輸入轉(zhuǎn)矩
名義切向力
單位載荷
4.3.2齒面接觸強(qiáng)度計(jì)算
齒面壓應(yīng)力
取。
齒面許用壓應(yīng)力
。
計(jì)算結(jié)果:的強(qiáng)度條件,安全。
4.3.3齒根彎曲強(qiáng)度計(jì)算
齒根彎曲應(yīng)力,取,
。
齒根許用彎曲應(yīng)力
。
計(jì)算結(jié)果:的強(qiáng)度條件,安全。
4.3.4齒根剪切強(qiáng)度計(jì)算
。
應(yīng)力集中系數(shù)
剪切應(yīng)力 。
齒根最大剪切應(yīng)力 。
許用剪切應(yīng)力 。
計(jì)算結(jié)果:的強(qiáng)度條件,安全。
4.3.5齒面耐磨能力計(jì)算
齒面壓應(yīng)力
齒面磨損許用壓應(yīng)力。
計(jì)算結(jié)果:的強(qiáng)度條件,安全。
花鍵副長期工作無磨損時(shí)耐磨損能力計(jì)算
齒面壓應(yīng)力
齒面磨損許用壓應(yīng)力(查表5-3-38)。
計(jì)算結(jié)果:的強(qiáng)度條件,安全。
外花鍵的扭轉(zhuǎn)與彎曲強(qiáng)度計(jì)算
彎矩,
彎曲應(yīng)力 。
當(dāng)量應(yīng)力 。
許用壓應(yīng)力
計(jì)算結(jié)果:的強(qiáng)度條件,安全。
5主要部件的強(qiáng)度分析
軸的校核
對(duì)工作軸進(jìn)行扭轉(zhuǎn)剛度校核計(jì)算
對(duì)工作軸進(jìn)行受力分析,其受力分析圖如下:軸材料選用合金結(jié)構(gòu)鋼40MnB。,,。
圖5-1工作軸的受力圖
圖5-2工作軸扭矩圖
工作軸所受扭矩 ,
軸的扭轉(zhuǎn)變形角用每米長的扭轉(zhuǎn)角來表示,階梯軸的扭轉(zhuǎn)角的計(jì)算公式為
。
式中:——階梯軸第i段上所受的扭矩,。
——軸的材料的剪切彈性模量,,對(duì)于鋼材,。
——階梯軸第i段幾面的極慣性矩,,對(duì)于圓軸,。
——階梯軸第i段的長度,。
——階梯軸受扭矩作用的軸段數(shù)。
工作軸的扭轉(zhuǎn)角為
。
軸的扭轉(zhuǎn)剛度條件為,為軸每米長的允許扭轉(zhuǎn)角,與軸的使用場合有關(guān)。對(duì)于一般傳動(dòng)軸,可?。粚?duì)于精密傳動(dòng)軸,可?。粚?duì)于精度要求不高的軸,。在割草機(jī)工作軸的傳動(dòng)中,因?yàn)槭且话銈鲃?dòng),所以取。
計(jì)算結(jié)果:滿足強(qiáng)度條件,安全。
6總結(jié)
(1)本文分析了目前國內(nèi)外草坪割草機(jī)械的現(xiàn)狀及存在問題,研究了普通草坪的物理狀況,為旋刀式割草機(jī)參數(shù)提供依據(jù)。
(2)針對(duì)當(dāng)前國內(nèi)草坪面積不大卻形狀各異、要求割草靈活方便的問題,結(jié)合草坪修剪及方便實(shí)用和農(nóng)藝特點(diǎn),吸收了JUS-420旋刀式剪草機(jī)及其它經(jīng)典機(jī)型的設(shè)計(jì)理念,提出旋刀式割草機(jī)的改進(jìn)設(shè)計(jì)的設(shè)計(jì)思路。
