2019-2020年高中數(shù)學(xué) 第三章《回歸分析》教案1 新人教A版選修2-3.doc
《2019-2020年高中數(shù)學(xué) 第三章《回歸分析》教案1 新人教A版選修2-3.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 第三章《回歸分析》教案1 新人教A版選修2-3.doc(3頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 第三章《回歸分析》教案1 新人教A版選修2-3 教學(xué)目標(biāo) (1)通過實(shí)例引入線性回歸模型,感受產(chǎn)生隨機(jī)誤差的原因; (2)通過對(duì)回歸模型的合理性等問題的研究,滲透線性回歸分析的思想和方法; (3)能求出簡單實(shí)際問題的線性回歸方程. 教學(xué)重點(diǎn),難點(diǎn) 線性回歸模型的建立和線性回歸系數(shù)的最佳估計(jì)值的探求方法. 教學(xué)過程 一.問題情境 1. 情境:對(duì)一作直線運(yùn)動(dòng)的質(zhì)點(diǎn)的運(yùn)動(dòng)過程觀測(cè)了次,得到如下表所示的數(shù)據(jù),試估計(jì)當(dāng)x=9時(shí)的位置y的值. 時(shí)刻/s 位置觀測(cè)值/cm 根據(jù)《數(shù)學(xué)(必修)》中的有關(guān)內(nèi)容,解決這個(gè)問題的方法是: 先作散點(diǎn)圖,如下圖所示: 從散點(diǎn)圖中可以看出,樣本點(diǎn)呈直線趨勢(shì),時(shí)間與位置觀測(cè)值y之間有著較好的線性關(guān)系.因此可以用線性回歸方程來刻畫它們之間的關(guān)系.根據(jù)線性回歸的系數(shù)公式, 可以得到線性回歸方為,所以當(dāng)時(shí),由線性回歸方程可以估計(jì)其位置值為 2.問題:在時(shí)刻時(shí),質(zhì)點(diǎn)的運(yùn)動(dòng)位置一定是嗎? 二.學(xué)生活動(dòng) 思考,討論:這些點(diǎn)并不都在同一條直線上,上述直線并不能精確地反映與之間的關(guān)系,的值不能由完全確定,它們之間是統(tǒng)計(jì)相關(guān)關(guān)系,的實(shí)際值與估計(jì)值之間存在著誤差. 三.建構(gòu)數(shù)學(xué) 1.線性回歸模型的定義: 我們將用于估計(jì)值的線性函數(shù)作為確定性函數(shù); 的實(shí)際值與估計(jì)值之間的誤差記為,稱之為隨機(jī)誤差; 將稱為線性回歸模型. 說明:(1)產(chǎn)生隨機(jī)誤差的主要原因有: ①所用的確定性函數(shù)不恰當(dāng)引起的誤差; ②忽略了某些因素的影響; ③存在觀測(cè)誤差. (2)對(duì)于線性回歸模型,我們應(yīng)該考慮下面兩個(gè)問題: ①模型是否合理(這個(gè)問題在下一節(jié)課解決); ②在模型合理的情況下,如何估計(jì),? 2.探求線性回歸系數(shù)的最佳估計(jì)值: 對(duì)于問題②,設(shè)有對(duì)觀測(cè)數(shù)據(jù),根據(jù)線性回歸模型,對(duì)于每一個(gè),對(duì)應(yīng)的隨機(jī)誤差項(xiàng),我們希望總誤差越小越好,即要使越小越好.所以,只要求出使取得最小值時(shí)的,值作為,的估計(jì)值,記為,. 注:這里的就是擬合直線上的點(diǎn)到點(diǎn)的距離. 用什么方法求,? 回憶《數(shù)學(xué)3(必修)》“2.4線性回歸方程”P71“熱茶問題”中求,的方法:最小二乘法. 利用最小二乘法可以得到,的計(jì)算公式為 , 其中, 由此得到的直線就稱為這對(duì)數(shù)據(jù)的回歸直線,此直線方程即為線性回歸方程.其中,分別為,的估計(jì)值,稱為回歸截距,稱為回歸系數(shù),稱為回歸值. 在前面質(zhì)點(diǎn)運(yùn)動(dòng)的線性回歸方程中,,. 