2019-2020年高三數(shù)學(xué)《集合與簡(jiǎn)易邏輯》復(fù)習(xí)教案 新人教A版.doc
《2019-2020年高三數(shù)學(xué)《集合與簡(jiǎn)易邏輯》復(fù)習(xí)教案 新人教A版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)《集合與簡(jiǎn)易邏輯》復(fù)習(xí)教案 新人教A版.doc(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)《集合與簡(jiǎn)易邏輯》復(fù)習(xí)教案 新人教A版 一、 本講進(jìn)度 《集合與簡(jiǎn)易邏輯》復(fù)習(xí) 二、 復(fù)習(xí)要求 1、 理解集合及表示法,掌握子集,全集與補(bǔ)集,子集與并集的定義; 2、 掌握含絕對(duì)值不等式及一元二次不等式的解法; 3、 理解邏輯聯(lián)結(jié)詞的含義,會(huì)熟練地轉(zhuǎn)化四種命題,掌握反證法; 4、 理解充分條件,必要條件及充要條件的意義,會(huì)判斷兩個(gè)命題的充要關(guān)系; 5、學(xué)會(huì)用定義解題,理解數(shù)形結(jié)合,分類討論及等價(jià)變換等思想方法。 三、 學(xué)習(xí)指導(dǎo) 1、集合的概念: (1) 集合中元素特征,確定性,互異性,無序性; (2) 集合的分類: ① 按元素個(gè)數(shù)分:有限集,無限集; ②按元素特征分;數(shù)集,點(diǎn)集。如數(shù)集{y|y=x2},表示非負(fù)實(shí)數(shù)集,點(diǎn)集{(x,y)|y=x2}表示開口向上,以y軸為對(duì)稱軸的拋物線; (3) 集合的表示法: ①列舉法:用來表示有限集或具有顯著規(guī)律的無限集,如N+={0,1,2,3,…};②描述法。 2、兩類關(guān)系: (1) 元素與集合的關(guān)系,用或表示; (2)集合與集合的關(guān)系,用,,=表示,當(dāng)AB時(shí),稱A是B的子集;當(dāng)AB時(shí),稱A是B的真子集。 3、集合運(yùn)算 (1)交,并,補(bǔ),定義:A∩B={x|x∈A且x∈B},A∪B={x|x∈A,或x∈B},CUA={x|x∈U,且xA},集合U表示全集; (2) 運(yùn)算律,如A∩(B∪C)=(A∩B)∪(A∩C),CU(A∩B)=(CUA)∪(CUB), CU(A∪B)=(CUA)∩(CUB)等。 4、命題: (1) 命題分類:真命題與假命題,簡(jiǎn)單命題與復(fù)合命題; (2) 復(fù)合命題的形式:p且q,p或q,非p; (3)復(fù)合命題的真假:對(duì)p且q而言,當(dāng)q、p為真時(shí),其為真;當(dāng)p、q中有一個(gè)為假時(shí),其為假。對(duì)p或q而言,當(dāng)p、q均為假時(shí),其為假;當(dāng)p、q中有一個(gè)為真時(shí),其為真;當(dāng)p為真時(shí),非p為假;當(dāng)p為假時(shí),非p為真。 (3)四種命題:記“若q則p”為原命題,則否命題為“若非p則非q”,逆命題為“若q則p“,逆否命題為”若非q則非p“。其中互為逆否的兩個(gè)命題同真假,即等價(jià)。因此,四種命題為真的個(gè)數(shù)只能是偶數(shù)個(gè)。 5、 充分條件與必要條件 (1)定義:對(duì)命題“若p則q”而言,當(dāng)它是真命題時(shí),p是q的充分條件,q是p的必要條件,當(dāng)它的逆命題為真時(shí),q是p的充分條件,p是q的必要條件,兩種命題均為真時(shí),稱p是q的充要條件; (2)在判斷充分條件及必要條件時(shí),首先要分清哪個(gè)命題是條件,哪個(gè)命題是結(jié)論,其次,結(jié)論要分四種情況說明:充分不必要條件,必要不充分條件,充分且必要條件,既不充分又不必要條件。從集合角度看,若記滿足條件p的所有對(duì)象組成集合A,滿足條件q的所有對(duì)象組成集合q,則當(dāng)AB時(shí),p是q的充分條件。BA時(shí),p是q的充分條件。A=B時(shí),p是q的充要條件; (3) 當(dāng)p和q互為充要時(shí),體現(xiàn)了命題等價(jià)轉(zhuǎn)換的思想。 6、 反證法是中學(xué)數(shù)學(xué)的重要方法。會(huì)用反證法證明一些代數(shù)命題。 7、集合概念及其基本理論是近代數(shù)學(xué)最基本的內(nèi)容之一。學(xué)會(huì)用集合的思想處理數(shù)學(xué)問題。 四、典型例題 例1、已知集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},求M∩N。 解題思路分析: 在集合運(yùn)算之前,首先要識(shí)別集合,即認(rèn)清集合中元素的特征。M、N均為數(shù)集,不能誤認(rèn)為是點(diǎn)集,從而解方程組。其次要化簡(jiǎn)集合,或者說使集合的特征明朗化。