2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第十二篇 概率、隨機變量及其分布 第3講 幾何概型教案 理 新人教版.doc
《2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第十二篇 概率、隨機變量及其分布 第3講 幾何概型教案 理 新人教版.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第十二篇 概率、隨機變量及其分布 第3講 幾何概型教案 理 新人教版.doc(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第十二篇 概率、隨機變量及其分布 第3講 幾何概型教案 理 新人教版 【xx年高考會這樣考】 以選擇題或填空題的形式考查與長度或面積有關(guān)的幾何概型的求法是高考對本內(nèi)容的熱點考法,特別是與平面幾何、函數(shù)等結(jié)合的幾何概型是高考的重點內(nèi)容.新課標高考對幾何概型的要求較低,因此高考試卷中此類試題以低、中檔題為主. 【復(fù)習(xí)指導(dǎo)】 本講復(fù)習(xí)時,準確理解幾何概型的意義、構(gòu)造出度量區(qū)域是用幾何概型求隨機事件概率的關(guān)鍵,復(fù)習(xí)時要多反思和多領(lǐng)悟,掌握方法要領(lǐng).同時要加強與平面區(qū)域、空間幾何體、平面向量、函數(shù)結(jié)合等方面的訓(xùn)練. 基礎(chǔ)梳理 1.幾何概型 事件A理解為區(qū)域Ω的某一子區(qū)域A,A的概率只與子區(qū)域A的幾何度量(長度、面積或體積)成正比,而與A的位置和形狀無關(guān).滿足以上條件的試驗稱為幾何概型. 2.幾何概型中,事件A的概率計算公式 P(A)=. 3.要切實理解并掌握幾何概型試驗的兩個基本特點 (1)無限性:在一次試驗中,可能出現(xiàn)的結(jié)果有無限多個; (2)等可能性:每個結(jié)果的發(fā)生具有等可能性. 一條規(guī)律 對于幾何概型的概率公式中的“測度”要有正確的認識,它只與大小有關(guān),而與形狀和位置無關(guān),在解題時,要掌握“測度”為長度、面積、體積、角度等常見的幾何概型的求解方法. 兩種類型 (1)線型幾何概型:當基本事件只受一個連續(xù)的變量控制時. (2)面型幾何概型:當基本事件受兩個連續(xù)的變量控制時,一般是把兩個變量分別作為一個點的橫坐標和縱坐標,這樣基本事件就構(gòu)成了平面上的一個區(qū)域,即可借助平面區(qū)域解決. 雙基自測 1.(人教A版教材習(xí)題改編)在線段[0,3]上任投一點,則此點坐標小于1的概率為( ). A. B. C. D.1 解析 點坐標小于1的區(qū)間長度為1,故所求其概率為. 答案 B 2.一個路口的紅綠燈,紅燈的時間為30秒,黃燈的時間為5秒,綠燈的時間為40秒,當某人到達路口時看見的是紅燈的概率是( ). A. B. C. D. 解析 以時間的長短進行度量,故P==. 答案 B 3.(xx衡陽模擬)有四個游戲盤,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分,則可中獎,小明要想增加中獎機會,應(yīng)選擇的游戲盤是( ). 解析 P(A)=,P(B)=,P(C)=,P(D)=, ∴P(A)>P(C)=P(D)>P(B). 答案 A 4.某人隨機地在如圖所示正三角形及其外接圓區(qū)域內(nèi)部投針(不包括三角形邊界及圓的邊界),則針扎到陰影區(qū)域(不包括邊界)的概率為( ). A. B. C. D.以上全錯 解析 設(shè)正三角形邊長為a,則外接圓半徑r=a=a, ∴所求概率P==. 答案 B 5.在區(qū)間[-1,2]上隨機取一個數(shù)x,則x∈[0,1]的概率為________. 解析 如圖,這是一個長度型的幾何概型題,所求概率P==. 答案 考向一 與長度有關(guān)的幾何概型 【例1】?點A為周長等于3的圓周上的一個定點.若在該圓周上隨機取一點B,則劣弧的長度小于1的概率為________. [審題視點] 用劣弧的長度與圓周長的比值. 