《2019-2020年高中數(shù)學(xué) 第三章 函數(shù)的應(yīng)用 第2節(jié) 函數(shù)模型及其應(yīng)用(2)教案 新人教A版必修1.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 第三章 函數(shù)的應(yīng)用 第2節(jié) 函數(shù)模型及其應(yīng)用(2)教案 新人教A版必修1.doc(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 第三章 函數(shù)的應(yīng)用 第2節(jié) 函數(shù)模型及其應(yīng)用(2)教案 新人教A版必修1
導(dǎo)入新課
思路1.(情境導(dǎo)入)
國(guó)際象棋起源于古代印度.相傳國(guó)王要獎(jiǎng)賞國(guó)際象棋的發(fā)明者,問(wèn)他要什么.發(fā)明者說(shuō):“請(qǐng)?jiān)谄灞P(pán)的第一個(gè)格子里放上1顆麥粒,第2個(gè)格子里放上2顆麥粒,第3個(gè)格子里放上4顆麥粒,依次類(lèi)推,每個(gè)格子里的麥粒數(shù)都是前一個(gè)格子里放的麥粒數(shù)的2倍,直到第64個(gè)格子.請(qǐng)給我足夠的麥粒以實(shí)現(xiàn)上述要求.”國(guó)王覺(jué)得這個(gè)要求不高,就欣然同意了.假定千粒麥子的質(zhì)量為40g,據(jù)查,目前世界年度小麥產(chǎn)量為6億噸,但這仍不能滿(mǎn)足發(fā)明者要求,這就是指數(shù)增長(zhǎng).本節(jié)我們討論指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、二次函數(shù)的增長(zhǎng)差異.
思路2.(直接導(dǎo)入)
我們知道,對(duì)數(shù)函數(shù)y=logax(a>1),指數(shù)函數(shù)y=ax(a>1)與冪函數(shù)y=xn(n>0)在區(qū)間(0,+∞)上都是增函數(shù).但這三類(lèi)函數(shù)的增長(zhǎng)是有差異的.本節(jié)我們討論指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、二次函數(shù)的增長(zhǎng)差異.
推進(jìn)新課
①在區(qū)間(0,+∞)上判斷y=log2x,y=2x,y=x2的單調(diào)性.
②列表并在同一坐標(biāo)系中畫(huà)出三個(gè)函數(shù)的圖象.
③結(jié)合函數(shù)的圖象找出其交點(diǎn)坐標(biāo).
④請(qǐng)?jiān)趫D象上分別標(biāo)出使不等式log2x<2x
1)和冪函數(shù)y=xn(n>0),通過(guò)探索可以發(fā)現(xiàn),在區(qū)間(0,+∞)上,無(wú)論n比a大多少,盡管在x的一定變化范圍內(nèi),ax會(huì)小于xn,但由于ax的增長(zhǎng)快于xn的增長(zhǎng),因此總存在一個(gè)x0,當(dāng)x>x0時(shí),就會(huì)有ax>xn.
同樣地,對(duì)于對(duì)數(shù)函數(shù)y=logax(a>1)和冪函數(shù)y=xn(n>0),在區(qū)間(0,+∞)上,隨著x的增大,logax增長(zhǎng)得越來(lái)越慢,圖象就像是漸漸地與x軸平行一樣.盡管在x的一定變化范圍內(nèi),logax可能會(huì)大于xn,但由于logax的增長(zhǎng)慢于xn的增長(zhǎng),因此總存在一個(gè)x0,當(dāng)x>x0時(shí),就會(huì)有l(wèi)ogax1),指數(shù)函數(shù)y=ax(a>1)與冪函數(shù)y=xn(n>0)在區(qū)間(0,+∞)上都是增函數(shù),但它們的增長(zhǎng)速度不同,而且不在同一個(gè)“檔次”上.隨著x的增大,y=ax(a>1)的增長(zhǎng)速度越來(lái)越快,會(huì)超過(guò)并遠(yuǎn)遠(yuǎn)大于y=xn(n>0)的增長(zhǎng)速度,而y=logax(a>1)的增長(zhǎng)速度則會(huì)越來(lái)越慢.因此,總會(huì)存在一個(gè)x0,當(dāng)x>x0時(shí),就會(huì)有l(wèi)ogax0)增長(zhǎng)快于對(duì)數(shù)函數(shù)y=logax(a>1)增長(zhǎng),但它們與指數(shù)增長(zhǎng)比起來(lái)相差甚遠(yuǎn),因此指數(shù)增長(zhǎng)又稱(chēng)“指數(shù)爆炸”.
