變徑管接頭的注塑模具設(shè)計
變徑管接頭的注塑模具設(shè)計,變徑管接頭的注塑模具設(shè)計,管接頭,注塑,模具設(shè)計
畢業(yè)論文(設(shè)計)任務(wù)書
論文(設(shè)計)題目:變徑管接頭的注塑模具設(shè)計
工作日期:2016年12月12日 ~ 2017年05月19日
1.選題依據(jù):
模具工業(yè)是我國制造業(yè)中的一項基礎(chǔ)產(chǎn)業(yè),模具的設(shè)計也是機械專業(yè)的學(xué)生應(yīng)該掌握的設(shè)計技能之一,特別表現(xiàn)在塑料產(chǎn)品的生產(chǎn),塑料模具的應(yīng)用非常廣泛,在各類模具中所占的分量越來越大,已成為各類模具設(shè)計、制造和研究中最具有代表意義的模具之一。本題目結(jié)構(gòu)復(fù)雜,應(yīng)用性較強,涉及的知識面廣知識點較多,學(xué)生通過對本零件的注塑模具設(shè)計,可以為今后的工作打下良好的基礎(chǔ)。
2.論文要求(設(shè)計參數(shù)):
合理地選擇模具結(jié)構(gòu),正確地確定模具成型零件的結(jié)構(gòu)形狀、尺寸及其技術(shù)要求。使所設(shè)計的模具制造工藝性良好,造價便宜,且使用壽命長。
1.模具的結(jié)構(gòu)形式及注射機的確定2.澆注系統(tǒng)的設(shè)計3.成型零件的設(shè)計4.脫模推出機構(gòu)的設(shè)計5.側(cè)向分型與抽芯機構(gòu)設(shè)計6.模架的確定及標(biāo)準件的選用7.合模導(dǎo)向機構(gòu)的設(shè)計8排氣系統(tǒng)的設(shè)計
9.繪制模具的裝配總圖和成型零件圖,圖量不小于3張A0,其中必須有一個機構(gòu)的3D圖。
10.撰寫設(shè)計說明書,字數(shù)不少于6000字。
3.個人工作重點:
變徑接頭由于直徑并不固定,導(dǎo)致塑件往往在精度上達不到要求,再由于結(jié)構(gòu)比較復(fù)雜容易導(dǎo)致排氣不通暢塑件表面產(chǎn)生劃痕,氣孔的現(xiàn)象。由于本題目的塑件壁相對較薄,在開模的過程中,如何保證塑件會留在動模上。為了使塑件脫模時留在動模上,需要加一個側(cè)型芯,開模過程中側(cè)型芯如何與塑件分離以及各種參數(shù)的選擇也是一個很重要的問題。
1.分型面的設(shè)計2.側(cè)向抽芯的設(shè)計3.型芯的設(shè)計4.澆注系統(tǒng)設(shè)計5脫模機構(gòu)設(shè)計6冷卻水道的設(shè)計
4.時間安排及應(yīng)完成的工作:
第1周:了解題目研究的主要內(nèi)容和技術(shù)路線,查閱有關(guān)文獻。第2周:查閱文獻、閱讀文獻第4周:撰寫文獻綜述并完成開題報告
第5周:塑件工藝性分析,確定模具的結(jié)構(gòu)及注射機第6周:澆注系統(tǒng)的設(shè)計第7周:成型零件的設(shè)計
第8周:脫模推出機構(gòu)的設(shè)計第9周:側(cè)向分型與抽芯機構(gòu)設(shè)計
第10周:模架的確定及標(biāo)準件的選用及合模導(dǎo)向機構(gòu)的設(shè)計第11周:排氣系統(tǒng)的設(shè)計
第12周:修改并完成模具設(shè)計總圖工程圖,繪制成型零件的工作圖。第13周:繪制一個部件的三維裝配圖,并做爆炸視圖和動畫演示。第14周:撰寫設(shè)計說明書第15周:提交論文、圖紙、查重報告
5.應(yīng)閱讀的基本文獻:
[1] 陳錫林 周小玉. 實用模具技術(shù)手冊[M].北京:機械工業(yè)出版社.2005.8
[2] 彭建生.模具設(shè)計與加工速查手冊[M].北京:機械工業(yè)出版社.2012.9
[3] 彭建生 吳成明.簡明模具工實用技術(shù)手冊[M].北京:機械工業(yè)出版社.2011.4
[4] 李建軍 李德群.模具設(shè)計基礎(chǔ)及模具CAD[M].北京:機械工業(yè)出版社.2005.7
[5] 鄧英劍 楊冬生.公差配合與測量技術(shù)[M].北京:國防工業(yè)出版社,2008.1
[6] 馮炳堯.王南根.王曉曉.模具設(shè)計與制造簡明手冊(第四版).上??茖W(xué)技術(shù)出版社
.2015.
[7] 王鵬駒.張杰.塑料模具設(shè)計師手冊.機械工業(yè)出版社.2008.
[8] 許樹勤.王文平.模具設(shè)計與制造.北京大學(xué)出版社.2010.
[9] 聞邦椿.吳宗澤.機械設(shè)計手冊(第五版).機械工業(yè)出版社.2015.
[10] 濮良貴.陳國定.吳立雪.機械設(shè)計(第九版) .高等教育出版社.2013.
[11] 宋滿倉.模具制造工藝.電子工業(yè)出版社.2010
[12] 高茂濤.注塑模具發(fā)展綜述[J].輕工科技.2014.
大 連 大 學(xué) 本科畢業(yè)論文 (設(shè)計 )開題報告 論 文 題 目: 變徑管 接頭的注塑模具設(shè)計 學(xué) 院 : 機械工程學(xué)院 專 業(yè) 、班 級: 機英 135 學(xué) 生 姓 名: 霍志鵬 指導(dǎo)教師(職稱): ) 張立 (副教授 ) 2016 年 12 月 27 日填 畢業(yè)論文(設(shè)計)開題報告要求 開題報告既是規(guī)范本科生畢業(yè)論文工作的重要環(huán)節(jié),又是完成高質(zhì)量畢業(yè)論 文(設(shè)計)的有效保證。為了使這項工作規(guī)范化和制度化,特制定本要求。 一、選題依據(jù) 1.論文(設(shè)計)題目及研究領(lǐng)域; 2.論文(設(shè)計)工作的理論意義和應(yīng)用價值; 3.目前研究的概況和發(fā)展趨勢。 二、論文(設(shè)計)研究的內(nèi)容 1.重點解決的問題; 2.擬開展研究的幾個主要方面(論文寫作大綱或設(shè)計思路); 3.本論文(設(shè)計)預(yù)期取得的成果。 三、論文(設(shè)計)工作安排 1.擬采用的主要研究方法(技術(shù)路線或設(shè)計參數(shù)); 2.論文(設(shè)計)進度計劃。 四、文獻查閱及文獻綜述 學(xué)生應(yīng)根據(jù)所在學(xué)院及指導(dǎo)教師的要求閱讀一定量的文獻資料,并在此基礎(chǔ) 上通過分析、研究、綜合,形成文獻綜述。必要時應(yīng)在調(diào)研、實驗或?qū)嵙?xí)的基礎(chǔ) 上遞交相關(guān)的報告。綜述或報告作為開題報告的一部分附在后面,要求思路清晰, 文理通順,較全面地反映出本課題的研究背景或前期工作基礎(chǔ)。 五、其他要求 1.開題報告應(yīng)在畢業(yè)論文(設(shè)計)工作開始后的前四周內(nèi)完成; 2.