解析 如右圖,設(shè)A、M、N為圓周的三等分點,當B點取在優(yōu)弧上時,對劣弧來說,其長度小于1,故其概率為. 答案 將每個基本事件理解為從某個特定的幾何區(qū)域內(nèi)隨機地取一點,該區(qū)域中每一點被取到的機會都一樣,而一個隨機事件的發(fā)生則理解為恰好取到上述區(qū)域內(nèi)的某個指定區(qū)域中的點,這樣的概率模型就可以用幾何概型來求解. 【訓(xùn)練1】 一只螞蟻在三邊長分別為3,4,5的三角形的邊上爬行,某時刻該螞蟻距離三角形的三個頂點的距離均超過1的概率為________. 解析 如圖,該螞蟻距離三角形的三個頂點的距離均超過1的長度為:1+2+3=6,故所求概率為P==. 答案 考向二 與面積有關(guān)的幾何概型 【例2】?(xx華東師大附中模擬)設(shè)有關(guān)于x的一元二次方程x2+2ax+b2=0. (1)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率; (2)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率. [審題視點] (1)為古典概型,利用列舉法求概率. (2)建立ab平面直角坐標系,將問題轉(zhuǎn)化為與面積有關(guān)的幾何概型. 解 設(shè)事件A為“方程x2+2ax+b2=0有實根”. 當a≥0,b≥0時,方程x2+2ax+b2=0有實根的充要條件為a≥b. (1)基本事件共有12個:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一個數(shù)表示a的取值,第二個數(shù)表示b的取值.事件A中包含9個基本事件,事件A發(fā)生的概率為P(A)==. (2)試驗的全部結(jié)果所構(gòu)成的區(qū)域為{(a,b)|0≤a≤3,0≤b≤2},構(gòu)成事件A的區(qū)域為{(a,b)|0≤a≤3,0≤b≤2,a≥b},所以所求的概率為P(A)==. 數(shù)形結(jié)合為幾何概型問題的解決提供了簡捷直觀的解法.用圖解題的關(guān)鍵:用圖形準確表示出試驗的全部結(jié)果所構(gòu)成的區(qū)域,由題意將已知條件轉(zhuǎn)化為事件A滿足的不等式,在圖形中畫出事件A發(fā)生的區(qū)域,利用公式可求. 【訓(xùn)練2】 (xx福建)如圖, 矩形ABCD中,點E為邊CD的中點.若在矩形ABCD內(nèi)部隨機取一個點Q,則點Q取自△ABE內(nèi)部的概率等于( ). A. B. C. D. 解析 S△ABE=|AB||AD|,S矩形ABCD=|AB||AD|. 故所求概率P==. 答案 C 考向三 與角度、體積有關(guān)的幾何概型 【例3】?在Rt△ABC中,∠A=30,過直角頂點C作射線CM交線段AB于M,求使|AM|>|AC|的概率. [審題視點] 如圖所示, 因為過一點作射線是均勻的,因而應(yīng)把在∠ACB內(nèi)作射線CM看做是等可能的,基本事件是射線CM落在∠ACB內(nèi)任一處,使|AM|>|AC|的概率只與∠BCC′的大小有關(guān),這符合幾何概型的條件. 解 設(shè)事件D為“作射線CM,使|AM|>|AC|”.在AB上取點C′使|AC′|=|AC|,因為△ACC′是等腰三角形,所以∠ACC′==75, μA=90-75=15,μΩ=90, 所以P(D)==. 幾何概型的關(guān)鍵是選擇“測度”,如本例以角度為“測度”.因為射線CM落在∠ACB內(nèi)的任意位置是等可能的.若以長度為“測度”,就是錯誤的,因為M在AB上的落點不是等可能的. 【訓(xùn)練3】 (xx長沙模擬)在棱長為2的正方體ABCDA1B1C1D1中,點O為底面ABCD的中心,在正方體ABCD A1B1C1D1內(nèi)隨機取一點P,則點P到點O的距離大于1的概率為________. 解析 點P到點O的距離大于1的點位于以O(shè)為球心,以1為半徑的半球外.記點P到點O的距離大于1為事件A,則P(A)==1-. 