喜歡就充值下載吧。資源目錄里展示的全都有,下載后全都有,圖紙均為CAD原圖,有疑問(wèn)咨詢(xún)QQ:414951605 或1304139763
第1章 緒論
1.1 研究背景
風(fēng)一直都是一種神奇的力量,每年因?yàn)楦鞣N臺(tái)風(fēng)、颶風(fēng)等自然因素給人類(lèi)帶來(lái)的損失是龐大的。所以隨著社會(huì)的高速發(fā)展,科學(xué)技術(shù)水平的不斷提高,風(fēng)能慢慢的走進(jìn)人們的視野,想著大自然給予的這樣強(qiáng)大的力量應(yīng)該通過(guò)科學(xué)的方法來(lái)為人們所有,而不是給人類(lèi)帶來(lái)災(zāi)難的同時(shí)還浪費(fèi)掉了這些身邊的資源。據(jù)估計(jì),地球上可以用來(lái)發(fā)電的風(fēng)力資源約100億千瓦,是全球水力發(fā)電資源的十倍之多。而每年全球通過(guò)燃燒煤炭來(lái)獲取的電力也只有風(fēng)能發(fā)電的三分之一。從理論上來(lái)說(shuō),全世界的能源需求只是地球上風(fēng)能總量的百分之一。如果能夠很好的把風(fēng)能開(kāi)發(fā)和應(yīng)用,能源短缺、環(huán)境污染等問(wèn)題就可以得到有效的控制。風(fēng)力發(fā)電不似水電的利用,水電的利用被認(rèn)為是得到了充分的發(fā)展,而風(fēng)力發(fā)電雖然在2000多年前就已經(jīng)被使用,但是利用率卻還有開(kāi)發(fā)和發(fā)展的空間。有著這樣的前提,世界各國(guó)都越來(lái)越重視風(fēng)能的開(kāi)發(fā)與利用,面對(duì)越來(lái)越嚴(yán)重的資源危機(jī)與環(huán)境污染,風(fēng)力發(fā)電技術(shù)勢(shì)必要走在人類(lèi)社會(huì)發(fā)展的前沿。
據(jù)統(tǒng)計(jì),風(fēng)力發(fā)電機(jī)的增速箱是整機(jī)發(fā)生故障比率最高的部件,而增速箱即齒輪箱是風(fēng)力發(fā)電機(jī)的核心部件。振動(dòng)會(huì)導(dǎo)致增速箱傳動(dòng)系統(tǒng)產(chǎn)生疲勞損傷,降低增速箱系統(tǒng)的穩(wěn)定性,提高維護(hù)成本。嚴(yán)重時(shí)還會(huì)使增速箱不能正常進(jìn)行工作,甚至造成破壞等嚴(yán)重后果。而隨著我國(guó)風(fēng)電行業(yè)的成長(zhǎng),裝機(jī)容量越來(lái)越大,就使得對(duì)增速箱系統(tǒng)的動(dòng)態(tài)特性的要求也愈來(lái)愈高,使得對(duì)它進(jìn)行更為確切的動(dòng)力學(xué)特性的分析就顯得越加重要。據(jù)了解,齒輪箱的設(shè)計(jì)與制造加工一直是我國(guó)風(fēng)力產(chǎn)業(yè)的薄弱環(huán)節(jié),大部分知識(shí)產(chǎn)權(quán)都掌握在其他風(fēng)力強(qiáng)國(guó)的手上。所以,我國(guó)想要在風(fēng)力產(chǎn)業(yè)有很大的提升,齒輪箱部件是重心。對(duì)增速箱傳動(dòng)系統(tǒng)開(kāi)展動(dòng)力學(xué)特性的研究分析有助于減少由于振動(dòng)而產(chǎn)生的增速箱傳動(dòng)系統(tǒng)故障和提高整個(gè)傳動(dòng)系統(tǒng)的穩(wěn)定性。
1.2 國(guó)內(nèi)外研究現(xiàn)狀
1.2.1 國(guó)外研究情況及其發(fā)展趨勢(shì)
進(jìn)入新時(shí)代以來(lái),世界各國(guó)對(duì)于風(fēng)力產(chǎn)業(yè)的研究力度達(dá)到了前所未有的高度。尤其是面對(duì)日益嚴(yán)重的環(huán)境污染與資源短缺問(wèn)題,風(fēng)力發(fā)電的發(fā)展前途一片光明,但同時(shí)也會(huì)有技術(shù)上的各種難題。美國(guó)作為科技強(qiáng)國(guó),早在2004年,其風(fēng)力發(fā)電機(jī)的裝機(jī)總?cè)萘烤瓦_(dá)到了6740MW,能滿(mǎn)足全國(guó)人民20%的日常用電量。在風(fēng)力發(fā)電產(chǎn)業(yè)起步較晚的一些國(guó)家如加拿大、印度,在經(jīng)過(guò)十幾二十年的發(fā)展,風(fēng)力發(fā)電產(chǎn)業(yè)在其資源結(jié)構(gòu)中的重要性正在不斷提高。傳統(tǒng)的風(fēng)力強(qiáng)國(guó)——荷蘭、德國(guó)等,也正在以驚人的速度發(fā)展著風(fēng)力發(fā)電技術(shù)。
風(fēng)力發(fā)電的發(fā)展趨勢(shì)將會(huì)是高效率、高可靠性與大功率。經(jīng)過(guò)幾十年的發(fā)展,風(fēng)力發(fā)電的功率從百萬(wàn)瓦走向了兆瓦,每個(gè)國(guó)家的裝機(jī)總?cè)萘恳苍诓粩嗵嵘陲L(fēng)力發(fā)電的研發(fā)投入也不斷提高。據(jù)報(bào)道,一些傳統(tǒng)的風(fēng)力發(fā)電強(qiáng)國(guó)也正在研發(fā)十兆瓦以上的風(fēng)力發(fā)電機(jī)組。但是對(duì)于一些關(guān)鍵部件的結(jié)構(gòu)動(dòng)力學(xué)分析上還僅僅處于靜態(tài)分析上,動(dòng)態(tài)分析一直是瓶頸,設(shè)計(jì)及其制造技術(shù)上發(fā)展交迅速,動(dòng)力學(xué)分析方面將會(huì)是接下來(lái)發(fā)展的重心,尤其是增速箱這種核心部件,圍繞其的各種模態(tài)分析將會(huì)是研究與發(fā)展的重中之重。
1.2.2國(guó)內(nèi)研究情況及其發(fā)展趨勢(shì)