開題報告必須經(jīng)學(xué)院教學(xué)指導(dǎo)委員會審查通過; 3.開題報告不合格或沒有做開題報告的學(xué)生,須重做或補做合格后,方能 繼續(xù)論文(設(shè)計)工作,否則不允許參加答辯; 4.開題報告通過后,原則上不允許更換論文題目或指導(dǎo)教師; 5.開題報告的內(nèi)容,要求打印并裝訂成冊(部分專業(yè)可根據(jù)需要手寫在統(tǒng) 一紙張上,但封面需按統(tǒng)一格式打?。?。 一、選題依據(jù) 1論文(設(shè)計)題目 變徑管接頭 的注塑模具設(shè)計 2 研究領(lǐng)域 機械制造 和模具的設(shè)計 3 論文(設(shè)計)工作的理論意義和應(yīng)用價值 理論意義: 模具是工業(yè)生產(chǎn)中的主要工藝裝備,模具工業(yè)是基礎(chǔ)工業(yè)。 采用模具生產(chǎn)零部件,具有生產(chǎn)效率高、質(zhì)量好、成本低、節(jié)省能源和原材料等 一系列優(yōu)點。它已成為當(dāng)代工業(yè)生產(chǎn)的重要手段和工藝發(fā)展方向?,F(xiàn)代工業(yè)品的發(fā)展 和技術(shù)水平的提高,在很大程度上取決于模具工業(yè)的發(fā)展水平。因此,模具工業(yè)對國 民經(jīng)濟和社會的發(fā)展,將會起越來越大的作用。模具工業(yè)薄弱將嚴重影響工業(yè)產(chǎn)品造 型的變化和新產(chǎn)品的開發(fā)。 應(yīng)用價值: 1)塑料具有質(zhì)量輕、比強度大、絕緣性好、成型生產(chǎn)率高和價格 低 廉等優(yōu)點。塑料已成為金屬的良好代用材料,出現(xiàn)了金屬材料塑料化的趨勢。 2)由 于輕量化、低能耗的發(fā)展要求,零部件的材料構(gòu)成發(fā)生 明顯的以塑代鋼的變化。從國 內(nèi)外塑料應(yīng)用的情況看,塑料的用量已成為衡量生產(chǎn)技術(shù)水平的重要標(biāo)志。 3)注塑 成型由于可以一次成型各種結(jié)構(gòu)復(fù)雜、尺寸精密和帶有金屬嵌件的制品,并且成型周 期短,可以一模多腔,大批生產(chǎn)時成本低廉,易于實現(xiàn)自動化生產(chǎn),因此在塑料加工 行業(yè)中占有非常重要的地位。 4目前研究的概況和發(fā)展趨勢 模具工業(yè)作為衡量一個國家工業(yè)化水平的重要標(biāo)志,已經(jīng)獲得了越來越廣泛的發(fā) 展與應(yīng)用。當(dāng)前,隨著市場競爭的加劇、人們需求的不斷提高,為了適應(yīng)市場需要, 模具行業(yè)也需要不斷發(fā)展創(chuàng)新。從分析中可以看出,我國在注塑 模具的研究方面取得 了重要的進展,先進制造技術(shù)的采用與新材料的應(yīng)用使我國的注塑模具朝著精密、高 速、節(jié)能的方向發(fā)展, 具體發(fā)展方向表現(xiàn)在以下方面 : ( 1) CAD/CAM/CAE 技術(shù)將廣泛應(yīng)用于注塑模具設(shè)計 ( 2) 熱流道模具在注塑模具中的比重將逐漸提高 ( 3) 專用和優(yōu)質(zhì)模具材料將不斷推陳出新 ( 4) 智能化、自動化研磨拋光將得到應(yīng)用 ( 5) 模具標(biāo)準化程度將不斷提高 二、論文(設(shè)計)研究的內(nèi)容 1.重點解決的問題 變徑接頭由于直徑并不固定,導(dǎo)致塑件往往 在精度上達不到要求,再由于結(jié)構(gòu)比 較復(fù)雜容易導(dǎo)致排氣不通暢塑件表面產(chǎn)生劃痕,氣孔的現(xiàn)象。由于本題目的塑件壁相 對較薄,在開模的過程中,如何保證塑件會留在動模上。為了使塑件脫模時留在動模 上,需要加一個側(cè)型芯,開模過程中側(cè)型芯如何與塑件分離以及各種參數(shù)的選擇也是 一個很重要的問題。 2.擬開展研究的幾個主要方面(論文寫作大綱或設(shè)計思路) 設(shè)計題目是變徑接頭的模具設(shè)計,該產(chǎn)品主要用于本來不能互相配合的金屬管道 的連接,比如自來水管道的連接,座便器里水管的連接等等。具體內(nèi)容包括: ( 1)注射機的選擇 ( 2)分型面的設(shè)計 ( 3)側(cè)向抽芯的設(shè)計 ( 4)型芯的設(shè)計 ( 5)澆注系統(tǒng) ( 6)冷卻水道的設(shè)計 ( 7)脫模結(jié)構(gòu) 3.本論文(設(shè)計)預(yù)期取得的成果 在初步準確完成所需要設(shè)計的項目并完善工程圖的情況下,使所設(shè)計的變徑管接 頭能夠滿足滿足人的使用需求和功能需求,并使最終產(chǎn)品能夠得到社會廣泛認可,能 夠投入市場進行批量生產(chǎn)。 三、論文(設(shè)計)工作安排 1.擬采用的主要研究方法(技術(shù)路線或設(shè)計參數(shù)); 搜集文獻,查閱相關(guān)設(shè)計手冊和書籍,進行市場調(diào)研并參照現(xiàn)有研究成果,在 老師指導(dǎo)下開展設(shè)計研究工作,利用計算機輔助設(shè)計,力學(xué)計算,三維軟件等進行 仿真模擬。 2.論文(設(shè)計)進度計劃 第 1-4 周:選定畢業(yè)設(shè)計題目,明確畢業(yè)設(shè)計主要任務(wù)和內(nèi)容,查閱相關(guān)資料, 并完成畢業(yè)設(shè)計開題報告。 第 5-6 周:擬定自來水管道變徑接頭塑料模具 總體結(jié)構(gòu)設(shè)計方案 。 第 6-8 周: 外文資料翻譯傳動機構(gòu)設(shè)計,完成自來水管道變徑接頭機構(gòu)的設(shè) 計和計算,繪制部分裝配圖。 第 9-10 周: 用三維軟件做出整體的效果圖。 第 11-12 周:完成 其它輔助機構(gòu)設(shè)計,完成零件圖的設(shè)計。 第 13-15 周: 總體機械結(jié)構(gòu)設(shè)計,繪制總裝配圖。 第 16 周: 參加答辯 。 四、需要閱讀的參考文獻 1 馮剛,張朝閣,江平 .我國注塑模具關(guān)鍵技術(shù)的研究與應(yīng)用進展 J.塑料工業(yè), 2014.4:1619 2 唐仁奎,許艷英 . 注塑模具現(xiàn)狀與發(fā)展趨勢 D重慶科創(chuàng)職業(yè)學(xué)院, 2010.6 3 馮剛 , 張朝閣,齊繼寶 等 . 三種不同類型注塑模具的特點與發(fā)展現(xiàn)狀 J.工程塑料 應(yīng)用 .2013.7.41( 7) 4 李金剛 ,韓紅青 ,黃能會 .注塑模具澆口設(shè)計簡要分析 J.塑料科技 ,2010.(02). 5 王昌,胡修鑫 . 注塑模具的先進制造技術(shù)綜述 D.內(nèi)蒙古科技大學(xué)機械工程學(xué)院 . 2012.14.042 6 冀冠一 .