(3)在整機(jī)設(shè)計(jì)中,以汽油發(fā)動(dòng)機(jī)作為動(dòng)力,體積小、成本低、工作可靠、。采用裝配式機(jī)架,汽油發(fā)動(dòng)機(jī)輸出動(dòng)力帶動(dòng)旋刀工作,發(fā)動(dòng)機(jī)固定在機(jī)架上方,使整機(jī)結(jié)構(gòu)簡單緊湊又可根據(jù)不同工作環(huán)境以及工作要求調(diào)整機(jī)架。行走輪與機(jī)架直接固定,通過操向桿實(shí)行轉(zhuǎn)向。其他零部件經(jīng)過計(jì)算校核后,盡可能采用通用件或標(biāo)準(zhǔn)件,體現(xiàn)了經(jīng)濟(jì)、實(shí)用、操作簡易、維護(hù)簡單、成本低廉的設(shè)計(jì)原則。
致 謝
對(duì)于這次畢業(yè)設(shè)計(jì)的完成,首先感謝母校塔里木大學(xué)的辛勤培育,感謝學(xué)校給我提供了如此難得的學(xué)習(xí)環(huán)境和機(jī)會(huì),使我學(xué)到了許多新的知識(shí)、知道了知識(shí)的可貴與獲取知識(shí)的辛勤。
承蒙范修文老師的耐心指導(dǎo),我順利地完成了我的畢業(yè)設(shè)計(jì)。在此深深感謝我的老師給予了我耐心的指導(dǎo)和幫助,表現(xiàn)了他對(duì)工作高度負(fù)責(zé)的精神,同時(shí)也感謝給我?guī)А懂嫹◣缀巍返睦钇嚼蠋?,《機(jī)械設(shè)計(jì)》的張涵老師,《互換性與測量技術(shù)》的馬少輝老師,《先進(jìn)制造技術(shù)》的張宏老師,沒有這些課程做基礎(chǔ),是無法完成畢業(yè)設(shè)計(jì),感謝你們!同時(shí)在Solidwork三維繪圖中,感謝范修文老師提出的寶貴意見。
在我的設(shè)計(jì)過程中,還得到了眾多同學(xué)的支持和幫助,在此,我對(duì)這些同學(xué)表示我衷心的感謝和永遠(yuǎn)的祝福!
對(duì)于這次的畢業(yè)設(shè)計(jì),還有許多美好的設(shè)想由于時(shí)間和自身因素?zé)o法得以實(shí)現(xiàn),這不能不說是本次設(shè)計(jì)的遺憾之處。不過,至少它啟發(fā)了我的的思維,提高了我的動(dòng)手能力,豐富了我為人處世的經(jīng)驗(yàn),進(jìn)一步鞏固了所學(xué)知識(shí),這為我在以后的學(xué)習(xí)過程當(dāng)中奠定了堅(jiān)實(shí)的基礎(chǔ) 。也為以后在自己的工作崗位上發(fā)揮才能奠定了堅(jiān)實(shí)的基礎(chǔ)。
最后,再一次衷心的感謝贈(zèng)與我知識(shí)、給予我?guī)椭乃欣蠋?,你們傳遞的知識(shí)使我受用一生,你們的恩情我會(huì)銘記一生!雖然說謝謝二字不足以表達(dá)我的感情,但是仍然對(duì)你們說聲“謝謝”,“桃李不言,下子成溪”!
參 考 文 獻(xiàn)
[1]趙大偉,石淑英.淺析旋刀式草坪割草機(jī)產(chǎn)品質(zhì)量狀況[J].林業(yè)勞動(dòng)安全,2001(2):27-28.
[2]盧希誠,尚樹堂,水敬琪.旋刀式草坪割草機(jī)切割刀具的研究.[J].北京林業(yè)大學(xué)學(xué)報(bào).1988(3):37-43.
[3]盧希誠,尚樹堂,.旋刀式草坪割草機(jī)旋刀裝置的減噪措施[J].北京林業(yè)大學(xué)學(xué)報(bào).1993(1):33-38.
[4]周忠旺.草坪割草機(jī)的設(shè)計(jì)與割草質(zhì)量[J].林業(yè)機(jī)械與木工設(shè)備.2002(10):22.
[5]馬曉春.割草機(jī)的設(shè)計(jì)與動(dòng)態(tài)特性研究[D].黑龍江:東北林業(yè)大學(xué),2005.