我國(guó)疆土遼闊,風(fēng)能儲(chǔ)量巨大。據(jù)不完全統(tǒng)計(jì),我國(guó)可開(kāi)發(fā)的風(fēng)能儲(chǔ)量達(dá)到了十億千瓦,遠(yuǎn)遠(yuǎn)多于世界上其他風(fēng)力強(qiáng)國(guó)。但是由于我國(guó)在風(fēng)力發(fā)電行業(yè)起步晚、技術(shù)落后,仍然在走以水力發(fā)電為輔,煤炭燃燒發(fā)電為主的道路。隨著我國(guó)各種環(huán)境污染問(wèn)題被逐漸發(fā)掘,特別是柴靜的霧霾報(bào)告一經(jīng)發(fā)出,國(guó)家越來(lái)越重視環(huán)境保護(hù)問(wèn)題,也加大了對(duì)新能源的開(kāi)發(fā)與利用,風(fēng)力發(fā)電就是其中一項(xiàng)重要的發(fā)展對(duì)象。我國(guó)現(xiàn)階段的風(fēng)力發(fā)電裝機(jī)總?cè)萘坷塾?jì)達(dá)到了1270MW,增長(zhǎng)速度也在不斷提高。但是由于技術(shù)限制,我國(guó)的風(fēng)能開(kāi)發(fā)主要還是以分散、小規(guī)模試驗(yàn)為主。
我國(guó)風(fēng)力資源開(kāi)發(fā)的主要發(fā)展趨勢(shì)還是要加大核心部件的研究力度,對(duì)于核心技術(shù)要通過(guò)不斷努力來(lái)掌握在自己手上。一些核心技術(shù)的知識(shí)產(chǎn)權(quán)掌握在其他國(guó)家手上,只會(huì)讓我們處處受制于其他人。目前,我國(guó)研究的主要瓶頸問(wèn)題是增速箱部件的設(shè)計(jì)與制造,因此我國(guó)發(fā)展的重心應(yīng)該是在不斷投入研發(fā)的同時(shí),還要不斷去完善設(shè)計(jì)制造體系與故障分析體系。
1.3 研究目的與主要內(nèi)容
1.3.1 研究目的
我國(guó)目前在風(fēng)力發(fā)電行業(yè)的主要難題在于增速箱這一核心部件的設(shè)計(jì)與制造,其故障率是所有發(fā)生故障的零部件之中是最高的,齒輪壽命達(dá)不到設(shè)計(jì)要求。所以,是否能合理科學(xué)地制造出符合設(shè)計(jì)要求的齒輪箱是關(guān)鍵。
本文以1500KW風(fēng)力發(fā)電機(jī)增速系統(tǒng)的建模與仿真為例,設(shè)計(jì)一種三級(jí)傳動(dòng)的風(fēng)力發(fā)電機(jī)齒輪箱,經(jīng)過(guò)合理的運(yùn)動(dòng)學(xué)仿真,來(lái)驗(yàn)證設(shè)計(jì)的合理性。
1.3.2 研究主要內(nèi)容
本文的研究?jī)?nèi)容主要包括以下三個(gè)方面:
(1) 風(fēng)力發(fā)電機(jī)增速系統(tǒng)的設(shè)計(jì)
風(fēng)力發(fā)電機(jī)的主要工作原理就是葉片由風(fēng)力的帶動(dòng)通過(guò)軸把力與轉(zhuǎn)速傳遞給齒輪箱,通過(guò)齒輪箱中各級(jí)齒輪間的齒數(shù)差距來(lái)提高傳動(dòng)比,最后由高速軸的轉(zhuǎn)動(dòng)帶動(dòng)發(fā)電機(jī)發(fā)電。所以齒輪箱中齒輪、軸等部件的參數(shù)選擇及其設(shè)計(jì)顯得尤為重要,也是本文重點(diǎn)的研究部分。
(2) 齒輪箱的建模及其虛擬裝配
在齒輪箱中各個(gè)零件參數(shù)確定完全后,就要使用三維建模軟件NX.UG 10.0來(lái)實(shí)現(xiàn)各個(gè)零件的單獨(dú)建模及后期的虛擬裝配。
(3) 齒輪箱的運(yùn)動(dòng)學(xué)仿真
齒輪箱裝配完成后,需要進(jìn)行的工作是直接利用三維建模軟件NX.UG 10.0來(lái)實(shí)現(xiàn)增速箱傳動(dòng)部分的運(yùn)動(dòng)學(xué)仿真,得到相應(yīng)的轉(zhuǎn)速與時(shí)間曲線(xiàn)與電子表格,驗(yàn)證傳動(dòng)比設(shè)定的合理性。
44
第2章 兆瓦級(jí)風(fēng)力發(fā)電機(jī)傳動(dòng)系統(tǒng)設(shè)計(jì)
大部分機(jī)器運(yùn)轉(zhuǎn)所需要的重要部件,傳動(dòng)件的設(shè)計(jì)是否合理、制造的精度誤差是否能在一個(gè)可控的范圍之內(nèi)是檢驗(yàn)其使用能否的重要標(biāo)準(zhǔn)。本文需要設(shè)計(jì)的是風(fēng)力發(fā)電機(jī)的增速系統(tǒng),查閱相關(guān)資料,采取的是機(jī)械式傳動(dòng)中齒輪傳動(dòng),另外機(jī)械式傳動(dòng)按其工作原理可以歸納為嚙合式傳動(dòng)和摩擦式傳動(dòng)兩大類(lèi),具體可以細(xì)分為齒輪連接傳動(dòng)、帶連接傳動(dòng)、鏈連接傳動(dòng)、蝸桿連接傳動(dòng)四類(lèi)【。
齒輪傳動(dòng)因?yàn)樵谄鋫鲃?dòng)的瞬時(shí)產(chǎn)生的傳動(dòng)比恒定、能夠傳遞的功率范圍區(qū)間大、傳遞的可靠性高、效率高、在整個(gè)傳遞運(yùn)動(dòng)過(guò)程之中能夠平穩(wěn)運(yùn)行、擁有極長(zhǎng)的運(yùn)行壽命而被廣泛運(yùn)用于機(jī)構(gòu)傳動(dòng)系統(tǒng)中,大到重型機(jī)械比如挖機(jī)、混凝土攪拌機(jī)等,小到精密機(jī)械比如手表、風(fēng)扇等。齒輪傳動(dòng)的主要傳動(dòng)形式有開(kāi)式傳動(dòng)、閉式傳動(dòng)以及半開(kāi)式傳動(dòng),其中開(kāi)式和閉式傳動(dòng)都有著廣泛的運(yùn)用而半開(kāi)式傳動(dòng)的運(yùn)用不是很廣泛。風(fēng)口處因?yàn)槠涑霰姷娘L(fēng)力資源一直是風(fēng)力發(fā)電機(jī)的主要安裝地點(diǎn)而風(fēng)口一般出現(xiàn)在在海灘、高山、荒野等環(huán)境惡劣的地點(diǎn),受外界惡劣的環(huán)境所影響,以及特殊環(huán)境所帶來(lái)的維修成本等問(wèn)題故在這里采用閉式傳動(dòng)。