快速熱循環(huán)注塑模具及工藝關(guān)鍵技術(shù)研究 . J.工業(yè)技術(shù) .2016.12.43 7 呂戰(zhàn)鵬,黃德倫,趙國珍等 .富氣反應(yīng)器 F316 不銹鋼變徑管接頭腐蝕破裂原因分 析 J材料研究所 . 2000,21(2) 8 史建國,徐剛 .淺談精密塑件型腔與型芯的設(shè)計 D濟南職工科技大學(xué), 2005 9 聞邦椿,吳宗澤 .機械設(shè)計手冊 (第五版 )M.機械工業(yè)出版社 .2015. 10 耿靜 .注塑模具 CAD 冷卻系統(tǒng)的研究 D山東大學(xué) .2008 11 何政軍 .基于實例的注塑模具 CAD/CAE/CAM 技術(shù)研究與應(yīng)用 D華北電力大 學(xué) .2014 12 趙軍 .注塑模具結(jié)構(gòu)分析和優(yōu)化方法研究 D上海交通大學(xué) .2011 13 于影霞,何柏林,李力 .國內(nèi)外模具材料的現(xiàn)狀及發(fā)展趨勢熱加工工藝 .2009, 38(2) 14 中國聚合物網(wǎng) .中國塑料模具行業(yè)發(fā)展矛盾與障礙 . J.橡塑技術(shù)與裝 備 .2016.11.42(20) 15 中國模具工業(yè)協(xié)會 .模具行業(yè)“十二五”發(fā)展規(guī)劃 J. 模具工業(yè) .2011,37(1) 16 許樹勤,王文平 .模具設(shè)計與制造 M.北京大學(xué)出版社 .2010. 17 趙晶 .大型注塑模具設(shè)計及應(yīng)用技術(shù)研究 . J. 黑龍江科學(xué) .2016.12(7) 18 Mouna Zaidani, Mohammad A Omar, S Kumar. Coupling of injection molding process to mechanical properties of short fiber composites: A through process modeling approach. J Journal of Reinforced Plastics and Composites.2015,1 19 Wu-Lin Chen,Chin-Yin Huang,Ching-Ya Huang.Finding efficient frontier of process parameters for plastic injection molding. J Journal of Industrial Engineering International.2015, 1 20 N. Nayebpashaee,M. Soltanieh,Sh. Kheirandish .A Study on Formation and Growth Mechanism of Nitride Layers During Plasma Nitriding Process of Plastic Injection Mold SteelJ. Materials and Manufacturing Processes.2016, 9 附:文獻綜述或報告 1 引言 塑料 作為 20 世紀的一種新興材料,其使用范圍已經(jīng)深 入到社會生活與生產(chǎn) 的方方面面,成為繼金屬、木材、硅酸鹽之后的現(xiàn)代工業(yè)生產(chǎn)中的重要原材料 3。 注塑模具是通過特定形狀復(fù)制成型塑料制品的一種工藝裝備,它使塑料成型制 品的大批量生產(chǎn)成為現(xiàn)實,注塑模具作為注射成型的一種重要設(shè)備,其設(shè)計水平、 技術(shù)含量的高低對塑料制品的性能有著重要的意義。同時,注塑模具在塑料制品 的推廣與使用方面占有核心的地位,因此,注塑模具也有“工業(yè)之母”之稱。隨 著現(xiàn)代工業(yè)的不斷發(fā)展,新型材料的不斷出現(xiàn),以及人們節(jié)能環(huán)保意識的加強, 對注塑模具的要求也不斷多樣化。在此基礎(chǔ)上,產(chǎn)生了各種新興的注射成型技術(shù) 6。 2 注塑成型過程簡介 注塑成型是將顆?;蚍勰畹乃芰霞舆M注塑機料筒,塑料在熱和機械剪切力 作用下塑化城具有良好流動性的塑料溶體,然后在柱塞或螺桿的推動下通過注塑 機噴嘴注入溫度較低的模具型腔內(nèi),經(jīng)過保壓,冷卻固化成與模具型腔形狀一致 的塑料成品,然后打開模具取出制品,再閉合型腔,在操作上完成一個注塑周期 12。 3 薄壁注塑模具特點 薄壁注塑模具設(shè)計需滿足以下特點: ( 1)模具結(jié)構(gòu) 為承受成型時的高壓,薄壁注塑模具的剛度、強度要求較高??梢酝ㄟ^增加 模具 ,嗎 的動定模板及其支撐板厚度,設(shè)置更多支撐柱來提高模具剛度;另 外可采用更高強度、耐磨損、耐沖蝕等的模具鋼;模具內(nèi)應(yīng)盡可能要多設(shè)置 內(nèi)縮緊定定位機構(gòu),保證模具的定位和支撐,防止模具型芯型腔等零件的偏 移和導(dǎo)柱的彎曲等 12。 ( 2)澆注系統(tǒng) 薄壁塑件在注塑過程中,冷卻速度較快,因此要使用大澆口,且澆口尺寸要 大于壁厚。另外為降低塑料溶體冷卻速度,可以采用熱流道技術(shù) 12。 ( 3)冷卻系統(tǒng) 如果冷卻不均,薄壁塑件在生產(chǎn)中,很容易產(chǎn)生短射,翹曲等現(xiàn)象,而且薄 壁件無法承受較大的殘余應(yīng)力。因此必須增強模具的冷卻 ,確保模腔溫度均勻, 從而控制塑件的尺寸穩(wěn)定性。加入高傳導(dǎo)率的金屬鑲塊,可以提高溫度傳導(dǎo)速度 12。 ( 4)排氣系統(tǒng) 薄壁注塑由于注射速度快,填充時間短,且模腔間隙小,模具的排氣非常重 要。除通過頂桿、分型面、導(dǎo)柱等處派出外,在溶體流動前沿,流道末端都應(yīng)有 較好的排氣設(shè)施,最好采用真空抽射 12。 ( 5)脫膜結(jié)構(gòu) 薄壁塑件比較薄,容易損壞,且由于厚度方向收縮較小,很容易由于模具變 形而產(chǎn)生較大的脫模力,因此,應(yīng)盡量設(shè)計較大拔模斜度,頂桿應(yīng)多而均,尺寸 可更大。另外可使用脫模劑 12。 4 注塑模具 的先進制造技術(shù) 先進制造技術(shù) AMT( Advanced Manufacturing Technology) 是集機械、電 子、信息、網(wǎng)絡(luò)、材料、能源和管理等先進技術(shù)而發(fā)展起來的高新技術(shù),它是發(fā) 展國民經(jīng)濟的重要基礎(chǔ)之一 5。 許多歐美工業(yè)發(fā)達國家將模具比作“金鑰匙”、 “效益放大器”、“進入富裕社會的原動力”、“印鈔 機”等 ,可見其對模具行業(yè)的 重視。