2019-2020年高中數(shù)學 2.1《合情推理》教案 蘇教版選修1-2.doc
《2019-2020年高中數(shù)學 2.1《合情推理》教案 蘇教版選修1-2.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學 2.1《合情推理》教案 蘇教版選修1-2.doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 2.1《合情推理》教案 蘇教版選修1-2 課時安排:一課時 課型:新授課 教學目標: 1、通過對已學知識的回顧,進一步體會合情推理這種基本的分析問題法,認識歸納推理的基本方法與步驟,并把它們用于對問題的發(fā)現(xiàn)與解決中去。 2.歸納推理是從特殊到一般的推理方法,通常歸納的個體數(shù)目越多,越具有代表性,那么推廣的一般性命題也會越可靠,它是一種發(fā)現(xiàn)一般性規(guī)律的重要方法。 教學重點:了解合情推理的含義,能利用歸納進行簡單的推理。 教學難點:用歸納進行推理,做出猜想。 教學過程: 一、課堂引入: 從一個或幾個已知命題得出另一個新命題的思維過程稱為推理。 見書上的三個推理案例,回答幾個推理各有什么特點?都是由“前提”和“結論”兩部分組成,但是推理的結構形式上表現(xiàn)出不同的特點,據(jù)此可分為合情推理與演繹推理 二、新課講解: 1、 蛇是用肺呼吸的,鱷魚是用肺呼吸的,海龜是用肺呼吸的,蜥蜴是用肺呼吸的。 蛇,鱷魚,海龜,蜥蜴都是爬行動物,所有的爬行動物都是用肺呼吸的。 2、 三角形的內角和是,凸四邊形的內角和是,凸五邊形的內角和是 由此我們猜想:凸邊形的內角和是 3、,由此我們猜想:(均為正實數(shù)) 這種由某類事物的部分對象具有某些特征,推出該類事物的全部對象都具有這些特征的推理,或者由個別事實概栝出一般結論的推理,稱為歸納推理.(簡稱:歸納) 歸納推理的一般步驟: ⑴ 對有限的資料進行觀察、分析、歸納 整理; ⑵ 提出帶有規(guī)律性的結論,即猜想; ⑶ 檢驗猜想。 實驗,觀察 概括,推廣 猜測一般性結論 三、例題講解: 例1已知數(shù)列的通項公式,,試通過計算的值,推測出的值。 【學生討論:】(學生討論結果預測如下) (1) 由此猜想, 學生討論:1)哥德巴赫猜想:任何大于2的偶數(shù)可以表示為兩個素數(shù)的之和。 2)三根針上有若干個金屬片的問題。 四、鞏固練習: 1、已知,經(jīng)計算: ,推測當時,有__________________________. 2、已知:,。 觀察上述兩等式的規(guī)律,請你寫出一般性的命題,并證明之。 3、觀察(1) (2)。 由以上兩式成立,推廣到一般結論,寫出你的推論。 注:歸納推理的幾個特點: 1.歸納是依據(jù)特殊現(xiàn)象推斷一般現(xiàn)象,因而,由歸納所得的結論超越了前提所包容的范圍. 2.歸納是依據(jù)若干已知的、沒有窮盡的現(xiàn)象推斷尚屬未知的現(xiàn)象,因而結論具有猜測性. 3.歸納的前提是特殊的情況,因而歸納是立足于觀察、經(jīng)驗和實驗的基礎之上. 歸納是立足于觀察、經(jīng)驗、實驗和對有限資料分析的基礎上.提出帶有規(guī)律性的結論. 五、 教學小結: 1.歸納推理是由部分到整體,從特殊到一般的推理。通常歸納的個體數(shù)目越多,越具有代表性,那么推廣的一般性命題也會越可靠,它是一種發(fā)現(xiàn)一般性規(guī)律的重要方法。 2.歸納推理的一般步驟:1)通過觀察個別情況發(fā)現(xiàn)某些相同的性質。 2)從已知的相同性質中推出一個明確表述的一般命題(猜想)。 六、作業(yè): 七、教后感: 課題:合情推理(二)——類比推理 課時安排:一課時 課型:新授課 教學目標: 1、通過對已學知識的回顧,進一步體會合情推理這種基本的分析問題法,認識類比推理的基本方法與步驟,并把它們用于對問題的發(fā)現(xiàn)與解決中去。 