例1某市的一家報(bào)刊攤點(diǎn),從報(bào)社買(mǎi)進(jìn)晚報(bào)的價(jià)格是每份0.20元,賣(mài)出價(jià)是每份0.30元,賣(mài)不掉的報(bào)紙可以以每份0.05元的價(jià)格退回報(bào)社.在一個(gè)月(以30天計(jì))里,有20天每天可賣(mài)出400份,其余10天每天只能賣(mài)出250份,但每天從報(bào)社買(mǎi)進(jìn)的份數(shù)必須相同,這個(gè)攤主每天從報(bào)社買(mǎi)進(jìn)多少份,才能使每月所獲的利潤(rùn)最大?并計(jì)算他一個(gè)月最多可賺得多少元?
活動(dòng):學(xué)生先思考或討論,再回答.教師根據(jù)實(shí)際,可以提示引導(dǎo):
設(shè)攤主每天從報(bào)社買(mǎi)進(jìn)x份,顯然當(dāng)x∈[250,400]時(shí),每月所獲利潤(rùn)才能最大.而每月所獲利潤(rùn)=賣(mài)報(bào)收入的總價(jià)-付給報(bào)社的總價(jià).賣(mài)報(bào)收入的總價(jià)包含三部分:①可賣(mài)出400份的20天里,收入為200.30x;②可賣(mài)出250份的10天里,收入為100.30250;③10天里多進(jìn)的報(bào)刊退回給報(bào)社的收入為100.05(x-250).付給報(bào)社的總價(jià)為300.20x.
解:設(shè)攤主每天從報(bào)社買(mǎi)進(jìn)x份晚報(bào),顯然當(dāng)x∈[250,400]時(shí),每月所獲利潤(rùn)才能最大.于是每月所獲利潤(rùn)y為
y=200.30x+100.30250+100.05(x-250)-300.20x=0.5x+625,x∈[250,400].
因函數(shù)y在[250,400]上為增函數(shù),故當(dāng)x=400時(shí),y有最大值825元.
例2某醫(yī)藥研究所開(kāi)發(fā)一種新藥,如果成人按規(guī)定的劑量服用,據(jù)監(jiān)測(cè):服藥后每毫升血液中的含藥量y與時(shí)間t之間近似滿(mǎn)足如圖12所示的曲線(xiàn).
圖12
(1)寫(xiě)出服藥后y與t之間的函數(shù)關(guān)系式;
(2)據(jù)測(cè)定:每毫升血液中含藥量不少于4微克時(shí)治療疾病有效,假若某病人一天中第一次服藥時(shí)間為上午7:00,問(wèn)一天中怎樣安排服藥的時(shí)間(共4次)效果最佳?
解:(1)依題意,得y=
(2)設(shè)第二次服藥時(shí)在第一次服藥后t1小時(shí),則-t1+=4,t1=4.因而第二次服藥應(yīng)在11:00;
設(shè)第三次服藥在第一次服藥后t2小時(shí),則此時(shí)血液中含藥量應(yīng)為兩次服藥量的和,即有-t2+-(t2-4)+=4,解得t2=9,故第三次服藥應(yīng)在16:00;
設(shè)第四次服藥在第一次后t3小時(shí)(t3>10),則此時(shí)第一次服進(jìn)的藥已吸收完,此時(shí)血液中含藥量應(yīng)為第二、三次的和,-(t2-4)+-(t2-9)+=4,解得t3=13.5,故第四次服藥應(yīng)在20:30.
