2019-2020年高考數學一輪復習 第十一篇 計數原理 第2講 排列與組合教案 理 新人教版.doc
《2019-2020年高考數學一輪復習 第十一篇 計數原理 第2講 排列與組合教案 理 新人教版.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數學一輪復習 第十一篇 計數原理 第2講 排列與組合教案 理 新人教版.doc(7頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高考數學一輪復習 第十一篇 計數原理 第2講 排列與組合教案 理 新人教版 【xx年高考會這樣考】 1.考查排列組合的概念及其公式的推導. 2.考查排列組合的應用. 【復習指導】 復習時要掌握好基本計算公式和基本解題指導思想,掌握一些排列組合的基本模式題的解決方法,如指標分配問題、均勻分組問題、雙重元素問題、涂色問題、相鄰或不相鄰問題等. 基礎梳理 1.排列 (1)排列的概念:從n個不同元素中,任取m(m≤n)個元素(這里的被取元素各不相同)按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列. (2)排列數的定義:從n個不同元素中,任取m(m≤n)個元素的所有排列的個數叫做從n個不同元素中取出m個元素的排列數,用符號A表示. (3)排列數公式 A=n(n-1)(n-2)…(n-m+1). (4)全排列數公式 A=n(n-1)(n-2)…21=n!(叫做n的階乘). 2.組合 (1)組合的定義:一般地,從n個不同元素中取出m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合. (2)組合數的定義:從n個不同元素中取出m(m≤n)個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數.用符號C表示. (3)組合數公式 C=== (n,m∈N*,且m≤n).特別地C=1. (4)組合數的性質:①C=C;②C=C+C. 一個區(qū)別 排列與組合,排列與組合最根本的區(qū)別在于“有序”和“無序”.取出元素后交換順序,如果與順序有關是排列,如果與順序無關即是組合. 兩個公式 (1)排列數公式A= (2)組合數公式C=利用這兩個公式可計算排列問題中的排列數和組合問題中的組合數. ①解決排列組合問題可遵循“先組合后排列”的原則,區(qū)分排列組合問題主要是判斷“有序”和“無序”,更重要的是弄清怎樣的算法有序,怎樣的算法無序,關鍵是在計算中體現“有序”和“無序”. ②要能夠寫出所有符合條件的排列或組合,盡可能使寫出的排列或組合與計算的排列數相符,使復雜問題簡單化,這樣既可以加深對問題的理解,檢驗算法的正確與否,又可以對排列數或組合數較小的問題的解決起到事半功倍的效果. 四字口訣 求解排列組合問題的思路:“排組分清,加乘明確;有序排列,無序組合;分類相加,分步相乘.” 雙基自測 1.8名運動員參加男子100米的決賽.已知運動場有從內到外編號依次為1,2,3,4,5,6,7,8的八條跑道,若指定的3名運動員所在的跑道編號必須是三個連續(xù)數字(如:4,5,6),則參加比賽的這8名運動員安排跑道的方式共有( ). A.360種 B.4 320種 C.720種 D.2 160種 解析 本題考查排列組合知識,可分步完成,先從8個數字中取出3個連續(xù)的三個數字共有6種可能,將指定的3名運動員安排在這三個編號的跑道上,最后剩下的5個排在其他的編號的5個跑道上,故共有6AA=4 320種方式. 答案 B 2.以一個正五棱柱的頂點為頂點的四面體共有( ). A.200個 B.190個 C.185個 D.180個 解析 正五棱柱共有10個頂點,若每四個頂點構成一個四面體,共可構成C=210個四面體.