2019年高中數(shù)學(xué)第3章空間向量與立體幾何3.1.3空間向量基本定理3.1.4空間向量的坐標表示學(xué)案蘇教版選修2-1.doc
《2019年高中數(shù)學(xué)第3章空間向量與立體幾何3.1.3空間向量基本定理3.1.4空間向量的坐標表示學(xué)案蘇教版選修2-1.doc》由會員分享,可在線閱讀,更多相關(guān)《2019年高中數(shù)學(xué)第3章空間向量與立體幾何3.1.3空間向量基本定理3.1.4空間向量的坐標表示學(xué)案蘇教版選修2-1.doc(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019年高中數(shù)學(xué)第3章空間向量與立體幾何3.1.3空間向量基本定理3.1.4空間向量的坐標表示學(xué)案蘇教版選修2-1 [學(xué)習(xí)目標] 1.了解空間向量基本定理及其意義.2.掌握空間向量的正交分解及其坐標表示.3.掌握空間向量線性運算的坐標運算. 知識點一 空間向量基本定理 (1)定理 如果三個向量e1,e2,e3不共面,那么對空間任一向量p,存在惟一的有序?qū)崝?shù)組(x,y,z),使p=xe1+ye2+ze3. (2)基底與基向量 如果三個向量e1,e2,e3不共面,那么空間的每一個向量都可由向量e1,e2,e3線性表示.我們把{e1,e2,e3}稱為空間的一個基底,e1,e2,e3叫做基向量.空間任何三個不共面的向量都可構(gòu)成空間的一個基底. (3)正交基底與單位正交基底 如果空間一個基底的三個基向量是兩兩互相垂直,那么這個基底叫做正交基底,當一個正交基底的三個基向量都是單位向量時,稱這個基底為單位正交基底,通常用{i,j,k}表示. (4)推論 設(shè)O,A,B,C是不共面的四點,則對空間任意一點P,都存在惟一的有序?qū)崝?shù)組(x,y,z),使得=x+y+z. 知識點二 空間向量的坐標表示 空間直角坐標系Oxyz中,i,j,k分別為x,y,z軸方向上的單位向量,對于空間任意一個向量a,若有a=xi+yj+zk,則有序?qū)崝?shù)組(x,y,z)叫向量a在空間直角坐標系中的坐標. 特別地,若A(x,y,z),則向量的坐標為(x,y,z). 知識點三 坐標運算 設(shè)a=(a1,a2,a3),b=(b1,b2,b3), 則a+b=(a1+b1,a2+b2,a3+b3); a-b=(a1-b1,a2-b2,a3-b3); λa=(λa1,λa2,λa3) (λ∈R). a∥b(a≠0)?b1=λa1,b2=λa2,b3=λa3 (λ∈R). 思考 (1)空間向量的坐標運算與平面向量的坐標運算表達形式上有什么不同? (2)已知a=(a1,a2,a3),b=(b1,b2,b3),a∥b,且b1b2b3≠0,類比平面向量平行的坐標表示,可得到什么結(jié)論? 答案 (1)空間向量的坐標運算多3個豎坐標. (2)a∥b?==. 題型一 空間向量的基底 例1 已知{e1,e2,e3}是空間的一個基底,且=e1+2e2-e3,=-3e1+e2+2e3,=e1+e2-e3,試判斷{,,}能否作為空間的一個基底. 解 假設(shè),,共面. 則存在實λ,μ使得=λ+μ, ∴e1+2e2-e3=λ(-3e1+e2+2e3)+μ(e1+e2-e3) =(-3λ+μ)e1+(λ+μ)e2+(2λ-μ)e3, ∵e1,e2,e3不共面, ∴此方程組無解, ∴,,不共面, ∴{,,}可以作為空間的一個基底. 反思與感悟 空間向量有無數(shù)個基底.判斷給出的某一向量組中的三個向量能否作為基底,關(guān)鍵是要判斷它們是否共面,如果從正面難以入手,常用反證法或是一些常見的幾何圖形幫助我們進行判斷. 跟蹤訓(xùn)練1 已知點O,A,B,C為空間不共面的四點,且向量a=++,向量b=+-,則與a,b不能構(gòu)成空間基底的向量是________.(填序號) ① ② ③ ④或 答案?、? 解析 ∵=a-b且a,b不共線, ∴a,b,共面,∴與a,b不能構(gòu)成一組空間基底. 題型二 用基底表示向量 例2 如圖,四棱錐POABC的底面為一矩形,PO⊥平面OABC,設(shè)=a,=b,=c,E,F(xiàn)分別是PC和PB的中點,試用a,b,c表示,,,. 