變式訓(xùn)練
通過(guò)研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴(lài)于老師引入概念和描述問(wèn)題所用的時(shí)間:講座開(kāi)始時(shí),學(xué)生興趣激增;中間有一段不太長(zhǎng)的時(shí)間,學(xué)生的興趣保持較理想的狀態(tài);隨后學(xué)生的注意力開(kāi)始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生接受概念的能力[f(x)的值愈大,表示接受的能力愈強(qiáng)],x表示提出和講授概念的時(shí)間(單位:分鐘),可有以下的公式:
f(x)=
(1)開(kāi)講后多少分鐘,學(xué)生的接受能力最強(qiáng)?能維持多長(zhǎng)時(shí)間?
(2)開(kāi)講后5分鐘與開(kāi)講后20分鐘比較,學(xué)生的接受能力何時(shí)強(qiáng)一些?
解:(1)當(dāng)087.5可知,h(t)在區(qū)間[0,300]上可以取得最大值100,此時(shí)t=50,即從二月一日開(kāi)始的第50天時(shí),上市的西紅柿純收益最大.
點(diǎn)評(píng):本題主要考查由函數(shù)圖象建立函數(shù)關(guān)系式和求函數(shù)最大值的問(wèn)題,考查運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題的能力.
探究?jī)?nèi)容
①在函數(shù)應(yīng)用中如何利用圖象求解析式.
②分段函數(shù)解析式的求法.
③函數(shù)應(yīng)用中的最大值、最小值問(wèn)題.
舉例探究:(xx山東省青島高三教學(xué)質(zhì)量檢測(cè),理21)某跨國(guó)公司是專(zhuān)門(mén)生產(chǎn)健身產(chǎn)品的企業(yè),第一批產(chǎn)品A上市銷(xiāo)售40天內(nèi)全部售完,該公司對(duì)第一批產(chǎn)品A上市后的國(guó)內(nèi)外市場(chǎng)銷(xiāo)售情況進(jìn)行調(diào)研,結(jié)果如圖14(1)、圖14(2)、圖14(3)所示.其中圖14(1)的折線(xiàn)表示的是國(guó)外市場(chǎng)的日銷(xiāo)售量與上市時(shí)間的關(guān)系;圖14(2)的拋物線(xiàn)表示的是國(guó)內(nèi)市場(chǎng)的日銷(xiāo)售量與上市時(shí)間的關(guān)系;圖14(3)的折線(xiàn)表示的是每件產(chǎn)品A的銷(xiāo)售利潤(rùn)與上市時(shí)間的關(guān)系.
圖14
(1)分別寫(xiě)出國(guó)外市場(chǎng)的日銷(xiāo)售量f(t)、國(guó)內(nèi)市場(chǎng)的日銷(xiāo)售量g(t)與第一批產(chǎn)品A上市時(shí)間t的關(guān)系式;
(2)第一批產(chǎn)品A上市后的哪幾天,這家公司的國(guó)內(nèi)和國(guó)外日銷(xiāo)售利潤(rùn)之和超過(guò)6 300萬(wàn)元?
分析:1.利用圖象求解析式,先要分清函數(shù)類(lèi)型再利用待定系數(shù)法求解析式.
2.在t∈[0,40]上,有幾個(gè)分界點(diǎn),請(qǐng)同學(xué)們思考應(yīng)分為幾段.
3.回憶函數(shù)最值的求法.
解:(1)f(t)=
g(t)=-t2+6t(0≤t≤40).
(2)每件A產(chǎn)品銷(xiāo)售利潤(rùn)h(t)=
該公司的日銷(xiāo)售利潤(rùn)F(t)=
當(dāng)0≤t≤20時(shí),F(xiàn)(t)=3t(-t2+8t),先判斷其單調(diào)性.
設(shè)0≤t1<t2≤20,則F(t1)-F(t2)=3t1(-t+8t1)-3t2(-t+8t2)=-(t1+t2)(t1-t2)2.
∴F(t)在[0,20]上為增函數(shù).
∴F(t)max=F(20)=6 000<6 300.
當(dāng)206 300,
則1 000,
∴該規(guī)劃方案有極大實(shí)施價(jià)值.
鏈接地址:http://www.820124.com/p-2615228.html