[6]高敏.坐騎式割草機(jī)改型設(shè)計(jì)研究[D].南京:南京理工大學(xué),2006.
[7]金立剛.自動(dòng)割草機(jī)器人的研制[D].遼寧:大連理工大學(xué),2006.
[8]林元德.JUS-420旋刀式剪草機(jī)及使用維修[J].林業(yè)機(jī)械,1989(5):25.
[9]苗少君,董金寶.旋刀式草坪和割草機(jī)刀片幾種鋼材的熱處理工藝及性能試驗(yàn)[J].北京林業(yè)大學(xué)學(xué)報(bào),1994(2):69-74.
[10]劉靜.我國剪草機(jī)市場的現(xiàn)狀和發(fā)展趨勢(shì)[J].,2001(6):8-9
[11] 我國微型旋刀式割草機(jī)技術(shù)現(xiàn)狀與發(fā)展思路探討[J].湖南農(nóng)機(jī).
[12]吳宗澤.機(jī)械設(shè)計(jì)實(shí)用手冊(cè)[M].化學(xué)工業(yè)出版社.
[13]何月娥,楊孝文.農(nóng)機(jī)試驗(yàn)設(shè)計(jì)[M].機(jī)械工業(yè)出版社,1986.
[14]《機(jī)械設(shè)計(jì)手冊(cè)》聯(lián)合編寫組.機(jī)械設(shè)計(jì)手冊(cè)(中冊(cè))[M].化學(xué)工業(yè)出版社,1982:763.
[15]機(jī)械設(shè)計(jì)手冊(cè)編委會(huì).機(jī)械設(shè)計(jì)手冊(cè)(第 2 卷)[M].機(jī)械工業(yè)出版社,2004.8:11-13.
[16]機(jī)械設(shè)計(jì)手冊(cè)編委會(huì).機(jī)械設(shè)計(jì)手冊(cè)(第 3 卷)[M].機(jī)械工業(yè)出版社,2004.8:22-143.80.
[17]機(jī)械設(shè)計(jì)手冊(cè)編委會(huì).機(jī)械設(shè)計(jì)手冊(cè)(第 3 卷)[M].機(jī)械工業(yè)出版社,2004.8:22-157.
18
Ming Cong and Bo Fang School of Mechanical Engineering, Dalian University of Technology Dalian, 116024, China * This work is supported by national natural science fund #50675027to Ming Cong Abstract - This paper presents a multisensor system for combining measurements from ultrasonic sensors and navigation for robot mowers. The proposed sensing system enables robot mowers to mapping unknown environments. It is important for an autonomous robot mower to explore its surroundings in performing the task of localization and navigation for mowing. Because of the complexity of the environment, one simple kind of sensors is not sufficient for robot mower to accomplish these tasks. We develop a robot mower equipped with DSP TMS320F2812 as its CPU. The sensing system integrates with ultrasonic sensors, infrared sensors, collision sensors, encoders, a temperature sensor and an electronic compass. A method of high accuracy ultrasonic ranging technology based on wavelet transform is reported to improve the measurement precision of ultrasonic sensors. Simulation studies show that the proposed multisensor fusion method is very effective for the navigation of robot mowers. Experimental results indicate that this sensing system based on generalized auto-correlation method for obstacle detection and localization shows great potential for providing a high performance-to-price ratio and robust solution for robot mowers in dynamic working condition. Index Terms - multisensor fusion, ultrasonic sensors, robot mower, mapping, navigation I. INTRODUCTION Lawn mowing is considered by many to be one of the most boring and tiring routine tasks. The environmental robots are needed urgently to perform the task. Some predictions indicate that the robot mowers will be one of the most promising personal robot applications and have substantial market in the world. Therefore, the concept of Intelligent Robot Mower (IRM) had been proposed for the first time in 1997s annual conference of the OPEI (Outdoor Power Equipment Institute) 1. The robots mainly face to the general families to help the busy people and the hypodynamic old folks save the payments for hiring labours, also remove people from noise, pollen and danger of mowing blade. The robot mowers serve for home care as the outdoor mobile robots, actually kind of intelligent mechatronics devices for environment clean-up 23. The important thing is that the robot mowers are representative of some area-covering environmental robots used not only for indoor floor cleaning as in 4 but also in hazardous environments such as removing landmines, cleaning up radiant points and prospecting for resources etc. The robot mowers get great challenges differing from indoor mobile robots. The robot mowers use sensors to understand environments as well as their real-time states for obstacle avoidance, map building, location and navigation in the whole work area. Because of the complexity of the environment, one simple kind of sensors is not sufficient for robot mower to accomplish these tasks. It is necessary to combine the observed sensor data coming from different sensors to reduce the uncertainties of the robot in any working environment. To merge the information from the various sensors, robust