增速器一般指位于原動(dòng)件與工作件之間的傳動(dòng)裝置,風(fēng)力發(fā)電機(jī)用的增速器體積小、使用壽命較高、承載能力強(qiáng)、傳動(dòng)平穩(wěn)、溫升控制比較理想。按照本課題的設(shè)計(jì)要求(傳動(dòng)比所要求的傳動(dòng)區(qū)間較大、整體機(jī)夠要做到緊湊細(xì)小、運(yùn)行時(shí)要足夠穩(wěn)定),所以在綜合考慮到以上各種情況后決定采用兩級(jí)行星輪系齒輪傳動(dòng)和一級(jí)平行直齒圓柱齒輪傳動(dòng)的形式,其中直齒圓柱齒輪傳動(dòng)為高速級(jí)即輸出級(jí)。
2.1 傳動(dòng)方案的確定
現(xiàn)階段國(guó)內(nèi)外采用的風(fēng)力發(fā)電機(jī)用齒輪箱大致可以分為三類(lèi):平行軸齒輪箱、行星齒輪箱和行星輪系與平行軸齒輪混合使用的混合式齒輪箱;按照傳動(dòng)的級(jí)數(shù)可以分為單級(jí)齒輪箱與多級(jí)齒輪箱;按照齒輪傳動(dòng)的布置方式可以分為四類(lèi):分流式、展開(kāi)式、同軸式與混合式【8】。
在選擇風(fēng)力發(fā)電機(jī)機(jī)組的傳動(dòng)形式時(shí)。其中,功率比較小的機(jī)組就可以直接采用兩級(jí)或者三級(jí)平行圓柱齒輪相互嚙合的傳動(dòng)形式。功率比較大時(shí),考慮到平行軸齒輪傳動(dòng)時(shí),主軸的尺寸會(huì)設(shè)計(jì)的過(guò)大,這樣就不利于機(jī)組內(nèi)部腔體的布置,所以多采用行星齒輪或者行星齒輪與平行軸齒輪混合使用的方式來(lái)布置傳動(dòng)形式。
結(jié)合本課題所要求的風(fēng)力發(fā)電機(jī)增速箱設(shè)計(jì)要求的基礎(chǔ)上再考慮到相關(guān)的載荷問(wèn)題與傳動(dòng)軸的尺寸設(shè)計(jì),以滿(mǎn)足其傳遞過(guò)程中的準(zhǔn)確性以及穩(wěn)定性為基本條件,進(jìn)而決定選用行星齒輪與平行軸齒輪混合使用的混合式齒輪箱傳動(dòng)形式。
表2.1 常見(jiàn)的齒輪箱傳動(dòng)形式
2.1.1 2000kw風(fēng)力電機(jī)增速器設(shè)計(jì)要求及其相關(guān)設(shè)計(jì)步驟
本課題所給出的基本設(shè)計(jì)要求如表2.2所示
表2.2 增速箱設(shè)計(jì)要求
額定功率
2000kW
增速比
52-72
輸出轉(zhuǎn)速
1400-1600r/min
輸入轉(zhuǎn)速
23-35r/min
分度圓壓力角
20°
模數(shù)
5-15
增速器設(shè)計(jì)步驟:
(1) 依據(jù)風(fēng)力發(fā)電機(jī)增速箱的工作條件與使用要求,確定其傳動(dòng)形式為行星輪系齒輪傳動(dòng)。
(2) 確定行星齒輪傳動(dòng)的具體結(jié)構(gòu)形式與傳動(dòng)方案。
(3) 依據(jù)發(fā)電機(jī)的輸入轉(zhuǎn)速與葉片的輸入轉(zhuǎn)速確定增速器的傳動(dòng)比范圍。
輸入轉(zhuǎn)速:30rpm
增速器輸出轉(zhuǎn)速:1480rpm
確定機(jī)構(gòu)總傳動(dòng)比:i=
根據(jù)增速器的使用環(huán)境特點(diǎn)與工作要求,確定行星輪系為2K-H型行星輪系,為保證傳動(dòng)的平穩(wěn)而采用三個(gè)行星輪的分布結(jié)構(gòu),初選傳動(dòng)比范圍為:。
根據(jù)工作要求,為確保該增速箱結(jié)構(gòu)緊湊,確定兩級(jí)行星輪系為低速級(jí)和中間級(jí),中間級(jí)與電機(jī)之間預(yù)留一定空間安放平行軸圓柱直齒輪。初選分配輪系的傳動(dòng)比為:
第一級(jí): ; 第二級(jí):
2.1.2 傳動(dòng)方案及傳動(dòng)原理
本課題決定采用以行星架為輸入端、太陽(yáng)輪輸出端的行星齒輪傳動(dòng)機(jī)構(gòu)。同時(shí)為了更好的保證整個(gè)機(jī)構(gòu)運(yùn)行平穩(wěn),決定采用行星架與太陽(yáng)輪在同一軸線(xiàn)上的布置方法。這可以很好的保證整個(gè)機(jī)構(gòu)的同軸度,也可以使得整個(gè)齒輪箱結(jié)構(gòu)緊湊、體積小。行星齒輪傳動(dòng)的優(yōu)點(diǎn)主要是其能夠擁有足夠小的機(jī)身、而且其細(xì)小的機(jī)身絲毫不影響其在承載能力以及傳動(dòng)效率方面的杰出表現(xiàn)。當(dāng)然它的缺點(diǎn)也比較明顯,材料品質(zhì)要求高,制造繁瑣,另外安裝時(shí)也不方便。
考慮到結(jié)構(gòu)緊湊等要求,在符合國(guó)家相關(guān)標(biāo)準(zhǔn)的前提下,設(shè)計(jì)的傳動(dòng)方式的原理圖如下圖2.1。
圖2.1 傳動(dòng)原理圖
2.2 增速器整體設(shè)計(jì)
2.2.1 第一級(jí)行星輪系設(shè)計(jì)
(1) 計(jì)算齒輪基本參數(shù)
根據(jù)初始條件有:,取
即
初選
(2) 檢驗(yàn)行星齒輪裝配條件:
同心條件:要滿(mǎn)足行星架與中心輪同軸,那么必須滿(mǎn)足
裝配條件:在整個(gè)行星齒輪傳動(dòng)的結(jié)構(gòu)中,行星輪因?yàn)槠涮厥獾陌惭b位置(行星輪均勻地分布在太陽(yáng)輪四周。其既要滿(mǎn)足與太陽(yáng)輪的嚙合又要滿(mǎn)足與齒圈之間的內(nèi)核)。所以要求設(shè)計(jì)的太陽(yáng)輪與行星輪的齒數(shù)與行星輪個(gè)數(shù)必須滿(mǎn)足一定的條件,即裝配條件。不然在裝配過(guò)程中會(huì)出現(xiàn)其他行星輪無(wú)法與行星輪或者內(nèi)齒圈嚙合的情況。查閱相關(guān)資料,2K-H型行星輪系的裝配條件為:行星輪齒數(shù)與內(nèi)齒圈的齒數(shù)相加應(yīng)為行星輪個(gè)數(shù)的整數(shù)倍
即,C為整數(shù)
鄰接條件:要確保相鄰的兩個(gè)行星輪的齒頂不能產(chǎn)生干涉,保證齒頂與兩行星輪連心線(xiàn)上的距離大于等于半個(gè)模數(shù)
即
根據(jù)上述條件,選定齒輪模數(shù)為14mm,查閱相關(guān)手冊(cè),確定各個(gè)齒輪參數(shù)如表2.3。
