2019-2020年高中數(shù)學(xué) 第一章 集合與函數(shù)概念 1.1 集合 1.1.2 集合間的基本關(guān)系課后訓(xùn)練 新人教A版必修1.doc
《2019-2020年高中數(shù)學(xué) 第一章 集合與函數(shù)概念 1.1 集合 1.1.2 集合間的基本關(guān)系課后訓(xùn)練 新人教A版必修1.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 第一章 集合與函數(shù)概念 1.1 集合 1.1.2 集合間的基本關(guān)系課后訓(xùn)練 新人教A版必修1.doc(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 第一章 集合與函數(shù)概念 1.1 集合 1.1.2 集合間的基本關(guān)系課后訓(xùn)練 新人教A版必修1 基礎(chǔ)鞏固 1.已知集合M={1},N={1,2,3},則有( ) A.M<N B.MN C.NM D.MN 2.已知全集U=R,則正確表示集合M={-1,0,1}和N={x|x2+x=0}關(guān)系的Venn圖是( ) 3.已知集合A={x|x是菱形},B={x|x是正方形},C={x|x是平行四邊形},那么A,B,C之間的關(guān)系是( ) A.ABC B.BAC C.ABC D.A=BC 4.若集合A={x|0≤x<3,xZ},則集合A的子集個數(shù)為( ) A.5 B.6 C.7 D.8 5.下列關(guān)系式中正確的個數(shù)為( ) ①{a,b}{a,b}; ②{a,b}={b,a}; ③{0}; ④0{0}; ⑤{0}; ⑥={0}; ⑦. A.3 B.4 C.5 D.6 6.設(shè)集合A={x|x>1},B={x|x>a},且AB,則實(shí)數(shù)a的取值范圍是( ) A.a(chǎn)<1 B.a(chǎn)≤1 C.a(chǎn)>1 D.a(chǎn)≥1 7.已知集合A={-1,3,2m-1},B={3,m2},若BA,則實(shí)數(shù)m=__________. 8.已知集合,,則M與N的關(guān)系是__________. 9.設(shè)集合A={-1,1},B={x|x2-2ax+b=0},若B≠,且BA,求實(shí)數(shù)a,b的值. 能力提升 10.已知集合A={x|ax2+2x+a=0,aR},若集合A有且僅有2個子集,則a的取值是( ) A.1 B.-1 C.0,1 D.-1,0,1 11.已知{1,2}A{1,2,3,4,5},則滿足條件的集合A的個數(shù)為( ) A.5 B.6 C.7 D.8 12.已知集合A={x|x=a2+1,aN},B={y|y=b2-4b+5,bN},則有( ) A.A=B B.AB C.BA D.AB 13.若xA,A,就稱A是“親密組合”集合,則集合的所有非空子集中,是“親密組合”集合的個數(shù)為__________. 14.已知集合A={x|2a-2<x≤a+2},B={x|-2≤x<3},且AB,求實(shí)數(shù)a的取值范圍. 15.(壓軸題)已知集合A={x|0<x-a≤5},. (1)若AB,求實(shí)數(shù)a的取值范圍; (2)若BA,求實(shí)數(shù)a的取值范圍; (3)A與B能否相等?若能,求出a的值,若不能,請說明理由. 錯題記錄 錯題號 錯因分析 參考答案 1.D 點(diǎn)撥:∵1{1,2,3},∴{1}{1,2,3}.故選D. 2.B 點(diǎn)撥:∵N={x|x2+x=0}={-1,0},∴NM.故選B. 3.B 點(diǎn)撥:集合A,B,C之間的關(guān)系如圖. 4.D 點(diǎn)撥:A={x|0≤x<3,xZ}={0,1,2}. 因?yàn)楹衝個元素的集合的所有子集個數(shù)為2n,所以A的子集個數(shù)為23=8. 5.C 點(diǎn)撥:由子集的含義知{a,b}{a,b},{a,b}={b,a}(無序性),{0},都成立; 由元素與集合的關(guān)系知0{0}. 而與{0}是兩個不同的集合,故⑤⑥不正確. 6.B 點(diǎn)撥:如圖, ∵AB,∴a≤1. 7.1 點(diǎn)撥:∵BA,又m2≠-1,∴m2=2m-1,或m2=3(舍去,不滿足集合中元素的互異性),即m2-2m+1=0,得m=1,經(jīng)檢驗(yàn),符合題意. 8.MN 點(diǎn)撥:∵, ∴,. 由于1+2k是奇數(shù),k+2是整數(shù),故MN. 9.解:由B≠,且BA知B={-1}或B={1}或B={-1,1}. 當(dāng)B={-1}時,有解之得a=-1,b=1; 當(dāng)B={1}時,有解之得a=1,b=1; 當(dāng)B={-1,1}時,有解之得a=0,b=-1. 綜上可知,a=-1,b=1或a=1,b=1或a=0,b=-1. 10.D 點(diǎn)撥:∵集合A有且僅有2個子集,∴A僅有一個元素,即方程ax2+2x+a=0(aR)僅有一個根. 當(dāng)a=0時,方程化為2x=0, ∴x=0,此時A={0},符合題意. 當(dāng)a≠0時,Δ=22-4aa=0,即a2=1,∴a=1. 此時A={-1},或A={1},符合題意. ∴a=0或a=1. 11.C 點(diǎn)撥:符合條件的集合A有:{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},共7個. 12.A 點(diǎn)撥:對任意yB,有y=b2-4b+5=(b-2)2+1. ∵bN,∴(b-2)2N. 令b-2=c,則y=c2+1,cN, ∴yA.∴BA. 對任意xA,有x=a2+1,aN. 不妨令a=b-2,則xB,∴AB. 因此A=B,應(yīng)選A. 13.15 點(diǎn)撥:按照“親密組合”集合的定義,符合條件的集合有{-1},{1},,,{-1,1},,,,,,,,,,,共15個. 14.解:由已知AB. (1)當(dāng)A=時,應(yīng)有2a-2≥a+2a≥4. (2)當(dāng)A≠時,由A={x|2a-2<x≤a+2},B={x|-2≤x<3}, 得 綜合(1)(2)知,所求實(shí)數(shù)a的取值范圍是{a|0≤a<1,或a≥4}. 15.解:由題意知A={x|a<x≤a+5},則 (1)若AB,則0≤a≤1. 此時所求a的取值范圍是{a|0≤a≤1}. (2)若BA,則≥6,或 解得a≤-12,或故a≤-12. 故BA時,a的取值范圍是{a|a≤-12}. (3)若A=B,即{x|a<x≤a+5}=, 則即 這不可能同時成立.因此A≠B.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 第一章 集合與函數(shù)概念 1.1 集合 1.1.2 集合間的基本關(guān)系課后訓(xùn)練 新人教A版必修1 2019 2020 年高 數(shù)學(xué) 函數(shù) 概念 基本 關(guān)系 課后 訓(xùn)練 新人 必修
鏈接地址:http://www.820124.com/p-2628801.html