2、類比推理是從特殊到特殊的推理,是尋找事物之間的共同或相似性質,類比的性質相似性越多,相似的性質與推測的性質之間的關系就越相關,從而類比得出的結論就越可靠。 教學重點:了解合情推理的含義,能利用類比進行簡單的推理。 教學難點:用類比進行推理,做出猜想。 教學過程: 一、復習引入: 1、什么叫推理?推理由哪幾部分組成? 2、合情推理的主要形式有 和 . 3、歸納推理是從 事實中概括出 結論的一種推理模式 4、歸納推理的特點: 5、 (均為實數(shù)), 請推測= = 。 二、新課講解: 春秋時代魯國的公輸班(后人稱魯班,被認為是木匠業(yè)的祖師)一次去林中砍樹時被一株齒形的茅草割破了手,這樁倒霉事卻使他發(fā)明了鋸子. 他的思路是這樣的:茅草是齒形的,茅草能割破手,需要一種能割斷木頭的,它也可以是齒形的。這個推理過程是歸納推理嗎? 例1、試根據(jù)等式的性質猜想不等式的性質。 等式的性質: 猜想不等式的性質: (1) a=ba+c=b+c; (1) a>ba+c>b+c (2) a=b ac=bc; (2) a>b ac>bc; (3) a=ba2=b2;等等 (3) a>ba2>b2;等等。 問:這樣猜想出的結論是否一定正確? 二、新課講解: 由兩個(兩類)對象之間在某些方面的相似或相同,推演出他們在其他方面也相似或相同;或其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理(簡稱類比).簡言之,類比推理是由特殊到特殊的推理. 類比推理的一般步驟: ⑴ 找出兩類對象之間可以確切表述的相似特征; ⑵ 用一類對象的已知特征去推測另一類對象的特征,從而得出一個猜想; ⑶ 檢驗猜想。即 觀察,比較 聯(lián)想,類推 猜測新的結論 例2、試將平面上的圓與空間的球進行類比. 圓的定義:平面內到一個定點的距離等于定長的點的集合. 球的定義:到一個定點的距離等于定長的點的集合. 圓 截面圓 弦 大圓 直徑周長 表面積 圓面積 球體積 圓的性質 球的性質 圓心與弦(不是直徑)的中點的連線垂直于弦 球心與截面圓(不是大圓)的圓點的連線垂直于截面圓 與圓心距離相等的兩弦相等;與圓心距離不等的兩弦不等,距圓心較近的弦較長 與球心距離相等的兩截面圓相等;與球心距離不等的兩截面圓不等,距球心較近的截面圓較大 圓的切線垂直于過切點的半徑;經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點 球的切面垂直于過切點的半徑;經(jīng)過球心且垂直于切面的直線必經(jīng)過切點 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心 經(jīng)過切點且垂直于切面的直線必經(jīng)過球心 三、鞏固練習: 1、類比平面內直角三角形的勾股定理,試給出空間中四面體性質的猜想. 2、若數(shù)列為等差數(shù)列,且,則?,F(xiàn)已知數(shù)列為等比數(shù)列,且,類比以上結論,可得到什么結論?你能說明結論的正確性嗎? 四、教學小結: 1、類比推理是從特殊到特殊的推理,是尋找事物之間的共同或相似性質。類比的性質相似性越多,相似的性質與推測的性質之間的關系就越相關,從而類比得出的結論就越可靠。 2、類比推理的一般步驟: a) 找出兩類事物之間的相似性或者一致性。 b) 用一類事物的性質去推測另一類事物的性質,得出一個明確的命題(猜想)。 五、作業(yè): 六、教后感- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 合情推理 2019-2020年高中數(shù)學 2.1合情推理教案 蘇教版選修1-2 2019 2020 年高 數(shù)學 2.1 合情 推理 教案 蘇教版 選修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.820124.com/p-2366600.html