表2.3 一級(jí)行星齒輪參數(shù)
齒數(shù)
模數(shù)
變位系數(shù)
齒頂圓
齒根圓
分度圓
螺旋角
齒寬
第一級(jí)
中心輪
20
14
0
308
245
280
0°
280
行星輪
37
14
0
546
483
518
0°
270
內(nèi)齒圈
94
14
0
1344
1281
1316
0°
300
2.2.2 第二級(jí)行星輪系設(shè)計(jì)
(1) 計(jì)算齒輪參數(shù):
根據(jù)初始條件有:,取
即
初選
(2)檢驗(yàn)行星輪裝配條件:
同心條件:
裝配條件: ,符合 。
鄰接條件:即,符合。
根據(jù)以上結(jié)果,確定行星輪系尺寸如下表2.4。
表2.4 第二級(jí)行星輪系齒輪參數(shù)
齒數(shù)
模數(shù)
變位系數(shù)
齒頂圓
齒根圓
分度圓
螺旋角
齒寬
第二級(jí)
中心輪
18
14
0
280
217
252
0°
252
行星輪
31
14
0
462
399
434
0°
246
內(nèi)齒圈
80
14
0
1148
1085
1120
0°
276
2.2.3 第三級(jí)平行圓柱直齒齒輪設(shè)計(jì)
齒數(shù)分配為:;模數(shù)確定為12mm。
具體齒輪參數(shù)如下表2.5。
表2.5 第三級(jí)圓柱直齒輪參數(shù)
齒數(shù)
模數(shù)
變位系數(shù)
齒頂圓
齒根圓
分度圓
螺旋角
齒寬
第三級(jí)
小齒輪
26
12
0
392
329
312
0°
280
大齒輪
43
12
0
540
486
516
0°
260
2.2.4 確定行星齒輪結(jié)構(gòu)
(1) 行星輪結(jié)構(gòu)
因?yàn)樾行禽喯抵械男行禽喴糜邶X圈內(nèi)部,且要求整個(gè)齒輪箱的結(jié)構(gòu)緊湊,所以本文采用直接把軸承置于行星輪內(nèi)部的形式。這樣不僅可以減小行星輪軸的尺寸、簡(jiǎn)化軸的結(jié)構(gòu)來(lái)降低多軸段加工對(duì)軸強(qiáng)度的削弱,還能讓齒輪所承受的軸向載荷在齒寬方向均勻分布。另外需要注意的是選擇軸承時(shí),在保證齒輪軸最小軸徑的前提下,應(yīng)該盡量保證兩軸承間的距離最大化與軸承外圓直徑最小化,以防止對(duì)齒輪的強(qiáng)度有過(guò)多的削減,而導(dǎo)致齒輪運(yùn)轉(zhuǎn)時(shí)失效。本文選用的是推力滾子軸承,其摩擦因素較低,能承受少量徑向載荷,還具有自動(dòng)調(diào)心性能。行星輪大致結(jié)構(gòu)如下圖2.2。
(2) 中心輪結(jié)構(gòu)
根據(jù)本文上面已算出的相關(guān)數(shù)據(jù)可以得出:本次所設(shè)計(jì)的中心輪尺寸比較小。但是該中心輪的固定軸最小直徑比較大,如果采用軸上齒輪的銷(xiāo)鍵連接方式,齒輪將沒(méi)有足夠的剛度與強(qiáng)度。所以的中心輪采用齒輪軸的形式,軸的另一端要與行星架相連接,考慮到要擁有足夠的剛度故決定采用花鍵的連接方式。大致的結(jié)構(gòu)如下圖2.3。
圖2.3 中心輪結(jié)構(gòu)
(3) 行星架結(jié)構(gòu)
在本文的行星齒輪傳動(dòng)機(jī)構(gòu)中,共有輸入軸、行星輪軸等四根軸安裝在行星架上,其結(jié)構(gòu)的正確性對(duì)于整個(gè)機(jī)構(gòu)都十分重要。由于本文采用的是2K-H型行星輪系,行星架需要作為整個(gè)行星輪系的動(dòng)力輸入端,尤其是需要加工出花鍵的端口,承受的動(dòng)載荷和扭矩是整個(gè)輪系中最大的。其結(jié)構(gòu)設(shè)計(jì)與制造對(duì)于整個(gè)系統(tǒng)的載荷分配與載荷承載能力有著極大的影響。為了確保行星架具有很好的剛性,本文采用整體式結(jié)構(gòu),毛坯加工方式為鑄造,材料選擇為鑄鋼ZG340-640。
2.3 材料選擇及強(qiáng)度校核
風(fēng)力發(fā)電機(jī)組的工作環(huán)境相較于一般的機(jī)械有著很大的區(qū)別,其分部較廣泛。在沿海地區(qū),空氣濕度大,全年平均氣溫較大;在北方地區(qū),發(fā)電機(jī)組的安裝位置一般都在高山,溫差大。另外風(fēng)力發(fā)電機(jī)的受載受力情況也很復(fù)雜,不同于一般機(jī)械,風(fēng)力發(fā)電機(jī)組所采用的材料除了在滿(mǎn)足正常的機(jī)械性能外,還要考慮到材料在極端環(huán)境情況下的機(jī)械性能。對(duì)于傳動(dòng)部件而言,毛坯只能采取整體式,來(lái)增強(qiáng)其承載性能。同時(shí),齒輪的毛坯材料選用優(yōu)質(zhì)合金鋼來(lái)滿(mǎn)足其各種力學(xué)性能要求。齒輪箱傳動(dòng)部件的材料選擇及其力學(xué)性能要求如下表2.6。
表2.6 齒輪材料及相關(guān)力學(xué)性能
傳動(dòng)件
材料
熱處理
接觸強(qiáng)度(MPa)
彎曲強(qiáng)度
(MPa)
加工精度
中心輪
20CrMnTi
滲碳淬火,齒面硬度HRC58~62
1650
520
磨齒5級(jí)
行星輪
內(nèi)齒圈
42SiMn
調(diào)質(zhì),齒面硬HBS229~286
720
320
插齒6級(jí)
直齒輪
20CrMnTi
滲碳淬火,齒面硬度HRC58~62
1650
520
磨齒5級(jí)
2.3.1 行星傳動(dòng)強(qiáng)度校核
各軸運(yùn)動(dòng)和動(dòng)力參數(shù)計(jì)算:
高速軸:
二級(jí)中心輪軸:,
其中二級(jí)行星輪軸轉(zhuǎn)矩
一級(jí)中心輪軸:
其中一級(jí)行星輪軸轉(zhuǎn)矩
低速級(jí)軸:
(1) 第一級(jí)行星輪系
1)中心輪與行星輪接觸強(qiáng)度與彎曲強(qiáng)度校核:
太陽(yáng)輪與行星輪的材料都為20CrMnTi,相關(guān)力學(xué)性能由表2.6可得:
。
查閱文獻(xiàn)【13】,取安全系數(shù),
取彎曲疲勞安全系數(shù),應(yīng)力修正系數(shù),取
則
因?yàn)榈茫?