其中四點在同一平面內的有三類: (1)每一底面的五點中選四點的組合方法有2C個. (2)五條側棱中的任意兩條棱上的四點有C個. (3)一個底面的一邊與另一個底面相應的一條對角線平行 (例如AB∥E1C1),這樣共面的四點共有2C個. 所以C-2C-C-2C=180(個),選D. 答案 D 3.(xx山東)某臺小型晚會由6個節(jié)目組成,演出順序有如下要求:節(jié)目甲必須排在前兩位,節(jié)目乙不能排在第一位,節(jié)目丙必須排在最后一位.該臺晚會節(jié)目演出順序的編排方案共有( ). A.36種 B.42種 C.48種 D.54種 解析 因為丙必須排在最后一位,因此只需考慮其余五人在前五位上的排法.當甲排在第一位時,有A=24種排法,當甲排在第二位時,有AA=18種排法,所以共有方案24+18=42(種),故選B. 答案 B 1 2 3 3 1 2 2 3 1 4.如圖,將1,2,3填入33的方格中,要求每行、每列都沒有重復數字,右面是一種填法,則不同的填寫方法共有( ). A.6種 B.12種 C.24種 D.48種 解析 只需要填寫第一行第一列,其余即確定了.因此共有AA=12(種). 答案 B 5.某工程隊有6項工程需要先后單獨完成,其中工程乙必須在工程甲完成后才能進行,工程丙必須在工程乙完成后才能進行,又工程丁必須在工程丙完成后立即進行,那么安排這6項工程的不同排法種數是________(用數字作答). 解析 可將6項工程分別用甲、乙、丙、丁、a、b表示,要求是甲在乙前,乙在丙前,并且丙丁相鄰丙在丁前,可看作甲、乙、丙丁、a、b五個元素的排列,可先排a、b,再排甲、乙、丙丁共AC=20種排法,也可先排甲、乙、丙丁,再排a、b,共CA=20種排法. 答案 20 考向一 排列問題 【例1】?六個人按下列要求站成一排,分別有多少種不同的站法? (1)甲不站在兩端;(2)甲、乙必須相鄰;(3)甲、乙不相鄰; (4)甲、乙之間恰有兩人;(5)甲不站在左端,乙不站在右端; (6)甲、乙、丙三人順序已定. [審題視點] 根據題目具體要求,選擇恰當的方法,如捆綁法、插空法等. 解 (1)AA=480; (2)AA=240; (3)AA=480; (4)AAA=144; (5)A-2A+A=504; (6)A=120. 有條件的排列問題大致分四種類型. (1)某元素不在某個位置上問題,①可從位置考慮用其它元素占上該位置,②可考慮該元素的去向(要注意是否是全排列問題);③可間接計算即從排列總數中減去不符合條件的排列個數. (2)某些元素相鄰,可將這些元素排好看作一個元素(即捆綁法)然后與其它元素排列. (3)某些元素互不相鄰,可將其它剩余元素排列,然后用這些元素進行插空(即插空法). (4)某些元素順序一定,可在所有排列位置中取若干個位置,先排上剩余的其它元素,這個元素也就一種排法. 【訓練1】 用0,1,2,3,4,5六個數字排成沒有重復數字的6位數,分別有多少個?(1)0不在個位;(2)1與2相鄰;(3)1與2不相鄰;(4)0與1之間恰有兩個數;(5)1不在個位;(6)偶數數字從左向右從小到大排列. 解 (1)AA=480; (2)AAA=192; (3)AA-AAA=408, (4)AAA+AA=120; (5)A-2A+A=504; (6)A-A=60. 考向二 組合問題 【例2】?某醫(yī)院有內科醫(yī)生12名,外科醫(yī)生8名,現選派5名參加賑災醫(yī)療隊,其中 (1)某內科醫(yī)生甲與某外科醫(yī)生乙必須參加,共有多少種不同選法? (2)甲、乙均不能參加,有多少種選法? (3)甲、乙兩人至少有一人參加,有多少種選法? (4)隊中至少有一名內科醫(yī)生和一名外科醫(yī)生,有幾種選法? [審題視點] “無序問題”用組合,注意分類處理. 解 (1)只需從其他18人中選3人即可,共有C=816(種); (2)只需從其他18人中選5人即可,共有C=8 568(種); (3)分兩類:甲、乙中有一人參加,甲、乙都參加,共有CC+C=6 936(種); (4)法一(直接法):至少有一名內科醫(yī)生和一名外科醫(yī)生的選法可分四類:一內四外;二內三外;三內二外;四內一外,所以共有CC+CC+CC+CC=14 656(種). 