and real-time sensor fusion is required 5. In cases of sensor error or failure, multisensor fusion can also reduce uncertainty in the information and increase its reliability. A sensing system of low cost, low power consumption, high performance is described. The detecting range of ultrasonic sensors is 0.3m5m, they provide good range information. However, uncertainties in ultrasonic sensors caused by the specular reflection from environments make them less attractive. The detecting range of infrared sensors is 0.02m1m, they can detect the obstacles within the ultrasonic sensors blind zone. In order to satisfy the needs of robot mowers for the low cost and high accuracy ranging technology, the research on the high accuracy ultrasonic ranging technology based on wavelet transform (WT) is reported to improve the measurement precision of ultrasonic sensors. Measurement data gathered from the sensing system are integrated to avoid the robot mower from unknown obstacles and plan an optimum, reliable and realizable plan completely coverage of entire working area. Finally, simulation studies and experimental results show the effectiveness of the sensing system for the navigation, obstacle detection and localization of robot mowers. II. SYSTEM HARDWARE OF IRM The IRM uses DSP TMS320F2812 as its CPU, including four units: vehicle system, cutting system, sensing system and control system. The sensing system is used to collect the external dynamic information of the working environment for obstacle avoidance, map building, navigation and localization. It is also used to detect vehicle systems movement parameters and cutting mechanisms working status. The controller compares the acquired information with the database, and then sends out revisory and accurate command to the robot to perform its tasks. The hardware of the IRM is shown in Fig. 1. Multisensor Fusion and Navigation for Robot Mower * 978-1-4244-1758-2/08/$25.00 2008 IEEE. 417 Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics December 15 -18, 2007, Sanya, China Fig. 1 Hardware overview of IMR The robot must be physically strong, computationally fast, behaviourally accurate and safety. It should have the ability to perform on its own, and required no human intervention during the whole or most part of the mowing period. The IRM is modularized designed and each unit of the IRM is relatively independent. Modularized design makes the maintenance much easier. Any broken unit of the IRM can be replaced directly without influencing the functions of other units. III. SENSING SYSTEM A. Ultrasonic Sensor Unit Because ultrasonic sensors can provide good range information based on the time of the flight (TOF) principle, mainly due to their simplicity and relatively low cost, they have been widely used in mobile robots for obstacle avoidance, map building and so on. This type of external sensor is very good in obstacles distance measurement. The main lobe of the sensitivity function is contained within an angle of 20 degrees, as shown in Fig. 2 6. A number of tests showed that the range accuracy of the sensors is in the order of 2cm. Fig. 2 Typical intensity distribution of an ultrasonic sensor On IRM, we set up a sensor array which consists of 12 ultrasonic sensors spaced 30 degrees apart. The ultrasonic signals can cover all the space around and satisfy the space requirement about which robot can detect the environmental signals. Classical techniques used in ultrasonic transducers are based on TOF measurement, which calculates the distance of the nearest reflector using the speed of sound in air and the emitted pulse and echo arrival times. The distance d to a reflected object is calculated by ()2dct= (1) where c is the speed of sound, and t is the time-of-flight. The TOF method produces a range value when the echo amplitude first exceeds the threshold level after transmitting, ignoring a second echo from a further reflector. The ultrasonic sensor unit includes a trigger pulse generation unit, a multi-channel selection unit and an echo receiving unit. A sensor interface circuitry designed to send and receive ultrasonic sound pulses catches always the first