M={y|y=x2+1,x∈R}={y|y≥1},N={y|y=x+1,x∈R}={y|y∈R} ∴ M∩N=M={y|y≥1} 說明:實(shí)際上,從函數(shù)角度看,本題中的M,N分別是二次函數(shù)和一次函數(shù)的值域。一般地,集合{y|y=f(x),x∈A}應(yīng)看成是函數(shù)y=f(x)的值域,通過求函數(shù)值域化簡(jiǎn)集合。此集合與集合{(x,y)|y=x2+1,x∈R}是有本質(zhì)差異的,后者是點(diǎn)集,表示拋物線y=x2+1上的所有點(diǎn),屬于圖形范疇。集合中元素特征與代表元素的字母無關(guān),例{y|y≥1}={x|x≥1}。 例2、已知集合A={x|x2-3x+2=0},B+{x|x2-mx+2=0},且A∩B=B,求實(shí)數(shù)m范圍。 解題思路分析: 化簡(jiǎn)條件得A={1,2},A∩B=BBA 根據(jù)集合中元素個(gè)數(shù)集合B分類討論,B=φ,B={1}或{2},B={1,2} 當(dāng)B=φ時(shí),△=m2-8<0 ∴ 當(dāng)B={1}或{2}時(shí),,m無解 當(dāng)B={1,2}時(shí), ∴ m=3 綜上所述,m=3或 說明:分類討論是中學(xué)數(shù)學(xué)的重要思想,全面地挖掘題中隱藏條件是解題素質(zhì)的一個(gè)重要方面,如本題當(dāng)B={1}或{2}時(shí),不能遺漏△=0。 例3、用反證法證明:已知x、y∈R,x+y≥2,求 證x、y中至少有一個(gè)大于1。 解題思路分析: 假設(shè)x<1且y<1,由不等式同向相加的性質(zhì)x+y<2與已知x+y≥2矛盾 ∴ 假設(shè)不成立 ∴ x、y中至少有一個(gè)大于1 說明;反證法的理論依據(jù)是:欲證“若p則q”為真,先證“若p則非q”為假,因在條件p下,q與非q是對(duì)立事件(不能同時(shí)成立,但必有一個(gè)成立),所以當(dāng)“若p則非q”為假時(shí),“若p則q”一定為真。 例4、若A是B的必要而不充分條件,C是B的充要條件,D是C的充分而不必要條件,判斷D是A的什么條件。 解題思路分析: 利用“”、“”符號(hào)分析各命題之間的關(guān)系 DCBA ∴ DA,D是A的充分不必要條件 說明:符號(hào)“”、“”具有傳遞性,不過前者是單方向的,后者是雙方向的。 例5、求直線l:ax-y+b=0經(jīng)過兩直線l1:2x-2y-3=0和l2:3x-5y+1=0交點(diǎn)的充要條件。 解題思路分析: 從必要性著手,分充分性和必要性兩方面證明。 由 得l1,l2交點(diǎn)P() ∵ l過點(diǎn)P ∴ ∴ 17a+4b=11 充分性:設(shè)a,b滿足17a+4b=11 ∴ 代入l方程: 整理得: 此方程表明,直線l恒過兩直線的交點(diǎn)() 而此點(diǎn)為l1與l2的交點(diǎn) ∴ 充分性得證 ∴ 綜上所述,命題為真 說明:關(guān)于充要條件的證明,一般有兩種方式,一種是利用“”,雙向傳輸,同時(shí)證明充分性及必要性;另一種是分別證明必要性及充分性,從必要性著手,再檢驗(yàn)充分性。 五、同步練習(xí) (一) 選擇題 1、 設(shè)M={x|x2+x+2=0},a=lg(lg10),則{a}與M的關(guān)系是 A、{a}=M B、M{a} C、{a}M D、M{a} 2、 已知全集U=R,A={x|x-a|<2},B={x|x-1|≥3},且A∩B=φ,則a的取值范圍是 A、 [0,2] B、(-2,2) C、(0,2] D、(0,2) 3、 已知集合M={x|x=a2-3a+2,a∈R},N、{x|x=b2-b,b∈R},則M,N的關(guān)系是 A、 MN B、MN C、M=N D、不確定 4、設(shè)集合A={x|x∈Z且-10≤x≤-1},B={x|x∈Z,且|x|≤5},則A∪B中的元素個(gè)數(shù)是 A、11 B、10 C、16 D、15 5、集合M={1,2,3,4,5}的子集是 A、15 B、16 C、31 D、32 6、對(duì)于命題“正方形的四個(gè)內(nèi)角相等”,下面判斷正確的是 A、所給命題為假 B、它的逆否命題為真 C、它的逆命題為真 D、它的否命題為真 7、“α≠β”是cosα≠cosβ”的 A、充分不必要條件 B、必要不充分條件 C、充要條件 D、既不充分也不必要條件 8、集合A={x|x=3k-2,k∈Z},B={y|y=3l+1,l∈Z},S={y|y=6m+1,m∈Z}之間的關(guān)系是 A、SBA B、S=BA C、SB=A D、SB=A 9、方程mx2+2x+1=0至少有一個(gè)負(fù)根的充要條件是 A、0- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 集合與簡(jiǎn)易邏輯 2019-2020年高三數(shù)學(xué)集合與簡(jiǎn)易邏輯復(fù)習(xí)教案 新人教A版 2019 2020 年高 數(shù)學(xué) 集合 簡(jiǎn)易 邏輯 復(fù)習(xí) 教案 新人
鏈接地址:http://www.820124.com/p-2551929.html