3. 線性回歸方程中,的意義是:以為基數(shù),每增加1個(gè)單位,相應(yīng)地平均增加個(gè)單位; 4. 化歸思想(轉(zhuǎn)化思想) 在實(shí)際問題中,有時(shí)兩個(gè)變量之間的關(guān)系并不是線性關(guān)系,這就需要我們根據(jù)專業(yè)知識(shí)或散點(diǎn)圖,對(duì)某些特殊的非線性關(guān)系,選擇適當(dāng)?shù)淖兞看鷵Q,把非線性方程轉(zhuǎn)化為線性回歸方程,從而確定未知參數(shù).下面列舉出一些常見的曲線方程,并給出相應(yīng)的化為線性回歸方程的換元公式. (1),令,,則有. (2),令,,,則有. (3),令,,,則有. (4),令,,,則有. (5),令,,則有. 四.?dāng)?shù)學(xué)運(yùn)用 1.例題: 例1.下表給出了我國從年至年人口數(shù)據(jù)資料,試根據(jù)表中數(shù)據(jù)估計(jì)我國年的人口數(shù). 年份 人口數(shù)/百萬 解:為了簡化數(shù)據(jù),先將年份減去,并將所得值用表示,對(duì)應(yīng)人口數(shù)用表示,得到下面的數(shù)據(jù)表: 作出個(gè)點(diǎn)構(gòu)成的散點(diǎn)圖, 由圖可知,這些點(diǎn)在一條直線附近,可以用線性回歸模型來表示它們之間的關(guān)系. 根據(jù)公式(1)可得 這里的分別為的估 計(jì)值,因此線性回歸方程 為 由于年對(duì)應(yīng)的,代入線性回歸方程可得(百萬),即年的人口總數(shù)估計(jì)為13.23億. 例2. 某地區(qū)對(duì)本地的企業(yè)進(jìn)行了一次抽樣調(diào)查,下表是這次抽查中所得到的各企業(yè)的人均資本(萬元)與人均產(chǎn)出(萬元)的數(shù)據(jù): 人均 資本 /萬元 人均 產(chǎn)出 /萬元 (1)設(shè)與之間具有近似關(guān)系(為常數(shù)),試根據(jù)表中數(shù)據(jù)估計(jì)和的值; (2)估計(jì)企業(yè)人均資本為萬元時(shí)的人均產(chǎn)出(精確到). 分析:根據(jù),所具有的關(guān)系可知,此問題不是線性回歸問題,不能直接用線性回歸方程處理.但由對(duì)數(shù)運(yùn)算的性質(zhì)可知,只要對(duì)的兩邊取對(duì)數(shù),就能將其轉(zhuǎn)化為線性關(guān)系. 解(1)在的兩邊取常用對(duì)數(shù),可得,設(shè),,,則.相關(guān)數(shù)據(jù)計(jì)算如圖所示. 1 人均資本/萬元 3 4 5.5 6.5 7 8 9 10.5 11.5 14 2 人均產(chǎn)出/萬元 4.12 4.67 8.68 11.01 13.04 14.43 17.5 25.46 26.66 45.2 3 0.47712 0.60206 0.74036 0.81291 0.8451 0.90309 0.95424 1.02119 1.0607 1.14613 4 0.6149 0.66932 0.93852 1.04179 1.11528 1.15927 1.24304 1.40586 1.42586 1.65514 仿照問題情境可得,的估計(jì)值,分別為由可得,即,的估計(jì)值分別為和. (2)由(1)知.樣本數(shù)據(jù)及回歸曲線的圖形如圖(見書本 頁) 當(dāng)時(shí),(萬元),故當(dāng)企業(yè)人均資本為萬元時(shí),人均產(chǎn)值約為萬元.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 回歸分析 2019-2020年高中數(shù)學(xué) 第三章回歸分析教案1 新人教A版選修2-3 2019 2020 年高 數(shù)學(xué) 第三 回歸 分析 教案 新人 選修
鏈接地址:http://www.820124.com/p-2611772.html