returning echo. The range data related to an object is considered to be on the conic axes even if it is located off the axes. The ultrasonic wave typically has a frequency between 40 and 180 kHz, and the frequency of the ultrasonic sensors used in the system is 40 kHz. The beam angle is 20 degrees. The 40 kHz PWM pulse is generated by the general-purpose timer unit of DSP. To drive the transmitter effectively and not to bring much vibration, an 8 cycle burst of ultrasound at 40 kHz is sent out once a time. When the ultrasonic pulse is emitted, the sensor will experience “ringing”. Ringing caused by the transmitted pulse can cause the receiver to detect a false echo. This problem is solved by not enabling the capture interrupt of DSP until a delay interval has passed. This means that the ranger can not detect an object whose distance from the sensor is less than half the distance that sound travels during the delay interval. This is the blind zone of the ultrasonic sensor, as shown in Fig. 3. Trigger pulse Emitted signal Received signal TOF Blind zone Echo Fig. 3 The sketch map of ultrasonic transmission and reception B. Infrared Sensor Unit and Other Sensors To overcome the ultrasonic sensors blind zone, infrared sensors are added. The infrared sensors can detect obstacles within 20cm, which patch up the problem caused by the blind zone problem of ultrasonic sensors. This unit has 16 infrared sensors. Each infrared range finder has a conic view of 6 degrees which is the main lobe of the sensitivity function. This sensor has a useful measuring range of a target up to about one meter with high accuracy. A number of tests showed that the range accuracy of the sensors is in the order of lcm. In order to save the DSPs resource, 16 infrared sensors are connected with DSP TMS320F2812s data interface 418 instead of the IO interface. This kind of architecture can also read the sensors status at the same time, ensuring the real- time capability of the system. A sensor interface circuitry designed to send and receive infrared pulses catches always the first retuning echo to process its amplitude. Robot mower works in an outdoor environment, where the temperature changes rapidly. The changing of temperature will affect the speed of sound. Therefore, a temperature sensor is used to guarantee the precision of the ultrasonic sensor. Collision sensor is a group of sensitive swatches, which used to prevent the damage caused by unexpected collision. Because moist environment do harm to the circuit of the IRM, humidity sensors are introduced to detect the humidity of the environment. Although these sensors are not absolutely necessary for an autonomous robot mower, they can provide helpful functions to make the work availability and safety. IV. SENSOR-BASED NAVIGATION A. Mapping As seen in Fig. 4, a reference direction x is defined and the robot coordinates are shown as R x , R y . By the help of an electronic compass built in on the robot 7, the angle i , which is the ith sensors angle from the 1st sensor, can be easily measured. Actually if only the angle S (heading angle of the robot) is measured, other sensor angles can be found as iSi =+ (2) where i is the angle to the our world coordinate center. The number of maximum sensor group on the ultrasonic ring is n, and the radius is r (in our system n=12 and r=0.25m). The distance between the origin and the center of the ring is R, and reference angle to the center is . The reference position of the robots center is ( R x , R y ). The distance from the origin to object which is detected by the ith sensor data on the two dimensional plane is called i R . Now let i dm denote measured value which is combined data from the ultrasonic and infrared sensors, for the exact distance i R . There will be an error i between these values as iii dm d =+. (3) In this work we naturally assume that i is a uniform random variable in the range of (-W, W). Here W denotes the maximum distance measurement error. Here the problem is, given R x , R y , r, 12 , n g34 , and 12 , n dm dm dmg34 , to estimate the coordinates of the occupied cells i x and i y (or equivalently i R ) in most efficient