(課標(biāo)專用 5年高考3年模擬A版)高考數(shù)學(xué) 專題二 函數(shù) 1 函數(shù)的概念及表示試題 文-人教版高三數(shù)學(xué)試題
《(課標(biāo)專用 5年高考3年模擬A版)高考數(shù)學(xué) 專題二 函數(shù) 1 函數(shù)的概念及表示試題 文-人教版高三數(shù)學(xué)試題》由會(huì)員分享,可在線閱讀,更多相關(guān)《(課標(biāo)專用 5年高考3年模擬A版)高考數(shù)學(xué) 專題二 函數(shù) 1 函數(shù)的概念及表示試題 文-人教版高三數(shù)學(xué)試題(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、專題二 函數(shù) 【真題探秘】 §2.1 函數(shù)的概念及表示 探考情 悟真題 【考情探究】 考點(diǎn) 內(nèi)容解讀 5年考情 預(yù)測熱度 考題示例 考向 關(guān)聯(lián)考點(diǎn) 函數(shù)的概 念及表 示方法 了解構(gòu)成函數(shù)的要素,會(huì)求一些簡單函數(shù)的定義域和值域;了解映射的概念 2016課標(biāo)全國Ⅱ,10,5分 函數(shù)的定義域和值域 指數(shù)、對數(shù)的運(yùn)算 ★★☆ 2015課標(biāo)Ⅱ,13,5分 通過解析式求參數(shù) — 分段 函數(shù) 了解簡單的分段函數(shù),并能簡單應(yīng)用(函數(shù)分段不超過三段) 2018課標(biāo)全國Ⅰ,12,5分 由分段函數(shù)解不等式 函數(shù)的圖象 ★★☆ 2017課標(biāo)全
2、國Ⅲ,16,5分 根據(jù)分段函數(shù)解不等式 — 2015課標(biāo)Ⅰ,10,5分 分段函數(shù)求值 解對數(shù)方程 分析解讀 主要考查函數(shù)的有關(guān)概念、函數(shù)的三要素及表示方法.分段函數(shù)的應(yīng)用是高考命題的熱點(diǎn),主要以選擇題、填空題的形式出現(xiàn). 破考點(diǎn) 練考向 【考點(diǎn)集訓(xùn)】 考點(diǎn)一 函數(shù)的概念及表示方法 (2019黑龍江頂級(jí)名校聯(lián)考,5)下列函數(shù)值域?yàn)镽的是( ) A.f(x)=1x+1 B.f(x)=lnxC.f(x)=cos2x D.f(x)=sinx 答案 B 考點(diǎn)二 分段函數(shù) 1.(2018河南洛陽期中,4)已知函數(shù)f(x)=2,x∈[
3、0,1],x,x?[0,1],若f(f(x))=2,則x的取值集合為( ) A.? B.{x|0≤x≤1}C.{2} D.{x|x=2或0≤x≤1} 答案 D 2.(2018江西南昌一模,8)設(shè)函數(shù)f(x)=2|x-a|,x≤1,x+1,x>1,若f(1)是f(x)的最小值,則實(shí)數(shù)a的取值范圍為( ) A.[-1,2) B.[-1,0]C.[1,2] D.[1,+∞) 答案 C 3.(2020屆吉林第一中學(xué)調(diào)研,15)若函數(shù)f(x)=12x-32,x≤12,logax(a>0,且a≠1),x>12的值域是R,則實(shí)數(shù)a的取值范圍是 .? 答案 22,1 煉技法
4、提能力 【方法集訓(xùn)】 方法1 函數(shù)定義域的求法 1.(2019安徽蚌埠第一中學(xué)模擬,3)已知函數(shù)f(x)的定義域?yàn)?-2,2),則函數(shù)g(x)=fx3+f(x+1)的定義域?yàn)? ) A.(-3,0) B.(-2,2) C.(-3,1) D.-12,0 答案 C 2.(2018衡水金卷信息卷(一),5)已知函數(shù)f(x)=x2-(2a-1)x-1(其中a>0,且a≠1)在區(qū)間12,+∞上單調(diào)遞增,則函數(shù)g(x)=1logax-1的定義域?yàn)? ) A.(-∞,a) B.(0,a) C.(0,a] D.(a,+∞) 答案 B 3.(2020屆
5、甘肅甘谷第一中學(xué)檢測,2)函數(shù)f(x)=3x21-x+lg(3x+1)的定義域?yàn)? ) A.-13,+∞ B.-13,1C.-13,13 D.-∞,-13 答案 B 4.(2018河南、河北重點(diǎn)高中聯(lián)考,13)函數(shù)f(x)=4-4x+ln(x+4)的定義域?yàn)椤 ?? 答案 (-4,1] 方法2 求函數(shù)解析式的常用方法 1.(2019山西晉中1月高考適應(yīng)性考試,14)已知函數(shù)f(2x)=log2x+x,則f(4)= .? 答案 3 2.(2018廣東東莞第二次綜合考試,14)已知函數(shù)f(x)=ax-b(a>0),f(f(x))=4x-3,則f(2)= .?