答案 1- 規(guī)范解答21——如何解決概率與函數(shù)的綜合問題 【問題研究】 所謂概率,就是某種事件發(fā)生的可能性的大小,而“事件”可以是日常生活中常見的例子,也可以是有關(guān)的數(shù)學(xué)問題,如以函數(shù)的基本性質(zhì)(定義域、值域、單調(diào)性、奇偶性、周期性)為背景,設(shè)置概型,提出問題,考查考生綜合分析問題、解決問題的能力. 【解決方案】 首先認真閱讀題目,把其中的有用信息向我們熟悉的知識方面轉(zhuǎn)化,實現(xiàn)知識的遷移,然后再利用概率的知識去解決. 【示例】? (本題滿分12分)(xx濰坊模擬)已知關(guān)于x的二次函數(shù)f(x)=ax2-4bx+1. (1)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率; (2)設(shè)點(a,b)是區(qū)域內(nèi)的一點, 求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率. 本題以“二次函數(shù)的單調(diào)性”為背景,首先寫出事件發(fā)生所滿足的條件,在第(1)問中,給出了有限個數(shù)據(jù),從而判斷是古典概型問題,利用列舉法寫出事件發(fā)生的總數(shù)以及滿足條件的事件發(fā)生的個數(shù),再利用公式求之;第(2)問中,a和b有無限個數(shù)據(jù),所以是幾何概型問題,首先計算事件發(fā)生的總數(shù)與滿足條件的事件發(fā)生的個數(shù)的測度,再利用公式求之. [解答示范] (1)∵函數(shù)f(x)=ax2-4bx+1的圖象的對稱軸為直線x=,要使f(x)=ax2-4bx+1在區(qū)間[1,+∞)上為增函數(shù),當且僅當a>0且≤1,即2b≤a.(2分) 若a=1,則b=-1; 若a=2,則b=-1或1; 若a=3,則b=-1或1. ∴事件包含基本事件的個數(shù)是1+2+2=5.(5分) ∴所求事件的概率為=.(6分) (2)由(1),知當且僅當2b≤a且a>0時, 函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)上為增函數(shù),(8分) 依條件可知事件的全部結(jié)果所構(gòu)成的區(qū)域為 ,構(gòu)成所求事件的區(qū)域為三角形部分. 由得交點坐標為,(10分) ∴所求事件的概率為P==.(12分) 本題中先將f(x)在[1,+∞)上為增函數(shù)轉(zhuǎn)化為滿足條件2b≤a且a>0,然后再聯(lián)系已知條件,將問題轉(zhuǎn)化為幾何概型,實現(xiàn)了知識的逐步遷移,這種轉(zhuǎn)化遷移的思想值得考生注意,另外,對于二次函數(shù)f(x)=ax2+bx+c(a≠0),在某一區(qū)間[m,+∞)上單調(diào)遞增的充要條件是 切勿漏掉a>0. 【試一試】 已知關(guān)于x的一元二次方程x2-2(a-2)x-b2+16=0. (1)若a,b是一枚骰子擲兩次所得到的點數(shù),求方程有兩正根的概率; (2)若a∈[2,6],b∈[0,4],求方程沒有實根的概率. [嘗試解答] (1)基本事件(a,b)共有36個,方程有正根等價于a-2>0,16-b2>0,Δ≥0, 即a>2,-4<b<4,(a-2)2+b2≥16. 設(shè)“方程有兩個正根”為事件A,則事件A包含的基本事件為(6,1),(6,2),(6,3),(5,3),共4個, 故所求的概率為P(A)==. (2)試驗的全部結(jié)果構(gòu)成區(qū)域Ω={(a,b)|2≤a≤6,0≤b≤4}, 其面積為S(Ω)=16, 設(shè)“方程無實根”為事件B,則構(gòu)成事件B的區(qū)域為 B={(a,b)|2≤a≤6,0≤b≤4,(a-2)2+b2<16}, 其面積為S(B)=π42=4π, 故所求的概率為P(B)==- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第十二篇 概率、隨機變量及其分布 第3講幾何概型教案 新人教版 2019 2020 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 第十二 概率 隨機變量 及其 分布 幾何 教案 新人
鏈接地址:http://www.820124.com/p-2622876.html