way. The equations involving the detected object can be written as 222 ( )cos()( )sin() iR i i R i i Rxrd yrd=+ + (4) 22 2 ()2()(cos()sin() iii RR rd rdx y=+ + + + 22 2 ( ) 2( )cos( ) ii R R R rd rd =+ + + (5) y x x y R R g455 d d O Fig. 4 The robot position on x-y section The equations involving the robot due to the object can be written as 222 ( )cos()( )sin() iiii i Rxrd yrd=+ + (6) 222 2 ()2()(cos()sin() ii i ii ii i Rxy rd rdx y =+ + + If we define the positions as: 11 , , TT in Ppp p xy=g34 , then we have 22 2 ( ) 2( ) cos( ), sin( ) ii ii ii R R rd rd y P=+ + (7) After the inserting the 2 i R in 2 R , ( ) cos( ) cos(),sin() iiii rd R y P+ = (8) Here again we have n such equations. And we write them in matrix form i mAP= (9) And if we introduce new matrix as () cos(),sin() iiii LP= and 0,0 = , then (10), can be written as 111 1 2 cos( ) ( ) () cos( ) ( ) R nRn nn rdm R L p L rdm R L p + g170g186g170 g186g170g186 g171g187g171 g187g171g187 g171g187g171 g187g171g187 g171g187g171 g187g171g187= g171g187g171 g187g171g187 g171g187g171 g187g171g187 g171g187g171 g187g171g187 + g172g188g172 g188g172g188 Here if we perform the least squares estimate for i P , we obtain 1 ()( ) TT lsq i PAAAm = (11) Thus we find the best squares estimate of the positions. B. Simulation Studies Sensor-based navigation has been tested with simulation to shown the usefulness of this sensor fusion method in the two environments respectively as shown in Fig. 5 and Fig. 6. The mower has been primarily tested in a structured laboratory as shown in Fig. 5. Start at (0.3m, 0.5m, 0degree), a virtual 419 robot was driven around a virtual square corridor one time. The walls in the artificial environment are denoted by the real map. The entire vehicle is self-contained. It has a maximum travel speed on 0.4 m/s. The laboratory area was surveyed out to a 10cm grid with accuracy better than about 1cm. To extract the mapping, a start and goal points were presented. The robot position and orientation were established by the electronic compass 8. Fig. 5 Data collection and navigation result in structured environment The result in Fig. 5 demonstrates the mapping quality and the usefulness of this sensor fusion method. In the tests, we find that the average error ( ) in estimating the position of the obstacles in the environment was in the range of -0.2, 0.2m. In the simulations we see that () lsq i P in (11), obtained does not satisfy () ilsqi RP= which actually should. In the case a better estimate for the positions can be given as ()() () i ei lsqi lsq i R PP P = (12) In this case, estimate for the angle i does not change but the estimate for distance i R is scaled to it best estimate. Therefore for the position, the distance estimate i R remains the same as before, while the least squares estimate works only for the angle i . Simulations show that this way produces more accurate results. Fig. 6 The simulation result of wall-following behavior Wall following was selected for the initial problem domain because it is a fairly simple problem to set up and evaluate 9. It also lays the groundwork for more complex problem domains, such as maze traversal, mapping and complete coverage path planning which is used on lawn mowing and vacuuming. The simulation result of wall- following behavior shown in Fig. 6, and the experimental result in Fig. 6 demonstrate that the IRM have the capability to perform its mowing task in unstructured environment. The program of sensor-based navigation simulation in Fig. 5 is given below. Sub Main Dim PI,Fcr,Fct,X_target,Y_target,X,Y As Single Dim X_grid, Y_grid, i, j, C As Integer Dim Frx,Fry,d, dist_targ, rot, Fx, Fy As Single Dim Fcx,Fcy, Rx,Ry As Single PI=3.1415927 Fcr=1 Fct=1 X_target=GetMarkX(0) Y_target=GetMarkY(0) SetCellSize(0,0.1) Set cell size 10 cm x 10 cm SetTimeStep(0.1) Set simulation time step of 0.1 seconds Do Start main loop X=GetMobotX(0) Present mobot coordinates (in meters) Y=GetMobotY(0) X_grid=CoordToGrid(0,X) indexes of cells where the Y_grid=CoordToGrid(0,Y) mobot center is MeasureRange(0,-1,3) Perform a range scan and update the Certainty Grid (max. cell value=3) Frx=0 Fry=0 Each ocuppied cell