注塑模具在 整個塑料模具的總量中占 50% 以上,從目前的發(fā)展趨勢可以 看出,在未來模具市場中,注塑模具的發(fā)展 將遠高于其他模具 1。 。新技術(shù)的應(yīng) 用對注塑模具的發(fā)展產(chǎn)生了重大的影響,同時,注 塑模具的發(fā)展也對制造技術(shù)不 斷提出了新的要求 9。 先進制造技術(shù)主要有以下四種: ( 1)高速切削技術(shù) ( 2)快速成型技術(shù) ( 3)微注射成型技術(shù) ( 4)熱流道技術(shù) 5 5 國外注塑模具的發(fā)展現(xiàn)狀和趨勢 在西方先進工業(yè)國,注射模 CAD/CAE/CAM 技術(shù)的應(yīng)用已非常普遍 2。當(dāng)前代 表國際先進水平的注射模 CAD/CAE/CAM 的工程應(yīng)用具體體現(xiàn)在如下四個方面: ( 1)基于網(wǎng)絡(luò)的模具 CAD/CAE/CAM 集成化系統(tǒng)已開始使用。系 統(tǒng)的每一個 功能既可以獨立運行,又可通過數(shù)據(jù)接口作集成分析 2。 ( 2)微機軟件在模具行業(yè)中發(fā)揮著越來越重要的作用。在 90 年代后期,基 于 Windows 操作系統(tǒng)的新一代微機軟件,如 UG、 PRO/E、 CATTIA 等嶄露頭角 2。 ( 3)模具 CAD/CAE/CAM 系統(tǒng)的高智能化程度正在逐步 提高。軟件的智能化 功能現(xiàn)已成為衡量模具軟件先進性和實用性的重要標(biāo)志 2。 ( 4)三維設(shè)計與三維分析的應(yīng)用和結(jié)合是當(dāng)前注射模技術(shù)發(fā)展的 必然趨勢。 在注射模結(jié)構(gòu)設(shè)計中,傳統(tǒng)的方法是采用二維設(shè)計,在國外已有越來越多的 公司 采用基于實體模型的三維模具結(jié)構(gòu)設(shè)計 2。 6 我國存在的主要問題 現(xiàn)代工業(yè)對注塑件的要求不僅要求精度高,還需有極佳的內(nèi)在質(zhì)量,為適應(yīng) 這種要求,必須開發(fā)利用注塑模具新技術(shù),目前在南方沿海地區(qū)正在逐步推廣利 用從國外引進的注塑模具新技術(shù),對提高注塑件質(zhì)量起了很大的作用。在這幾十 年來,國內(nèi)塑料模具行業(yè)迅猛發(fā)展,對人才的渴求和要求也越來越高。但國內(nèi)還 是沒法解決這棘手問題,成了中國模具行業(yè)發(fā)展的主要障礙 14。 安全問題是最普遍也是最重要的問題,在注塑成型技術(shù)、注塑模 CAE 技術(shù), 或是其他各種應(yīng)用技術(shù)的操作過程中,安全隱患還是隨處可見的。安全管理作為 一切應(yīng)用技術(shù)的前提,是大型注塑模具應(yīng)用技術(shù)發(fā)展的必然趨勢 17。 存在的主要問題大致有如下方面 : (1)研發(fā)及自主創(chuàng)新能力薄弱; (2)企業(yè)管理水平落后于技術(shù)的進步; (3)數(shù)字化、信息化水平還較低; (4)標(biāo)準和標(biāo)準件生產(chǎn)供應(yīng)滯后于模具生產(chǎn)的發(fā)展; (5)人才與發(fā)展不相適應(yīng); (6)以模具為核心的產(chǎn)業(yè)鏈各個環(huán)節(jié)協(xié)同發(fā)展不夠 , 尤以模具材料發(fā)展滯后 最為明顯 2。 7 結(jié)語 盡管我國已經(jīng)成為制造大國,但距離制造強國還有一定的差距。我們必須加 強研發(fā)及自主創(chuàng)新能力,加大人才培養(yǎng),著力發(fā)展高新技術(shù),加強信息化水平, 積極響應(yīng) .模具行業(yè)“十二五”發(fā)展規(guī)劃的號召。使我國模具行業(yè)邁入世界先進 行列。 畢業(yè)論文(設(shè)計)開題報告要求
開題報告既是規(guī)范本科生畢業(yè)論文工作的重要環(huán)節(jié),又是完成高質(zhì)量畢業(yè)論文(設(shè)計)的有效保證。為了使這項工作規(guī)范化和制度化,特制定本要求。
一、選題依據(jù)
1.論文(設(shè)計)題目及研究領(lǐng)域;
2.論文(設(shè)計)工作的理論意義和應(yīng)用價值;
3.目前研究的概況和發(fā)展趨勢。
二、論文(設(shè)計)研究的內(nèi)容
1.重點解決的問題;
2.擬開展研究的幾個主要方面(論文寫作大綱或設(shè)計思路);
3.本論文(設(shè)計)預(yù)期取得的成果。
三、論文(設(shè)計)工作安排
1.擬采用的主要研究方法(技術(shù)路線或設(shè)計參數(shù));
2.論文(設(shè)計)進度計劃。
四、文獻查閱及文獻綜述
學(xué)生應(yīng)根據(jù)所在學(xué)院及指導(dǎo)教師的要求閱讀一定量的文獻資料,并在此基礎(chǔ)上通過分析、研究、綜合,形成文獻綜述。必要時應(yīng)在調(diào)研、實驗或?qū)嵙?xí)的基礎(chǔ)上遞交相關(guān)的報告。綜述或報告作為開題報告的一部分附在后面,要求思路清晰,文理通順,較全面地反映出本課題的研究背景或前期工作基礎(chǔ)。
五、其他要求
1.開題報告應(yīng)在畢業(yè)論文(設(shè)計)工作開始后的前四周內(nèi)完成;
2.開題報告必須經(jīng)學(xué)院教學(xué)指導(dǎo)委員會審查通過;
3.開題報告不合格或沒有做開題報告的學(xué)生,須重做或補做合格后,方能
繼續(xù)論文(設(shè)計)工作,否則不允許參加答辯;
4.開題報告通過后,原則上不允許更換論文題目或指導(dǎo)教師;
5.開題報告的內(nèi)容,要求打印并裝訂成冊(部分專業(yè)可根據(jù)需要手寫在統(tǒng)
一紙張上,但封面需按統(tǒng)一格式打印)。
一、選題依據(jù)
1.論文(設(shè)計)題目
變徑管接頭的注塑模具設(shè)計
2.研究領(lǐng)域
機械制造和模具的設(shè)計
3.論文(設(shè)計)工作的理論意義和應(yīng)用價值
理論意義:模具是工業(yè)生產(chǎn)中的主要工藝裝備,模具工業(yè)是基礎(chǔ)工業(yè)。
采用模具生產(chǎn)零部件,具有生產(chǎn)效率高、質(zhì)量好、成本低、節(jié)省能源和原材料等一系列優(yōu)點。它已成為當(dāng)代工業(yè)生產(chǎn)的重要手段和工藝發(fā)展方向。現(xiàn)代工業(yè)品的發(fā)展和技術(shù)水平的提高,在很大程度上取決于模具工業(yè)的發(fā)展水平。因此,模具工業(yè)對國民經(jīng)濟和社會的發(fā)展,將會起越來越大的作用。模具工業(yè)薄弱將嚴重影響工業(yè)產(chǎn)品造型的變化和新產(chǎn)品的開發(fā)。