6、
答案 3
3.(2020屆甘肅甘谷第一中學(xué)檢測,13)已知f(ex)=13x-1,則f(e)= .?
答案 -23
方法3 分段函數(shù)問題的解題策略
1.(2018河南商丘第二次模擬,3)設(shè)函數(shù)f(x)=x2-1(x≥2),log2x(0 7、x)=2-x-2,x<0,g(x),x>0為奇函數(shù),則f(g(2))=( )
A.-2 B.2 C.-1 D.1
答案 B
【五年高考】
A組 統(tǒng)一命題·課標(biāo)卷題組
考點(diǎn)一 函數(shù)的概念及表示方法
1.(2016課標(biāo)全國Ⅱ,10,5分)下列函數(shù)中,其定義域和值域分別與函數(shù)y=10lgx的定義域和值域相同的是( )
A.y=x B.y=lgx C.y=2x D.y=1x
答案 D
2.(2015課標(biāo)Ⅱ,13,5分)已知函數(shù)f(x)=ax3-2x的圖象過點(diǎn)(-1,4),則a= .?
答案 -2
考點(diǎn)二 分段函數(shù)
1.(2018課標(biāo)全國Ⅰ,12,5分)設(shè)函 8、數(shù)f(x)=2-x,x≤0,1,x>0,則滿足f(x+1) 9、·省(區(qū)、市)卷題組
考點(diǎn)一 函數(shù)的概念及表示方法
1.(2015重慶,3,5分)函數(shù)f(x)=log2(x2+2x-3)的定義域是( )
A.[-3,1] B.(-3,1)
C.(-∞,-3]∪[1,+∞) D.(-∞,-3)∪(1,+∞)
答案 D
2.(2018江蘇,5,5分)函數(shù)f(x)=log2x-1的定義域?yàn)椤 ??
答案 [2,+∞)
3.(2019江蘇,4,5分)函數(shù)y=7+6x-x2的定義域是 .?
答案 [-1,7]
4.(2016江蘇,5,5分)函數(shù)y=3-2x-x2的定義域是 .?
答案 [-3 10、,1]
考點(diǎn)二 分段函數(shù)
1.(2015湖北,7,5分)設(shè)x∈R,定義符號(hào)函數(shù)sgnx=1,x>0,0,x=0,-1,x<0.則( )
A.|x|=x|sgnx| B.|x|=xsgn|x|
C.|x|=|x|sgnx D.|x|=xsgnx
答案 D
2.(2015陜西,4,5分)設(shè)f(x)=1-x,x≥0,2x,x<0,則f(f(-2))=( )
A.-1 B.14 C.12 D.32
答案 C
3.(2015山東,10,5分)設(shè)函數(shù)f(x)=3x-b,x<1,2x,x≥1.若ff56=4,則b=( )
A.1 B.78 C.34 D.12
答案 D
11、
4.(2018江蘇,9,5分)函數(shù)f(x)滿足f(x+4)=f(x)(x∈R),且在區(qū)間(-2,2]上,f(x)=cosπx2,0 12、 C.(2,+∞) D.[2,+∞)
答案 C
2.(2013陜西,10,5分)設(shè)[x]表示不大于x的最大整數(shù),則對任意實(shí)數(shù)x,有( )
A.[-x]=-[x] B.x+12=[x]
C.[2x]=2[x] D.[x]+x+12=[2x]
答案 D
3.(2013廣東,2,5分)函數(shù)y=lg(x+1)x-1的定義域是( )
A.(-1,+∞) B.[-1,+∞)
C.(-1,1)∪(1,+∞) D.[-1,1)∪(1,+∞)
答案 C
4.(2013安徽,11,5分)函數(shù)y=ln1+1x+1-x2的定義域?yàn)椤 ??
答案 (0,1]
5.(2013浙江,1 13、1,4分)已知函數(shù)f(x)=x-1.若f(a)=3,則實(shí)數(shù)a= .?