inside the windows of 33 x 33 cells applies a repulsive force to the mobot. For i=X_grid-16 To X_grid+16 For j=Y_grid-16 To Y_grid+16 C=GetCell(0,i,j) If C0 Then d=Sqr(X_grid-i)2+(Y_grid-j)2) If d0 Then Frx=Frx+Fcr*C/d2*(X_grid-i)/d Fry=Fry+Fcr*C/d2*(Y_grid-j)/d End If End If Next Next dist_targ=Sqr(X-X_target)2+(Y-Y_target)2) Fcx=Fct*(X_target-X)/dist_targ Fcy=Fct*(Y_target-Y)/dist_targ Rx=Frx+Fcx Ry=Fry+Fcy rot=RotationalDiff(0,X+Rx,Y+Ry) shortest rotational difference between current direction of travel and direction of vector R SetSteering(0,0.5,3*rot)mobot turns into the direction of R at constant speed and steering rate proportional to the rotational difference StepForward Loop Until dist_targ0.1 Loop until mobot reaches the target End Sub 420 V. ULTRASONIC RANGING TECHNOLOGY BASED ON WT Unfortunately, the practical received multi-echoes has time-varying property and is a typical non-stationary signal because the influence of the environmental complexity and the noise. Furthermore, the noise mixed in the ultrasonic pulse- echo is Non-Gaussian white noise but colored noise, and correlated with the target echo. The TOF method can not be used directly in such conditions. Referencing the generalized correlation method for estimation of time delay 10, we put forward the generalized auto-correlation method for estimation of time-of-flight based on wavelet transform 11 and present in Fig. 7. Fig. 7 Delay estimation of generalized auto-correlation based on WT Where ()t is the mother wavelet and () a t is the daughter wavelet. The coefficient is the scale (or scaling factor) and is the time displacement. The wavelet transform of the signal ()x t is ()yt . Actually this is a filtering process of the ultrasonic echo using a multitude of bandpass filters of equal Q , which is equivalent to the whitening filter of the generalized correlation method for estimation of time delay, in order to eliminate the input noise which can influence the following processing. () yy R can be found as ( ) ( ) ( ) ( ) ( ) ( ) yy xx a a R Eyt yt R t t t = As there has the relationship of Fourier transform between auto-correlation function () yy R and his power spectrume: 2 () () ()()() ()() yy yy xx xx GFRG aaG a = We obtain the generalized auto-correlation function as Last, the peak values of () yy R are detected to accomplish the estimation of TOF and calculate the real ultrasonic velocity. Fig. 8 Noisy ultrasonic echo Fig. 9 Denoised echo using WT Fig. 10 Auto-correlation function () yy R Fig. 11 Peak detection The noisy ultrasonic echo is shown in Fig. 8, and the denoised ultrasonic echo by wavelet transform is shown in Fig. 9. It is obvious that the noise mixed in the ultrasonic echo is effectively eliminated after WT operation. The auto- correlation operation () yy R of the denoised ultrasonic echo is shown in Fig. 10. Fig. 11 shows the envelope of () yy R through Hilbert transform. As we can see, if the abscissa of every peak point is determined, the estimation of TOF g109 ND can be calculated. Considered the attenuation of the ultrasonic echo and the demand of the high precision in practice, only the former four echoes are used to estimate the TOF. The values of the TOF estimation are g110g110 g109 g108 g109 g109 3,2, ,2,3DDDDDD , which are symmetrical to the x-axis. Using this method, the estimation of the ultrasonic velocity can be calculated. So far, an obstacle detection and localization system has been implemented successfully. By means of above method, an obstacle detection and localization system has been implemented successfully. The generalized auto-correlation method based on wavelet transform is put forward to realize the real-time ultrasonic velocity measurement, and this method can () 11 () () () () 22 gj j yy yy g yy RG Ged = g179g179 421 eliminate the influence of temperature, humidity and wind on ultrasonic velocity measurements when the robots are working in dynamic condition. And this sensing system based on generalized auto-correlation method shows great potential for providing a robust solution for robot mowers in dynamic working condition. VI. EXPERIMENTAL RESULTS We measure the distance between the
收藏