應(yīng)用價值:1)塑料具有質(zhì)量輕、比強度大、絕緣性好、成型生產(chǎn)率高和價格 低廉等優(yōu)點。塑料已成為金屬的良好代用材料,出現(xiàn)了金屬材料塑料化的趨勢。2)由于輕量化、低能耗的發(fā)展要求,零部件的材料構(gòu)成發(fā)生明顯的以塑代鋼的變化。從國內(nèi)外塑料應(yīng)用的情況看,塑料的用量已成為衡量生產(chǎn)技術(shù)水平的重要標(biāo)志。3)注塑成型由于可以一次成型各種結(jié)構(gòu)復(fù)雜、尺寸精密和帶有金屬嵌件的制品,并且成型周期短,可以一模多腔,大批生產(chǎn)時成本低廉,易于實現(xiàn)自動化生產(chǎn),因此在塑料加工行業(yè)中占有非常重要的地位。
4.目前研究的概況和發(fā)展趨勢
模具工業(yè)作為衡量一個國家工業(yè)化水平的重要標(biāo)志,已經(jīng)獲得了越來越廣泛的發(fā)展與應(yīng)用。當(dāng)前,隨著市場競爭的加劇、人們需求的不斷提高,為了適應(yīng)市場需要,模具行業(yè)也需要不斷發(fā)展創(chuàng)新。從分析中可以看出,我國在注塑模具的研究方面取得了重要的進展,先進制造技術(shù)的采用與新材料的應(yīng)用使我國的注塑模具朝著精密、高速、節(jié)能的方向發(fā)展, 具體發(fā)展方向表現(xiàn)在以下方面:
( 1) CAD/CAM/CAE 技術(shù)將廣泛應(yīng)用于注塑模具設(shè)計
( 2) 熱流道模具在注塑模具中的比重將逐漸提高
( 3) 專用和優(yōu)質(zhì)模具材料將不斷推陳出新
( 4) 智能化、自動化研磨拋光將得到應(yīng)用
( 5) 模具標(biāo)準化程度將不斷提高
二、論文(設(shè)計)研究的內(nèi)容
1.重點解決的問題
變徑接頭由于直徑并不固定,導(dǎo)致塑件往往在精度上達不到要求,再由于結(jié)構(gòu)比較復(fù)雜容易導(dǎo)致排氣不通暢塑件表面產(chǎn)生劃痕,氣孔的現(xiàn)象。由于本題目的塑件壁相對較薄,在開模的過程中,如何保證塑件會留在動模上。為了使塑件脫模時留在動模上,需要加一個側(cè)型芯,開模過程中側(cè)型芯如何與塑件分離以及各種參數(shù)的選擇也是一個很重要的問題。
2.擬開展研究的幾個主要方面(論文寫作大綱或設(shè)計思路)
設(shè)計題目是變徑接頭的模具設(shè)計,該產(chǎn)品主要用于本來不能互相配合的金屬管道的連接,比如自來水管道的連接,座便器里水管的連接等等。具體內(nèi)容包括:
(1)注射機的選擇(2)分型面的設(shè)計(3)側(cè)向抽芯的設(shè)計(4)型芯的設(shè)計(5)澆注系統(tǒng)(6)冷卻水道的設(shè)計(7)脫模結(jié)構(gòu)
3.本論文(設(shè)計)預(yù)期取得的成果
在初步準確完成所需要設(shè)計的項目并完善工程圖的情況下,使所設(shè)計的變徑管接頭能夠滿足滿足人的使用需求和功能需求,并使最終產(chǎn)品能夠得到社會廣泛認可,能夠投入市場進行批量生產(chǎn)。
三、論文(設(shè)計)工作安排
1.擬采用的主要研究方法(技術(shù)路線或設(shè)計參數(shù));
搜集文獻,查閱相關(guān)設(shè)計手冊和書籍,進行市場調(diào)研并參照現(xiàn)有研究成果,在老師指導(dǎo)下開展設(shè)計研究工作,利用計算機輔助設(shè)計,力學(xué)計算,三維軟件等進行
仿真模擬。2.論文(設(shè)計)進度計劃
第 1-4 周:選定畢業(yè)設(shè)計題目,明確畢業(yè)設(shè)計主要任務(wù)和內(nèi)容,查閱相關(guān)資料,并完成畢業(yè)設(shè)計開題報告。
第 5-6 周:擬定自來水管道變徑接頭塑料模具總體結(jié)構(gòu)設(shè)計方案。
第 6-8 周:外文資料翻譯傳動機構(gòu)設(shè)計,完成自來水管道變徑接頭機構(gòu)的設(shè)計和計算,繪制部分裝配圖。
第 9-10 周:用三維軟件做出整體的效果圖。
第 11-12 周:完成其它輔助機構(gòu)設(shè)計,完成零件圖的設(shè)計。
第 13-15 周:總體機械結(jié)構(gòu)設(shè)計,繪制總裝配圖。
第 16 周:參加答辯。
四、需要閱讀的參考文獻
[1] 馮剛,張朝閣,江平.我國注塑模具關(guān)鍵技術(shù)的研究與應(yīng)用進展[J].塑料工業(yè),
2014.4:16~19
[2] 唐仁奎,許艷英. 注塑模具現(xiàn)狀與發(fā)展趨勢[D]重慶科創(chuàng)職業(yè)學(xué)院,2010.6
[3] 馮剛,張朝閣,齊繼寶等. 三種不同類型注塑模具的特點與發(fā)展現(xiàn)狀[J].工程塑料應(yīng)用.2013.7.41(7)
[4] 李金剛,韓紅青,黃能會.注塑模具澆口設(shè)計簡要分析[J].塑料科技,2010.(02).
[5] 王昌,胡修鑫. 注塑模具的先進制造技術(shù)綜述[D].內(nèi)蒙古科技大學(xué)機械工程學(xué)院.
2012.14.042
[6] 冀冠一.快速熱循環(huán)注塑模具及工藝關(guān)鍵技術(shù)研究. [J].工業(yè)技術(shù).2016.12.43
[7] 呂戰(zhàn)鵬,黃德倫,趙國珍等.富氣反應(yīng)器 F316 不銹鋼變徑管接頭腐蝕破裂原因分析[J]材料研究所. 2000,21(2)
[8] 史建國,徐剛.淺談精密塑件型腔與型芯的設(shè)計[D]濟南職工科技大學(xué),2005
[9] 聞邦椿,吳宗澤.機械設(shè)計手冊(第五版)[M].機械工業(yè)出版社.2015.
[10] 耿靜.注塑模具 CAD 冷卻系統(tǒng)的研究[D]山東大學(xué).2008
[11] 何政軍.基于實例的注塑模具 CAD/CAE/CAM 技術(shù)研究與應(yīng)用[D]華北電力大
學(xué).2014
[12] 趙軍.注塑模具結(jié)構(gòu)分析和優(yōu)化方法研究[D]上海交通大學(xué).2011
[13] 于影霞,何柏林,李力.國內(nèi)外模具材料的現(xiàn)狀及發(fā)展趨勢熱加工工藝.2009,
38(2)
[14] 中國聚合物網(wǎng).中國塑料模具行業(yè)發(fā)展矛盾與障礙. [J].橡塑技術(shù)與裝
備.2016.11.42(20)
[15] 中國模具工業(yè)協(xié)會.模具行業(yè)“十二五”發(fā)展規(guī)劃[J]. 模具工業(yè).2011,37(1)
[16] 許樹勤,王文平.模具設(shè)計與制造[M].北京大學(xué)出版社.2010.