答案 10
6.(2013安徽,14,5分)定義在R上的函數(shù)f(x)滿足f(x+1)=2f(x).若當(dāng)0≤x≤1時(shí),f(x)=x(1-x),則當(dāng)-1≤x≤0時(shí),f(x)= .?
答案 -12x2-12x
考點(diǎn)二 分段函數(shù)
1.(2014江西,4,5分)已知函數(shù)f(x)=a·2x,x≥0,2-x,x<0(a∈R),若f[f(-1)]=1,則a=( )
A.14 B.12 C.1 D.2
答案 A
2.(2017山東,9,5分)設(shè)f(x)=x,0 14、f(a+1),則f1a=( )
A.2 B.4 C.6 D.8
答案 C
3.(2013福建,13,4分)已知函數(shù)f(x)=2x3,x<0,-tanx,0≤x<π2,則ffπ4= .?
答案 -2
【三年模擬】
時(shí)間:30分鐘 分值:40分
一、選擇題(每小題5分,共25分)
1.(2020屆皖江名校聯(lián)盟聯(lián)考,10)定義在R上的奇函數(shù)f(x)滿足當(dāng)x≤0時(shí),f(x)=ex-e-x,則不等式f(x2-2x)-f(3)<0的解集為( )
A.(-1,3) B.(-3,1)C.(-∞,-1)∪(3,+∞) D.(-∞,-3)∪(1,+∞)
答案 A
2.(2020 15、屆湖北沙市中學(xué)月考,5)函數(shù)y=log12(x2-2x+a)的值域不可能是( )
A.(-∞,0] B.(-∞,1] C.[1,+∞) D.R
答案 C
3.(2018豫南九校第六次質(zhì)量考評,6)已知函數(shù)f(x)=(a-2)x+3a+1,x≤3,2ax-2,x>3(a>0且a≠1),若f(x)有最小值,則實(shí)數(shù)a的取值范圍是( )
A.0,56 B.1,54C.0,56∪1,54 D.(0,1)∪54,+∞
答案 C
4.(2018河南八市第一次測評,8)設(shè)函數(shù)f(x)=-x+λ,x<1(λ∈R),2x,x≥1,若對任意的a∈R,都有f(f(a))=2f(a)成立,則λ的取值 16、范圍是( )
A.(0,2] B.[0,2]C.[2,+∞) D.(-∞,2)
答案 C
5.(2019河南鄭州第二次質(zhì)量檢測,7)高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號(hào),用其名字命名的“高斯函數(shù)”如下:設(shè)x∈R,用[x]表示不超過x的最大整數(shù),則y=[x]稱為高斯函數(shù).例如:[-2.1]=-3,[3.1]=3,已知函數(shù)f(x)=2x+32x+1,則函數(shù)y=[f(x)]的值域?yàn)? )
A.{0,1,2,3} B.{0,1,2} C.{1,2,3} D.{1,2}
答案 D
二、填空題(每小題5分,共15分)
6.(2020屆甘肅甘谷第一中學(xué)檢測,15)用min{a,b,c}表示a,b,c三個(gè)數(shù)中的最小值,設(shè)f(x)=min{2x,x+2,10-x}(x≥0),則f(x)的最大值為 .?
答案 6
7.(2018河南南陽第一中學(xué)第二次考試,16)已知f(1-cosx)=sin2x,則f(x2)的解析式為 .?
答案 f(x2)=-x4+2x2,x∈[-2,2]
8.(2019安徽第二次聯(lián)考,16)若f(x)+3f1x=x+3x-2log2x對x∈(0,+∞)恒成立,且存在x0∈[2,4],使得f(x0)>m成立,則m的取值范圍為 .?
答案 (-∞,6)
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧汽貿(mào)的戰(zhàn)略規(guī)劃課件
- 農(nóng)藥產(chǎn)品化學(xué)登記評審中存在的問題修改
- 職業(yè)適應(yīng)與發(fā)展
- 中國傳統(tǒng)思想和領(lǐng)導(dǎo)藝術(shù)
- 學(xué)習(xí)英語最好的方法課件
- 團(tuán)隊(duì)建設(shè)與管理教材(PPT 42頁)
- 商務(wù)談判的準(zhǔn)備培訓(xùn)課件
- 單元吃奶和豆及其制品
- 氣管切開護(hù)理
- 七上281有理數(shù)的乘法1
- 素質(zhì)拓展學(xué)分重要性
- 地產(chǎn)項(xiàng)目策劃廣告創(chuàng)意
- 華通檸檬渠道推廣活動(dòng)案
- 酸堿平衡紊亂的判讀
- 氣管插管的困難評估課件