查手冊(cè)【6】:
a:齒面接觸疲勞強(qiáng)度:
查閱文獻(xiàn)【13】:取使用系數(shù),動(dòng)載系數(shù)齒間載荷分配數(shù) , 齒向載荷分布系數(shù),則
=1017.25MPa<
b:行星輪齒根彎曲強(qiáng)度與中心輪齒根彎曲強(qiáng)度:
,,所以按行星輪校核齒根彎曲疲勞強(qiáng)度。
=467.56Mpa<
2)內(nèi)齒圈與行星輪彎曲強(qiáng)度校核:
內(nèi)齒圈材料為42SiMn,相關(guān)力學(xué)性能由表2.6可得:
取彎曲疲勞安全系數(shù),應(yīng)力修正系數(shù),取
則
計(jì)算內(nèi)齒圈與行星輪的系數(shù):
,,所以按內(nèi)齒圈校核齒輪彎曲疲勞強(qiáng)度。
查閱文獻(xiàn)【13】:取使用系數(shù),動(dòng)載系數(shù)齒間載荷分配數(shù), 齒向載荷分布系數(shù),則
=150.280Mpa<
(2) 第二級(jí)行星輪系
a:中心輪與行星輪嚙合齒面接觸強(qiáng)度與齒根彎曲疲勞強(qiáng)度校核:
由于第二級(jí)行星輪系齒輪的材料選擇與第一級(jí)行星輪系齒輪一樣,所以力學(xué)性能與部分系數(shù)選擇一樣,這里就不給出過(guò)多敘述,直接進(jìn)行相關(guān)校核。
齒面接觸疲勞強(qiáng)度:
查閱文獻(xiàn)【13】:取使用系數(shù),動(dòng)載系數(shù)齒間載荷分配
數(shù), 齒向載荷分布系數(shù),則
=564.1Mpa<
b:行星輪齒根彎曲強(qiáng)度與中心輪齒根彎曲強(qiáng)度:
,,所以按行星輪 校核齒根彎曲疲勞強(qiáng)度。
=Mpa<
(2) 內(nèi)齒圈與行星輪齒根疲勞強(qiáng)度校核:
計(jì)算內(nèi)齒圈與行星輪的系數(shù):
,,所以按內(nèi)齒圈校核齒輪彎曲疲勞強(qiáng)度。
查閱文獻(xiàn)【13】:取使用系數(shù),動(dòng)載系數(shù)齒間載荷分配數(shù), 齒向載荷分布系數(shù),則
=36Mpa<
2.3.2 直齒圓柱齒輪強(qiáng)度校核
平行軸齒輪選用的材料為20CrMnTi,相關(guān)力學(xué)性能由表2.6可得:
。
取安全系數(shù),
取彎曲疲勞安全系數(shù),應(yīng)力修正系數(shù),取
則
因?yàn)榈茫?
查文獻(xiàn)【13】:
(1)齒面接觸疲勞強(qiáng)度:
查閱文獻(xiàn)【13】:取使用系數(shù),動(dòng)載系數(shù)齒間載荷分配數(shù), 齒向載荷分布系數(shù),則
=875.98Mpa<
小齒輪齒根彎曲強(qiáng)度與大齒輪齒根彎曲強(qiáng)度:
,,所以按小齒輪校核齒根彎曲疲勞強(qiáng)度。
=Mpa<
由上述齒輪箱一些基本零件的校核可知,這些基本零件在強(qiáng)度上都是足夠的。為了保證機(jī)構(gòu)運(yùn)動(dòng)平穩(wěn),使用了大齒寬的齒輪,這對(duì)于載荷的分布是有利的。
第3章 軸與箱體設(shè)計(jì)
3.1 高速軸設(shè)計(jì)
3.1.1軸的結(jié)構(gòu)設(shè)計(jì)
最小軸徑計(jì)算:
因?yàn)椋?