[17] 趙晶.大型注塑模具設(shè)計及應(yīng)用技術(shù)研究. [J]. 黑龍江科學(xué).2016.12(7)
[18] Mouna Zaidani, Mohammad A Omar, S Kumar. Coupling of injection molding process to mechanical properties of short fiber composites: A through process modeling approach. [J] Journal of Reinforced Plastics and Composites.2015,1
[19] Wu-Lin Chen,Chin-Yin Huang,Ching-Ya Huang.Finding efficient frontier of process parameters for plastic injection molding. [J] Journal of Industrial Engineering International.2015,1
[20] N. Nayebpashaee,M. Soltanieh,Sh. Kheirandish .A Study on Formation and Growth Mechanism of Nitride Layers During Plasma Nitriding Process of Plastic Injection Mold Steel[J]. Materials and Manufacturing Processes.2016,9
附:文獻綜述或報告 1 引言
塑料作為 20 世紀的一種新興材料,其使用范圍已經(jīng)深 入到社會生活與生產(chǎn)的方方面面,成為繼金屬、木材、硅酸鹽之后的現(xiàn)代工業(yè)生產(chǎn)中的重要原材料[3]。
注塑模具是通過特定形狀復(fù)制成型塑料制品的一種工藝裝備,它使塑料成型制品的大批量生產(chǎn)成為現(xiàn)實,注塑模具作為注射成型的一種重要設(shè)備,其設(shè)計水平、技術(shù)含量的高低對塑料制品的性能有著重要的意義。同時,注塑模具在塑料制品的推廣與使用方面占有核心的地位,因此,注塑模具也有“工業(yè)之母”之稱。隨著現(xiàn)代工業(yè)的不斷發(fā)展,新型材料的不斷出現(xiàn),以及人們節(jié)能環(huán)保意識的加強,對注塑模具的要求也不斷多樣化。在此基礎(chǔ)上,產(chǎn)生了各種新興的注射成型技術(shù)
[6]。
2 注塑成型過程簡介
注塑成型是將顆粒或粉末狀的塑料加進注塑機料筒,塑料在熱和機械剪切力作用下塑化城具有良好流動性的塑料溶體,然后在柱塞或螺桿的推動下通過注塑機噴嘴注入溫度較低的模具型腔內(nèi),經(jīng)過保壓,冷卻固化成與模具型腔形狀一致的塑料成品,然后打開模具取出制品,再閉合型腔,在操作上完成一個注塑周期
[12]。
3 薄壁注塑模具特點
薄壁注塑模具設(shè)計需滿足以下特點:(1)模具結(jié)構(gòu)
為承受成型時的高壓,薄壁注塑模具的剛度、強度要求較高??梢酝ㄟ^增加模具,嗎的動定模板及其支撐板厚度,設(shè)置更多支撐柱來提高模具剛度;另外可采用更高強度、耐磨損、耐沖蝕等的模具鋼;模具內(nèi)應(yīng)盡可能要多設(shè)置內(nèi)縮緊定定位機構(gòu),保證模具的定位和支撐,防止模具型芯型腔等零件的偏移和導(dǎo)柱的彎曲等[12]。
(2)澆注系統(tǒng)
薄壁塑件在注塑過程中,冷卻速度較快,因此要使用大澆口,且澆口尺寸要大于壁厚。另外為降低塑料溶體冷卻速度,可以采用熱流道技術(shù)[12]。
(3)冷卻系統(tǒng)如果冷卻不均,薄壁塑件在生產(chǎn)中,很容易產(chǎn)生短射,翹曲等現(xiàn)象,而且薄
壁件無法承受較大的殘余應(yīng)力。因此必須增強模具的冷卻,確保模腔溫度均勻,從而控制塑件的尺寸穩(wěn)定性。加入高傳導(dǎo)率的金屬鑲塊,可以提高溫度傳導(dǎo)速度
[12]。
(4)排氣系統(tǒng)薄壁注塑由于注射速度快,填充時間短,且模腔間隙小,模具的排氣非常重
要。除通過頂桿、分型面、導(dǎo)柱等處派出外,在溶體流動前沿,流道末端都應(yīng)有較好的排氣設(shè)施,最好采用真空抽射[12]。
(5)脫膜結(jié)構(gòu)薄壁塑件比較薄,容易損壞,且由于厚度方向收縮較小,很容易由于模具變
形而產(chǎn)生較大的脫模力,因此,應(yīng)盡量設(shè)計較大拔模斜度,頂桿應(yīng)多而均,尺寸可更大。另外可使用脫模劑[12]。
4 注塑模具的先進制造技術(shù)
先進制造技術(shù) AMT( Advanced Manufacturing Technology) 是集機械、電子、信息、網(wǎng)絡(luò)、材料、能源和管理等先進技術(shù)而發(fā)展起來的高新技術(shù),它是發(fā)展國民經(jīng)濟的重要基礎(chǔ)之一[5]。許多歐美工業(yè)發(fā)達國家將模具比作“金鑰匙”、“效益放大器”、“進入富裕社會的原動力”、“印鈔機”等,可見其對模具行業(yè)的重視。注塑模具在 整個塑料模具的總量中占 50% 以上,從目前的發(fā)展趨勢可以看出,在未來模具市場中,注塑模具的發(fā)展將遠高于其他模具[1]。。新技術(shù)的應(yīng)用對注塑模具的發(fā)展產(chǎn)生了重大的影響,同時,注塑模具的發(fā)展也對制造技術(shù)不斷提出了新的要求[9]。
先進制造技術(shù)主要有以下四種:(1)高速切削技術(shù)(2)快速成型技術(shù)(3)微注射成型技術(shù)(4)熱流道技術(shù)[5]
5 國外注塑模具的發(fā)展現(xiàn)狀和趨勢
在西方先進工業(yè)國,注射模 CAD/CAE/CAM 技術(shù)的應(yīng)用已非常普遍[2]。當(dāng)前代表國際先進水平的注射模 CAD/CAE/CAM 的工程應(yīng)用具體體現(xiàn)在如下四個方面:
(1)基于網(wǎng)絡(luò)的模具 CAD/CAE/CAM 集成化系統(tǒng)已開始使用。系 統(tǒng)的每一個功能既可以獨立運行,又可通過數(shù)據(jù)接口作集成分析[2]。
(2)微機軟件在模具行業(yè)中發(fā)揮著越來越重要的作用。在 90 年代后期,基 于
Windows 操作系統(tǒng)的新一代微機軟件,如 UG、PRO/E、CATTIA 等嶄露頭角[2]。
(3)模具 CAD/CAE/CAM 系統(tǒng)的高智能化程度正在逐步 提高。軟件的智能化功能現(xiàn)已成為衡量模具軟件先進性和實用性的重要標(biāo)志[2]。
(4)三維設(shè)計與三維分析的應(yīng)用和結(jié)合是當(dāng)前注射模技術(shù)發(fā)展的 必然趨勢。在注射模結(jié)構(gòu)設(shè)計中,傳統(tǒng)的方法是采用二維設(shè)計,在國外已有越來越多的公司采用基于實體模型的三維模具結(jié)構(gòu)設(shè)計[2]。
6 我國存在的主要問題
現(xiàn)代工業(yè)對注塑件的要求不僅要求精度高,還需有極佳的內(nèi)在質(zhì)量,為適應(yīng)這種要求,必須開發(fā)利用注塑模具新技術(shù),目前在南方沿海地區(qū)正在逐步推廣利用從國外引進的注塑模具新技術(shù),對提高注塑件質(zhì)量起了很大的作用。在這幾十年來,國內(nèi)塑料模具行業(yè)迅猛發(fā)展,對人才的渴求和要求也越來越高。但國內(nèi)還是沒法解決這棘手問題,成了中國模具行業(yè)發(fā)展的主要障礙[14]。
安全問題是最普遍也是最重要的問題,在注塑成型技術(shù)、注塑模 CAE 技術(shù),或是其他各種應(yīng)用技術(shù)的操作過程中,安全隱患還是隨處可見的。安全管理作為一切應(yīng)用技術(shù)的前提,是大型注塑模具應(yīng)用技術(shù)發(fā)展的必然趨勢[17]。
存在的主要問題大致有如下方面:
(1)研發(fā)及自主創(chuàng)新能力薄弱;
(2)企業(yè)管理水平落后于技術(shù)的進步;
(3)數(shù)字化、信息化水平還較低;
(4)標(biāo)準和標(biāo)準件生產(chǎn)供應(yīng)滯后于模具生產(chǎn)的發(fā)展;
(5)人才與發(fā)展不相適應(yīng);
(6)以模具為核心的產(chǎn)業(yè)鏈各個環(huán)節(jié)協(xié)同發(fā)展不夠, 尤以模具材料發(fā)展滯后最為明顯[2]。
7 結(jié)語
盡管我國已經(jīng)成為制造大國,但距離制造強國還有一定的差距。我們必須加強研發(fā)及自主創(chuàng)新能力,加大人才培養(yǎng),著力發(fā)展高新技術(shù),加強信息化水平,積極響應(yīng).模具行業(yè)“十二五”發(fā)展規(guī)劃的號召。使我國模具行業(yè)邁入世界先進行列。
第38頁 共25頁
Injection Molding Guide
INTRODUCTION
Objective
This document provides guidelines for part design, mold design and processing of styrenic block copolymer (SBC) TPEs. The GLS product families that include styrenic TPEs are Kraton compounds, Dynaflex TPE compounds and Versaflex TPE alloys.
SBC Rheology
One major characteristic of SBCs is that they are shearing dependent. A material is shear dependent when its viscosity is higher at low shear rates (such as extrusion) and lower at high shear rates (as in injection molding). Therefore, SBC compounds will flow more easily into thin areas of the mold at high shear rates. The shear thinning behavior of SBCs should be considered when designing injection molds and also when setting mold conditions during processing.
Figure 1.The effect of shear rate on the viscosity of GLS
styrenic TPE compounds (measured at 390°F (200°C)).
To obtain information regarding the viscosity of an individual grade, refer to the Product Technical Data Sheet, available at www.glscorporation.com or contact your GLS representative.
