2019-2020年高中數(shù)學 第1部分 第二章 §6 正態(tài)分布 應用創(chuàng)新演練 北師大版選修2-3.doc
《2019-2020年高中數(shù)學 第1部分 第二章 §6 正態(tài)分布 應用創(chuàng)新演練 北師大版選修2-3.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學 第1部分 第二章 §6 正態(tài)分布 應用創(chuàng)新演練 北師大版選修2-3.doc(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 第1部分 第二章 6 正態(tài)分布 應用創(chuàng)新演練 北師大版選修2-3 1.正態(tài)曲線關于y軸對稱,當且僅當它所對應的正態(tài)總體均值為( ) A.1 B.-1 C.0 D.不確定 解析:均值即為其對稱軸,∴μ=0. 答案:C 2.已知隨機變量X服從正態(tài)分布N(2,σ2),P(X≤4)=0.84,則P(X<0)等于( ) A.0.16 B.0.32 C.0.68 D.0.84 解析:P(X≤4)=0.84,故P(X>4)=0.16,P(X<0)=P(X>4)=0.16. 答案:A 3.在正常情況下,工廠生產(chǎn)的零件尺寸服從正態(tài)分布N(μ,σ2).在一次正常的試驗中,取10 000個零件時,不屬于(μ-3σ,μ+3σ)這個尺寸范圍的零件個數(shù)可能為( ) A.70個 B.100個 C.30個 D.60個 解析:正態(tài)總體N(μ,σ2)落在(μ-3σ,μ+3σ)內(nèi)的概率為0.997,因此不屬于(μ-3σ,μ+3σ)的概率為0.003,所以在一次正常的試驗中,取10 000個零件時.不屬于(μ-3σ,μ+3σ)這個尺寸范圍的零件個數(shù)可能為30個左右. 答案:C 4.如果隨機變量X~N(μ,σ2),且EX=3,DX=1,則P(0- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高中數(shù)學 第1部分 第二章 §6 正態(tài)分布 應用創(chuàng)新演練 北師大版選修2-3 2019 2020 年高 數(shù)學 部分 第二 應用 創(chuàng)新 演練 北師大 選修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.820124.com/p-2441783.html