整根軸一共分為5段,考慮到軸上的齒輪安裝,第3段設(shè)計(jì)為齒輪軸。從軸的第5段開(kāi)始確定軸端各段尺寸,該段軸通過(guò)聯(lián)軸器與發(fā)電機(jī)相連接,確定;第4段為安裝端蓋部分,確定;第3段的軸徑與長(zhǎng)度根據(jù)軸承尺寸與齒輪來(lái)確定,這里選用的是29328號(hào)滾子軸承,所以確定尺寸為;第2段的軸徑根據(jù)軸承安裝尺寸來(lái)確定,長(zhǎng)度的設(shè)置主要是避免軸承與上一級(jí)軸的相關(guān)軸上零件發(fā)生干涉,尺寸為;第1段直徑與長(zhǎng)度根據(jù)軸承尺寸來(lái)確定為。
軸的尺寸設(shè)計(jì)如下圖:
圖3.1 高速軸
3.1.2軸的受力分析與強(qiáng)度校核
(1) 畫(huà)軸的受力簡(jiǎn)圖,見(jiàn)圖3.2
(2) 計(jì)算支承反力,在水平面上
由得。
在垂直面上:
由得。
所以A、B的總支承反力為:,。
彎矩計(jì)算:,
合成彎矩為:
扭矩為:
畫(huà)彎矩圖、扭矩圖如下圖3.2:
圖3.2 高速軸受力、彎矩與扭矩合成圖
(3) 校核軸的強(qiáng)度
由以上計(jì)算結(jié)果如示意圖可知:齒輪軸處為危險(xiǎn)截面,其抗彎截面系數(shù)和抗扭截面系數(shù)分別為。
最大彎曲應(yīng)力為,最大扭轉(zhuǎn)應(yīng)力為。
按第三強(qiáng)度理論進(jìn)行校核,因?yàn)楦咚佥S為轉(zhuǎn)軸,所以轉(zhuǎn)矩為脈動(dòng)循環(huán)應(yīng)力,選取,所以高速軸的彎扭合成計(jì)算彎曲應(yīng)力為:
軸的材料選擇為35SiMn,調(diào)質(zhì)處理,許用彎曲應(yīng)力,所以軸的彎扭合成強(qiáng)度滿(mǎn)足要求。
3.2低速軸設(shè)計(jì)
3.2.1軸的結(jié)構(gòu)設(shè)計(jì)
最小軸徑計(jì)算:
因?yàn)?
整根軸一共分為6段,軸上無(wú)齒輪連接,從軸的第5段,即最小軸徑處開(kāi)始確定各段尺寸,該段主要的作用就是為第6段花鍵的加工提供推刀槽,所以其尺寸該確定為;第6段為矩形花鍵部分,確定;第4段為軸肩,直徑應(yīng)該由軸承的安裝尺寸確定,這里使用的軸承型號(hào)為29326,所以確定尺寸為;第3段尺寸完全由軸承的內(nèi)徑和寬度決定,在兩個(gè)軸承之間留有適當(dāng)距離,確定尺寸為;第二段尺寸長(zhǎng)度確定的前提是能給端蓋與箱體之間連接的螺栓提供富余的長(zhǎng)度,所以尺寸確定為;第1段的作用主要在于通過(guò)聯(lián)軸器連接風(fēng)力發(fā)電機(jī)組機(jī)艙前部的制動(dòng)盤(pán),尺寸確定為。,
軸的尺寸設(shè)計(jì)如下圖:
圖3.3 低速軸
3.2.2軸的受力分析與強(qiáng)度校核
因?yàn)樵摰退佥S上并無(wú)齒輪等能對(duì)軸施加較大彎矩的零件,軸承所產(chǎn)生的彎矩可以忽略不計(jì),所以其強(qiáng)度校核主要的對(duì)象就是扭轉(zhuǎn)應(yīng)力的校核。另外還需要進(jìn)行花鍵靜連接與動(dòng)連接的強(qiáng)度校核,其中花鍵的相關(guān)參數(shù)為:齒數(shù)44、工作長(zhǎng)度392mm、齒側(cè)面工作高度30mm、平均直徑。
(1) 軸扭轉(zhuǎn)應(yīng)力
軸的材料選擇為35SiMn,調(diào)質(zhì)處理,由于該低速軸受的彎矩較小、載荷平穩(wěn),所以其需用扭轉(zhuǎn)切應(yīng)力應(yīng)選取為較大值,即。軸的轉(zhuǎn)矩T=676355.7Nm,計(jì)算軸的抗扭截面系數(shù),所以其扭轉(zhuǎn)強(qiáng)度條件為:
,強(qiáng)度滿(mǎn)足要求
(2) 花鍵連接校核
由于齒數(shù)較多,所以載荷不均勻系數(shù)K取0.7。其中齒數(shù)z=44,齒側(cè)面工作長(zhǎng)度h=30mm,工作長(zhǎng)度l=392mm,平均直徑。
靜連接:,強(qiáng)度滿(mǎn)足要求
動(dòng)連接:,強(qiáng)度滿(mǎn)足要求
3.3行星輪系傳動(dòng)軸設(shè)計(jì)
3.3.1一級(jí)行星輪軸與中心輪軸設(shè)計(jì)
(1)中心輪與行星輪結(jié)構(gòu)設(shè)計(jì)
根據(jù)公式,得到行星輪軸與中心輪軸最小直徑分別為170mm和200mm,其中行星輪軸與中心輪軸結(jié)構(gòu)如下圖:
圖3.4 一級(jí)行星輪軸與中心輪軸
(2) 行星輪與中心輪強(qiáng)度校核
由于行星輪結(jié)構(gòu)較簡(jiǎn)單,并且所受載荷不大,所以對(duì)其強(qiáng)度校核就不敘述,我們主要需要校核的是中心輪軸??紤]到中心輪尺寸問(wèn)題,以及運(yùn)行的穩(wěn)定性,中心輪設(shè)計(jì)成齒輪軸的形式,軸端左側(cè)需要與二級(jí)行星架連接,與低速軸類(lèi)似,設(shè)計(jì)成矩形花鍵,花鍵的各項(xiàng)參數(shù)為:齒數(shù)29、工作長(zhǎng)度310mm、齒側(cè)面工作高度30mm、平均直徑。
另外,中心輪軸所承受的彎矩較小,我們這里就直接按其扭轉(zhuǎn)強(qiáng)度條件進(jìn)行校核。
1)行星輪軸強(qiáng)度校核
軸的材料選擇為35CrMn,調(diào)質(zhì)處理,由于該低速軸受的彎矩較小、載荷平穩(wěn),所以其需用扭轉(zhuǎn)切應(yīng)力應(yīng)選取為較大值,即。軸的轉(zhuǎn)矩T=31563.2Nm已知,計(jì)算軸的抗扭截面系數(shù),所以其扭轉(zhuǎn)強(qiáng)度條件為
,強(qiáng)度滿(mǎn)足要求
2)花鍵連接強(qiáng)度校核