PART DESIGN
General Part Design Concepts
When designing a TPE part, there are a few general rules to follow:
? The part wall thickness should be as uniform as possible. Transitions from thick to thin areas should be gradual to prevent flow problems, back fills, and gas traps.
? Thick sections should be cored out to minimize shrinkage and reduce part weight (and cycle time).
? Radius / fillet all sharp corners to promote flow and minimize no-fill areas.
? Deep unventable blind pockets or ribs should be avoided.
? Avoid thin walls that cannot be blown off the cores by air-assist ejection.
? Long draws with minimum draft may affect ease of ejection.
Flow Length and Wall Thickness
The maximum achievable flow length is dependent on the specific material selected, the thickness of the part, and processing conditions. Generally, GLS compounds will flow much further in thinner walls than other types of TPEs. The flow to thickness ratio should be 200 maximum; however this is dependent on the material and the part design. High flow GLS TPE compounds (such as Versalloy) have been used successfully to fill flow ratios up to 400.
The measurement of spiral flow offers a comparative analysis of a material’s ability to fill a part. The spiral flow test is performed by injecting a material into a spiral mold (similar to a ribbon formed into a spiral). The distance the material flows is measured in inches. In this case, the spiral flow test was conducted using two different injection speeds (3 in/sec and 5 in/sec). The typical spiral flow lengths for the various GLS product families are summarized in Table 1. With specific compounds, flow lengths of up to 40 inches (at 5 in/sec injection speed) are possible.
Table 1. Typical Spiral Flow Lengths for GLS Compounds*
Series
Flow length, in
3 in/sec
5 in/sec
Dynaflex ? D
13-15
18-20
Dynaflex ? G
12-22
18-30
Versaflex ?
9-16
13-26
*Spiral flow tests performed using 0.0625 in thickness and 0.375 in width channel at 400°F.
For spiral flow information about a specific grade or additional details about the spiral flow test procedure, please refer to the GLS Corporation TPE Tips Sheet #7, available at www.glscorporation.com or by contacting your GLS representative.
Undercuts
The flexibility and elastic nature of TPEs allows for the incorporation of undercuts into the part design. Because of their excellent recovery characteristics, GLS compounds are capable of being stretched and deformed, allowing them to be pulled from deep undercuts (Figure 2). If both internal and external undercuts are present on the same part, slides or core splits may be necessary. Parts with internal undercuts (e.g. bulb shaped parts) may be air ejected from the core by use of a poppet valve in the core. Minor permanent elongation (3% - 8%) due to deformation may occur during ejection.
Figure 2. An example of TPE parts with large undercuts.
Gate and Knit Line Locations
The product engineer should indicate the areas of the part that are cosmetic and those that are functional and include this information on the drawing. This will help the mold designer to determine the allowable gate and knit line locations.
Anisotropy
Thermoplastic materials that have different properties in the flow direction versus the cross-flow direction (90o perpendicular to the flow direction) are characterized as “anisotropic” materials. Properties that may be affected are shrinkage and tensile properties. Anisotropy is caused when the polymer chains orient in the direction of flow, which leads to higher physical properties in the flow direction. Wall thickness, injection speed, melt temperature and mold temperature are a few variables that affect anisotropy. Depending on the processing conditions and mold design, most GLS styrenic TPE compounds exhibit a degree of anisotropy.
Shrinkage
Due to their anisotropic nature, GLS styrenic TPE compounds shrink more in the flow direction than in the cross-flow direction. Generally, SEBS compounds have higher shrinkage and are more anisotropic than SBS compounds. Typical shrinkage values for SEBS-based compounds are 1.3% - 2.5%, whereas those for SBS based compounds are 0.3% - 0.5 %. Softer SEBS compounds (below 30 Shore A) will shrink more than harder 6 materials. Some grades, such as Dynaflex G7700, G7800, and G7900 Series contain filler, which reduces their shrinkage.
The shrinkage values reported by GLS are determined using a 0.125” thick plaque. It should be noted that shrinkage is not an exact number, but a range value. This range can be affected by the part wall thickness, melt temperature, mold temperature, injection speed, hold/pack pressures and also the time between molding and measuring. As a result, prototyping is strongly recommended for parts with close tolerances to better quantify the realistic shrinkage of a specific grade of material in a specific application.
For shrinkage values for specific grades, please refer to the product Technical Data Sheet, available at www.glscorporation.com or by contacting your GLS representative.
MOLD DESIGN
Types of Molds
GLS SBC compounds can be molded in two- and three-plate molds. Both conventional and hot runner tool designs have been used with GLS compounds. Self-insulating hot runner tool designs are not recommended due to the potential for material degradation in the stagnation zones. Two-shot molds and insert molds can also be used. If a family mold is required, the cavity volumes should be similar, otherwise over packing and flashing of the smaller cavity may occur.
Steel Selection
GLS styrenic TPEs are generally non-abrasive and non-corrosive. The selection of tool steel will depend on the quantity and quality of parts to be produced. For high volume production, the initial expense of quality tooling is a sound investment.
A wide variety of tool steels are available for injection mold construction. Table 2 lists the properties of common tool steels and the typical mold components for which they are used. Soft metals, such as aluminum and beryllium copper, can be used for prototype parts or short production runs up to 10,000 parts.
Table 2. Typical Tool Steel for Injection Mold Construction
Steel Type
Steel Properties
Mold Component
P-20
Pre-hardened, machines well, high carbon, general-purpose steel. Disadvantage: May rust if improperly stored.
Mold bases, ejector plates, and some cavities (if nickel or chrome plated to prevent rust).
H-13
Good general purpose tool steel. Can be polished or heat-treated. Better corrosion resistance.
Cavity plates and core plates.
S-7
Good high hardness, improved toughness, general-purpose tool steel.
Machines well, shock resistant, polishes well. Disadvantage: Higher cost.
Cavity plates, core plates and laminates, as well as thin wall sections.
A-2
Good high toughness tool steel. Heat-treats and polishes well.
Ejector pins, ejector sleeves, and ejector blades.
D-2
Very hard, high wear characteristics, high vanadium content, somewhat brittle. Disadvantage: Difficult to machine.
Gate blocks, gibe plates to prevent galling, gate blocks to prevent wear.
420 SS
Tough corrosion resistant material.
Heat-treats and polishes well.
Disadvantage: High cost.
Cavity blocks, ejector pins, sleeves, etc.
Some part designs may benefit from the use of higher thermal conductivity materials such as beryllium copper. This material is less durable than steel and may hob or wear faster than steel if used at the parting-line. Beryllium copper can be used for inserts, slides or cores to increase heat transfer rates and reduce cycle times. In cases where there is a long draw core, a fountain-type bubbler may be beneficial.
Mold Surface Treatment, Finishing and Texturing
Most GLS materials replicate the mold surface fairly well. To produce a glossy surface, a polished mold is required and an unfilled grade should be used. A highly polished tool and a transparent material are required to produce a part with good clarity. If a matte finish similar to that of a thermoset rubber is required, a rougher mold texture should be used (or a GLS product such as GLS Versalloy TPV alloys, which naturally produce a matte surface). In general, an EDM surface will produce a good texture and may improve release from the tool during part ejection. Matte surfaces can also help to hide any flow marks or other surface defects. Vapor honing, sand or bead blasting and chemical etching are also used to produce textured surfaces with varying degrees of gloss and appearance. To aid in release, the cavity or core may be coated with a release coating such as PTFE impregnated nickel after it has been given a sandblast or EDM finish.
Sprue and Sprue Puller Design
The sprue should have sufficient draft, from 1o to 3o to minimize drag and sprue sticking. Longer sprues may require more taper (3° - 5°), as shown in Figure 3. Typically, the sprue diameter should be slightly larger than the nozzle diameter. An EDM finish is acceptable for most styrenic TPE materials. Permanent surface lubricant treatments have also been used successfully.