解 連結(jié)BO,則= =(+)=(c-b-a) =-a-b+c. =+=-a+=-a+(+) =-a-b+c. =+=++(+) =-a+c+(-c+b)=-a+b+c. ===a. 反思與感悟 (1)空間中的任一向量均可用一組不共面的向量來表示,只要基底選定,這一向量用基底表達的形式是惟一的; (2)用基底來表示空間中的向量是向量解決數(shù)學(xué)問題的關(guān)鍵,解題時注意三角形法則或平行四邊形法則的應(yīng)用. 跟蹤訓(xùn)練2 如圖所示,已知平行六面體ABCD-A1B1C1D1,設(shè)=a,=b,=c,P是CA1的中點,M是CD1的中點.用基底{a,b,c}表示以下向量: (1);(2). 解 如圖,在平行六面體ABCD-A1B1C1D1中連結(jié)AC,AD1, (1)=(+) =(++) =(a+b+c). (2)=(+) =(+2+) =a+b+c. 題型三 空間向量的坐標表示 例3 已知PA垂直于正方形ABCD所在的平面,M、N分別是AB、PC的中點,并且PA=AD=1,建立適當坐標系,求向量的坐標. 解 以AD,AB,AP所在直線為坐標軸建立空間直角坐標系如圖所示, 則M(0,,0),N(,,).∴=(,0,). 反思與感悟 建系時要充分利用圖形的線面垂直關(guān)系,選擇合適的基底,在寫向量的坐標時,考慮圖形的性質(zhì),充分利用向量的線性運算,將向量用基底表示. 跟蹤訓(xùn)練3 已知PA垂直于正方形ABCD所在的平面,M、N分別是AB、PC的中點,并且PA=AD=1,建立適當坐標系,求向量、的坐標. 解 如圖所示,因為PA=AD=AB=1, 且PA⊥平面ABCD,AD⊥AB, 所以可設(shè)=e1,=e2,=e3. 以{e1,e2,e3}為基底建立空間直角坐標系A(chǔ)-xyz. 因為=++=++ =++(++) =-e2+e3+(-e3-e1+e2) =-e1+e3, 所以=,=(0,1,0). 1.已知A(2,3-μ,-1+v)關(guān)于x軸的對稱點是A′(λ,7,-6),則λ,μ,v的值分別為________. 答案 2,10,7 解析 ∵A與A′關(guān)于x軸對稱, ∴? 2.與向量m=(0,1,-2)共線的向量是________.(填序號) ①(2,0,-4) ②(3,6,-12) ③(1,1,-2) ④(0,,-1) 答案?、? 解析 ∵(0,,-1)=m, ∴與m共線的向量是(0,,-1). 3.已知向量a,b,c是空間的一個基底,下列向量中可以與p=2a-b,q=a+b構(gòu)成空間的另一個基底的是________.(填序號) ①2a; ②-b; ③c; ④a+c. 答案?、邰? 解析 ∵p=2a-b,q=a+b, ∴p與q共面,a、b共面. 而c與a、b不共面, ∴c與p、q可以構(gòu)成另一個基底, 同理a+c與p、q也可構(gòu)成一組基底. 4.如圖在邊長為2的正方體ABCD-A1B1C1D1中,取D點為原點建立空間直角坐標系,O,M分別是AC,DD1的中點,寫出下列向量的坐標.=________,=________. 答案 (-2,0,1) (1,1,2) 解析 ∵A(2,0,0),M(0,0,1),O(1,1,0),B1(2,2,2), ∴=(0,0,1)-(2,0,0)=(-2,0,1),=(1,1,2). 5.如圖,在梯形ABCD中,AB∥CD,AB=2CD,點O為空間任一點,設(shè)=a,=b,=c,則向量用a,b,c表示為________. 答案 a-b+c 解析 ∵=-2, ∴-=-2(-), ∴b-a=-2(-c), ∴=a-b+c. 1.空間任意三個不共面的向量都可以作為空間向量的一個基底;基底選定后,任一向量可由基底惟一表示. 2.向量的坐標是在單位正交基底下向量的表示.在表示向量時,要結(jié)合圖形的幾何性質(zhì),充分利用向量的線性運算.- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019 年高 數(shù)學(xué) 空間 向量 立體幾何 3.1 基本 定理 坐標 表示 學(xué)案蘇教版 選修
鏈接地址:http://www.820124.com/p-2458696.html