由于齒數(shù)較多,所以載荷不均勻系數(shù)K取0.7。其中齒數(shù)z=29,齒側(cè)面工作長(zhǎng)度h=30mm,工作長(zhǎng)度l=310mm,平均直徑。
靜連接:,強(qiáng)度滿(mǎn)足要求
動(dòng)連接:,強(qiáng)度滿(mǎn)足要求
3.3.2 二級(jí)行星輪軸與中心輪軸設(shè)計(jì)
二級(jí)中心輪軸與行星輪軸結(jié)構(gòu)與一級(jí)類(lèi)似,這里只給出計(jì)算后的最小軸徑,軸的長(zhǎng)度和打斷直徑由齒寬與雙列滾子軸承的內(nèi)徑?jīng)Q定。中心輪最小直徑為300mm,行星輪最小軸徑為160mm。
3.4箱體設(shè)計(jì)
箱體是增速系統(tǒng)的重要組成零件,它所承受的載荷較復(fù)雜,大體上為風(fēng)輪運(yùn)動(dòng)時(shí)的作用力與齒輪傳動(dòng)時(shí)的反作用力,箱體需要有足夠的剛性來(lái)承受這些載荷。一般小功率的風(fēng)力發(fā)電機(jī)采用的是輕質(zhì)鋁合金,通過(guò)鑄造的加工方式制作毛坯。由于鋁合金剛性較差,并不適合于本文中大功率的風(fēng)力發(fā)電機(jī),所以選取的材料為高強(qiáng)度鑄鐵,在保證箱體有較高剛性的同時(shí)保證系統(tǒng)運(yùn)轉(zhuǎn)時(shí)的穩(wěn)定性。在設(shè)計(jì)箱體時(shí),首先要做的是完成齒輪箱內(nèi)部零件的設(shè)計(jì)及布置,再來(lái)確定箱體的外形與內(nèi)部尺寸、壁厚等數(shù)據(jù)。在載荷較大的地方需要設(shè)置加強(qiáng)肋、軸承接觸部位要焊接鋼制軸承擋圈。箱體的設(shè)計(jì)結(jié)構(gòu)如下圖:
圖3.5 前部箱體
圖3.6 中間箱體
尾部箱體結(jié)構(gòu)尺寸如下:
圖3.7 尾部箱體
至此,箱體部分的外形尺寸都已經(jīng)確定完成,箱體的剛性,強(qiáng)度問(wèn)題可以通過(guò)有限元分析軟件來(lái)分析、驗(yàn)證設(shè)計(jì)的合理性。
第4章 增速器的零件建模以及虛擬裝配
4.1 引言
隨著社會(huì)科學(xué)技術(shù)的不斷進(jìn)步,以前那種物理方式的建模,即在制作一種實(shí)體時(shí),需要通過(guò)手工來(lái)建造按一定比例縮小的實(shí)體模型,來(lái)研究其可行性的方式已經(jīng)在許多行業(yè)被計(jì)算機(jī)虛擬建模方式所取代。因?yàn)橛?jì)算機(jī)建模技術(shù)不僅僅能反映產(chǎn)品的外觀尺寸,還可以對(duì)其中的零部件進(jìn)行各種載荷分析,讓其可行性分析變得數(shù)據(jù)化,給制造業(yè)帶來(lái)了許多便捷之處。本章的主要任務(wù)是了解并熟悉三維建模軟件,完成增速箱的零件建模并完成虛擬裝配。
4.2 了解三維建模軟件
計(jì)算機(jī)三維建模隨著計(jì)算機(jī)技術(shù)的不斷發(fā)展而被各個(gè)行業(yè)廣泛使用,在以往,對(duì)于一件產(chǎn)品使用之前,在設(shè)計(jì)、制造人員以及客戶(hù)之間,很難清楚明了的認(rèn)識(shí)到產(chǎn)品的一些可行性。比如,一件產(chǎn)品,設(shè)計(jì)人員設(shè)計(jì)出來(lái),但是并不一定能準(zhǔn)確的知道產(chǎn)品各個(gè)組成部分之間是否會(huì)發(fā)生干涉,零件強(qiáng)度是否滿(mǎn)足要去,甚至它能不能被很好德制造出來(lái)也無(wú)法得知。對(duì)于生產(chǎn)加工人員更是無(wú)從下手,而客戶(hù)就更無(wú)法了解產(chǎn)品的實(shí)用性。然而通過(guò)三維建模軟件,從產(chǎn)品的設(shè)計(jì)到制造,我們都可以通過(guò)軟件來(lái)建立虛擬的三維模型,讓我們能清楚的了解到產(chǎn)品各種方面。從簡(jiǎn)單的外形到該使用什么樣的加工方法來(lái)加工制造我們都能通過(guò)虛擬三維模型來(lái)了解。目前常用的三維建模軟件有SolidWorks、Proe、UG、CATIA等,本文使用的NX.UG 10.0軟件來(lái)完成齒輪箱零件的建模以及虛擬裝配。UG的主要內(nèi)容涵蓋了產(chǎn)品的概念設(shè)計(jì)、造型設(shè)計(jì)、三維模型建立、運(yùn)動(dòng)學(xué)仿真、工程圖輸出到產(chǎn)品加工制造的全部過(guò)程,應(yīng)用范圍涉及汽車(chē)、造船、航空航天、數(shù)控加工等廣泛領(lǐng)域,是一款功能十分強(qiáng)大的三維CAD/CAE/CAM軟件系統(tǒng)。
4.3 齒輪箱零部件建模
本文設(shè)計(jì)的風(fēng)力發(fā)電機(jī)組采用水平軸方式,所以其增速器部分零件模型的建立主要可以通過(guò)NX.UG 10.0中的回轉(zhuǎn)命令。模型建立的大致步驟為建立草圖,通過(guò)回轉(zhuǎn)拉伸等命令,完成實(shí)體建模;再通過(guò)特征建模來(lái)完成孔的創(chuàng)建。為了便于三維建模,在齒輪、軸等零件的尺寸參數(shù)確定好后,做了簡(jiǎn)化的二維模型。這里以第一級(jí)行星輪系為例,建立齒輪、行星架和軸的三維模型。
齒輪建立主要利用UG建模環(huán)境中的GC工作箱,直接輸入齒輪的名稱(chēng)、模數(shù)、牙數(shù)、齒寬與壓力角,選定齒輪建立的軸線(xiàn)方向與齒輪端面的圓心位置完成齒輪的毛坯建模。然后根據(jù)要求,在齒輪端面建立草圖并拉伸,最后完成齒輪的整個(gè)結(jié)構(gòu)形式。建立完成的三維實(shí)體模型如下圖:
圖4.1 內(nèi)齒圈
圖4.2 行星輪
圖4.3 行星輪軸
圖4.4 行星架
圖4.5 中心輪軸