Sprue puller designs vary with the hardness of the material. The different sprue designs possible and their relative dimensions are shown in Figures 4 through 7. In addition, Table 3 shows the typical hardness range for which a particular sprue design is applicable.
Table 3. Typical Sprue Designs for Various Hardness Values
Typical TPE Hardness Range
Most Common Sprue Puller Types
Figure
>50 Shore A
Tapered, Pin, Z-Type
3, 4 and 6
40-70 Shore A
Undercut
5
5-40 Shore A
Pine Tree
7
Hot sprue bushings and extended nozzles may also be used with GLS compounds. In many molds, the sprue is the thickest wall section in the mold and will control the minimum cooling time. The use of a hot sprue, which may be viewed as an extension of the machine nozzle, can sometimes reduce cycle time. Extended machine nozzles may also be used to reduce sprue length and size. When hot sprues are used, the machine nozzle tip should be a free-flow nozzle rather than a reverse tip.
Figure 3. Tapered Sprue Puller Figure 4. Z-Pin Sprue Puller
Figure 5. Undercut Sprue Puller
Figure 6. Sucker Pin Sprue Puller
Figure 7. Pine Tree Sprue Puller
Conventional Runner Configuration and Design
A balanced runner configuration is critical to achieve uniform part quality from cavity to cavity. In a balanced runner system, the melt flows into each cavity at equal times and pressure. The runner balance can be designed by using computer mold-flow analysis programs and verified by performing short-shot studies.
An unbalanced runner may result in inconsistent part weights and dimensional variability. The cavity closest to the sprue may be over packed and flashing may occur. As a result of over packing, parts may also develop high molded-in stresses, which lead to warpage. Examples of balanced runner systems are shown in Figures 8 and 9.
Figure 8. Example of Balanced Spider Runner Figure
9. Example of Balanced Cross-Runner
Figure 10 shows different runner cross-sections and their associated efficiency. Full round runners have the least resistance to flow and surface area, allowing the material to stay molten longer. The second most efficient runner cross-section is the modified trapezoid. This runner geometry most closely simulates a full round runner but only requires machining in only one plate. Figure 11 shows typical ball cutter dimensions and the corresponding modified trapezoid runner sizes. Figure 12 illustrates typical runner dimensions.
Figure 10. Typical Runner Cross-Sections
Figure 11. Modified Trapezoid Runner Sizes
Figure 12. Runner Design and Dimensions
Cold slug wells should be used at each runner transition (turn). Cold slug wells serve to remove the leading edge of the melt. The slug well associated with the sprue should be large enough to trap the cold material formed in the machine nozzle during the mold-open cycle. Typical slug well dimensions are approximately 1.5 to 2.0 times the diameter or width of the feed runner.
Runner Keepers
Runner keepers or sucker pins provide undercuts to keep the runner on the desired plate but should not restrict material flow through the runner. Figures 8 and 9 show typical locations for runner keepers and sucker pins. Figure 13 illustrates an example design of a runner keeper.
Figure 13. Runner Keeper design
Gate Design and Location
Most conventional gating types are suitable for processing GLS styrenic TPE compounds.The type of gate and the location, relative to the part, may affect the following:
? Part packing
? Gate removal or vestige
? Part cosmetic appearance
? Part dimensions (including warpage)
The type of gate selected is dependent on both part and tool design. The gate location is equally important. To prevent the chances of jetting, locate the gate entrance in an area where the flow will impinge on a cavity wall. For automatically degating tools, the highly elastic nature of softer TPEs makes submarine gate designs or three plate tools with selfdegating drops more difficult. Higher hardness and filled grades usually have lower ultimate elongation and therefore are more easily degated. To assure the gates will break at a specific location, they should have a short land length to create a high stress concentration.
Tab/Edge Gates
Tab or edge gates (Figure 14) most commonly utilize a conventional sprue and cold runner system. They are located along the tool parting line. A small undercut can be placed where the gate meets the part to minimize gate vestige caused by degating. Advantages of edge gates are ease of fabrication, modification and maintenance. The 14 gate depth (D) should be 15% - 30% of the wall thickness at the gate entrance. Common practice is to start “steel safe”. A good starting point for the gate width should be 1.0 - 1.5 times the gate depth. The gate land should be equal to or slightly longer than gate depth. The gate size may also depend on the part volume. The gate area may be inserted to facilitate gate maintenance or modification.
Figure 14. Tab or edge gate Figure 15. Submarine Gate
Submarine or tunnel gates are self-degating. During part ejection, the tool steel separates the part and the runner. Figure 15 shows a typical design of a submarine gate. Cashew type submarine gates should not be used for medium to soft hardness compounds due to their high coefficient of friction and high elongation.
Fan Gates
A fan gate is a streamlined variation of a tab gate (Figure 16). The fan gate distributes material into the cavity more evenly; thus it is normally used in parts that require a high degree of flatness and absence of flow lines. It also minimizes the possibility of gate pucker or part warpage.
Figure 16. Fan gate
Sprue or Direct Gate
The sprue or direct gate is often used on prototype parts because it is inexpensive. This type of gating is not recommended for GLS styrenic compounds because of their high elongation. In addition, the sprue will need to be trimmed thus appearance quality of the part is usually poor. If sprue gating is selected, care should be taken to keep both the sprue length and diameter as short and small as possible.
Diaphragm Gate
The diaphragm gate is used to maintain the concentricity of round parts. It allows even flow into the cavity and minimizes the potential for knit lines. Due to anisotropic shrinkage, flat round parts using center or diaphragm gating may not lay flat. A ring gate may also be used on the outside of a circular part.
Table 4 compares the advantages and disadvantages of the various gate types discussed in this section.
Table 4. Advantages and Disadvantages of Various Gate Types
Gate Type
Advantage
Disadvantage
Edge/Tab/Fan Gate
? Appropriate for flat parts
? Easy to modify
? Post-mold gate/runner removal is difficult
? Poor gate vestige
Submarine Gate
? Automatic gate removal
? Minimal gate vestige
? More difficult to machine
Diaphragm Gate
? Concentricity
? Appropriate for round parts
? No knit lines
? Scrap
? Post-molding gate removal
Pin gate (3-plate)
? Automatic gate removal
? Minimal gate vestige
? Localized cooling
? Requires floater plate
? More scrap
? Higher tool cost
Valve gate (Hot runner systems)
? Minimal gate vestige
? Positive shut-off
? Minimizes post pack
? Higher tool cost
? Higher maintenance
? Only for hot runner systems
Gate Location
Styrenic TPE compounds are anisotropic, thus they have different physical properties in the flow direction versus the cross-flow direction. Depending on the product's intended usage, these property differences could be critical to the performance of the final part. As a result, the anisotropic nature of the styrenic TPE needs to be taken into consideration when determining the gate location on the part.
The material flow may be estimated by eye or by using flow analysis programs. For higher shrinkage grades, the part may shrink near the gate, which causes “gate pucker” if there is a high molded-in stress at the gate. Parts shaped like a handle grip may warp toward the gate side of the part. Locating the gate at the top of the part minimizes this problem. Using two gates on opposite sides of the part can also address the issue, but it will result in two knit lines. If filling problems exist in thin walled parts, adding flow channels or minor changes in wall thickness can alter the flow. In some cases, it may be necessary to add a second gate to properly fill the parts.
The gate should be placed so that the flow path is as short as possible. Locating the gate at the heaviest cross section of the part can improve packing and minimize voids or sinks. If possible, the gate should be positioned so as to avoid obstructions (flowing around cores or pins) in the flow path.
The flow path of the material should minimize the possibility of formation of knit lines and flow marks. Upon injection, the material should impinge off the cavity wall to reduce the possibility of jetting. To minimize the effect of molded-in stress (at the gate) on part performance, the gate should be located in noncritical areas of the part. Also, the gate location should allow for easy manual or automatic degating.
Mold Venting
Mold venting is critical to the quality and consistency of the finished part. Venting is required to allow the air in the sprue, ru
收藏