第二級(jí)與第三級(jí)齒輪、軸等零件的建模方法與第一級(jí)類(lèi)似,這里我們就不一一贅述了,現(xiàn)在我們來(lái)看一下箱體的建模。整個(gè)齒輪箱箱體的造型設(shè)計(jì)大致都是建立草圖以后選取旋轉(zhuǎn)軸線(xiàn)就可以通過(guò)回轉(zhuǎn)360度來(lái)完成。建模體造型如下圖:
圖4.6 前部箱體
圖4.7 中間部分箱體
圖4.8 后部箱體
4.4 齒輪箱的虛擬裝配
虛擬裝配存在于UG裝配模塊中,通過(guò)建立部件之間的相對(duì)位置關(guān)系來(lái)使產(chǎn)品或者組件成為一個(gè)復(fù)雜的裝配體。虛擬裝配不是簡(jiǎn)單的復(fù)制各個(gè)部件,而是直接引用,這樣只要其中一個(gè)部件發(fā)生改變,就會(huì)使整個(gè)裝配體發(fā)生改變。利用這一特性,我們?cè)谔摂M裝配過(guò)程中可以分塊裝配整個(gè)齒輪箱。本文采用的裝配形式是先完成整個(gè)箱體的外部裝配,再去裝配各級(jí)輪系。裝配主要使用UG中的約束命令來(lái)實(shí)現(xiàn)各個(gè)部件的組裝。
圖4.9 外部箱體與內(nèi)齒圈的裝配圖
圖4.10 二級(jí)行星輪系與第三級(jí)輪系裝配
圖4.11 輸入軸與一級(jí)行星輪系的裝配
圖4.12 齒輪箱整體裝配
圖4.13 齒輪箱爆炸圖
4.5 總結(jié)
本章主要內(nèi)容就是利用三維建模軟件完成增速箱的三維實(shí)體模型建立,并且通過(guò)裝配模塊實(shí)現(xiàn)了齒輪箱的精準(zhǔn)裝配,為后期的運(yùn)動(dòng)學(xué)仿真奠定了穩(wěn)定的基礎(chǔ)。
第5章 增速器傳動(dòng)部分的動(dòng)力學(xué)仿真
UG NX 運(yùn)動(dòng)仿真是在設(shè)計(jì)、模型與虛擬裝配完成之后,對(duì)產(chǎn)品傳動(dòng)系統(tǒng)添加一系列的連接與驅(qū)動(dòng),讓機(jī)構(gòu)能夠運(yùn)轉(zhuǎn),進(jìn)而模擬出傳動(dòng)系統(tǒng)實(shí)際運(yùn)轉(zhuǎn)情況。通過(guò)模擬的運(yùn)轉(zhuǎn)情況可以分析出傳動(dòng)系統(tǒng)的運(yùn)轉(zhuǎn)規(guī)律,最后產(chǎn)生相關(guān)曲線(xiàn)來(lái)驗(yàn)證產(chǎn)品初期設(shè)計(jì)的準(zhǔn)確性,進(jìn)一步對(duì)產(chǎn)品提出改進(jìn)或優(yōu)化。
為了便于運(yùn)動(dòng)學(xué)仿真的順利進(jìn)行,本文沒(méi)有在裝配實(shí)體上進(jìn)行仿真,而是通過(guò)建立簡(jiǎn)化的傳動(dòng)系統(tǒng)來(lái)進(jìn)行仿真工作。建立的簡(jiǎn)化傳動(dòng)系統(tǒng)如下圖:
圖5.1 簡(jiǎn)化傳動(dòng)系統(tǒng)
運(yùn)動(dòng)學(xué)仿真的基本步驟為建立仿真文件、定義連桿、定義運(yùn)動(dòng)副、定義解算方案、仿真、獲取分析結(jié)果。
對(duì)于本傳動(dòng)系統(tǒng),利用UG中的GC工具箱,建立好齒輪傳動(dòng)模型以后就可以直接在模型的基礎(chǔ)上創(chuàng)立運(yùn)動(dòng)學(xué)仿真文件,具體步驟見(jiàn)下列各圖:
(1) 在運(yùn)動(dòng)導(dǎo)航器中右擊model1-stp,新建仿真。
圖5.2 仿真步驟1
(2)新建完成后右擊motion-1,設(shè)為工作狀態(tài)。
(3)定義連桿,依次選擇二級(jí)行星架、二級(jí)行星輪、一級(jí)內(nèi)齒圈、二級(jí)內(nèi)齒圈、小齒輪、一級(jí)行星架、一級(jí)行星輪和一級(jí)中心輪為連桿。其中,在實(shí)際情況中,一級(jí)內(nèi)齒圈和二級(jí)內(nèi)齒圈是固定不動(dòng)的,所以定義一級(jí)、二級(jí)內(nèi)齒圈時(shí)需要勾選固定連桿。
圖5.3 仿真步驟2
(4) 定義旋轉(zhuǎn)副。依次選擇二級(jí)行星架、二級(jí)行星輪、小齒輪、一級(jí)行星架、一級(jí)行星輪和一級(jí)中心輪為旋轉(zhuǎn)副,其中對(duì)于一級(jí)行星架需要定義驅(qū)動(dòng),驅(qū)動(dòng)速度為恒定值30rpm。最后,定義一級(jí)和二級(jí)內(nèi)齒圈為固定副。
圖5.4 仿真步驟3 圖5.5 仿真步驟4
(5)定義3D接觸。依次定義一級(jí)內(nèi)齒圈和一級(jí)行星輪接觸、一級(jí)行星輪和一級(jí)中心輪接觸、二級(jí)內(nèi)齒圈和二級(jí)行星輪接觸、二級(jí)行星輪和二級(jí)中心輪接觸以及平行軸直齒輪的大小齒輪接觸。
圖5.6 仿真步驟5
(6)定義解算方案并求解,最后輸出圖表。點(diǎn)擊圖表功能,依次選擇對(duì)象為一級(jí)中心輪、二級(jí)中心輪和輸出齒輪,請(qǐng)求選擇速度,分量選擇角度幅值,點(diǎn)擊加號(hào),輸出分別輸出圖表如下圖。
圖5.7 第一級(jí)中心輪轉(zhuǎn)速曲線(xiàn)
圖5.8 第二級(jí)中心輪轉(zhuǎn)速曲線(xiàn)
圖5.9 第三級(jí)小齒輪轉(zhuǎn)速曲線(xiàn)
由上述圖表可以看出,剛開(kāi)始輸出的轉(zhuǎn)速波動(dòng)較大,但是慢慢的分別穩(wěn)定在150rpm、800rpm和1500rpm左右,且每一級(jí)的轉(zhuǎn)速都可以達(dá)到設(shè)計(jì)轉(zhuǎn)速,所以可以驗(yàn)算出傳動(dòng)比分配是準(zhǔn)確的。只是由于建模軟件在進(jìn)行齒輪建模時(shí),對(duì)于齒形等齒輪參數(shù)有誤差,而我們采用的3D接觸命令恰恰對(duì)齒形等參數(shù)的要求很高,所以最終得出的輸出轉(zhuǎn)速是在合理誤差范圍之內(nèi)的。
45