法二 (間接法):由總數中減去五名都是內科醫(yī)生和五名都是外科醫(yī)生的選法種數,得C-(C+C)=14 656(種). 對于有條件的組合問題,可能遇到含某個(些)元素與不含某個(些)元素問題;也可能遇到“至多”或“至少”等組合問題的計算,此類問題要注意分類處理或間接計算,切記不要因為“先取再后取”產生順序造成計算錯誤. 【訓練2】 甲、乙兩人從4門課程中各選修2門,(1)甲、乙所選的課程中恰有1門相同的選法有多少種?(2)甲、乙所選的課程中至少有一門不相同的選法有多少種? 解 (1)甲、乙兩人從4門課程中各選修2門,且甲、乙所選課程中恰有1門相同的選法種數共有CCC=24(種). (2)甲、乙兩人從4門課程中各選兩門不同的選法種數為CC,又甲乙兩人所選的兩門課程都相同的選法種數為C種,因此滿足條件的不同選法種數為CC-C=30(種). 考向三 排列、組合的綜合應用 【例3】?(1)7個相同的小球,任意放入4個不同的盒子中,試問:每個盒子都不空的放法共有多少種? (2)計算x+y+z=6的正整數解有多少組; (3)計算x+y+z=6的非負整數解有多少組. [審題視點] 根據題目要求分類求解,做到不重不漏. 解 (1)法一 先將其中4個相同的小球放入4個盒子中,有1種放法;再將其余3個相同的小球放入4個不同的盒子中,有以下3種情況: ①某一個盒子放3個小球,就可從這4個不同的盒子中任選一個放入這3個小球,有C種不同的放法; ②這3個小球分別放入其中的3個盒子中,就相當于從4個不同的盒子中任選3個盒子,分別放入這3個相同的小球,有C種不同放法; ③這3個小球中有兩個小球放在1個盒子中,另1個小球放在另一個盒子中,從這4個不同的盒子中任選兩個盒子排成一列,有A種不同的方法. 綜上可知,滿足題設條件的放法為C+C+A=20(種). 法二 “每個盒子都不空”的含義是“每個盒子中至少有一個小球”,若用“擋板法”,可易得C=20. (2)可看做將6個相同小球放入三個不同盒子中,每盒非空有多少種放法.轉化為6個0,2個1的排列,要求1不排在兩端且不相鄰,共有C=10種排法,因此方程x+y+z=6有10組不同的正整數解; (3)可看做將6個相同小球放入三個不同的盒子中,轉化為6個0,2個1的排列,共有C=28種排法,因此方程x+y+z=6有28組不同的非負整數解. 排列與組合的根本區(qū)別在于是“有序”還是“無序”,對于將若干個相同小球放入幾個不同的盒子中,此類問題可利用“擋板法”求解,實質上是最終轉化為組合問題.(2)在計算排列組合問題時,可能會遇到“分組”問題,要特別注意是平均分組還是不平均分組.可從排列與組合的關系出發(fā),用類比的方法去理解分組問題,比如將4個元素分為兩組,若一組一個、一組三個共有CC種不同的分法; 而平均分為兩組則有種不同的分法. 【訓練3】 有6本不同的書按下列分配方式分配,問共有多少種不同的分配方式? (1)分成1本、2本、3本三組; (2)分給甲、乙、丙三人,其中一人1本,一人2本,一人3本; (3)分成每組都是2本的三組; (4)分給甲、乙、丙三人,每人2本. 解 (1)分三步:先選一本有C種選法;再從余下的5本中選2本有C種選法;對于余下的三本全選有C種選法,由分步乘法計數原理知有CCC=60種選法. (2)由于甲、乙、丙是不同的三人,在(1)的基礎上,還應考慮再分配的問題,因此共有CCCA=360種選法. (3)先分三步,則應是CCC種選法,但是這里面出現了重復,不妨記6本書為分別A、B、C、D、E、F,若第一步取了(AB,CD,EF),則CCC種分法中還有(AB、EF、CD),(CD、AB、EF)、(CD、EF、AB)、(EF、CD、AB)、(EF、AB、CD)共有A種情況,而且這A種情況僅是AB、CD、EF的順序不同,因此,只算作一種情況,故分配方式有=15(種). (4)在問題(3)的基礎上再分配,故分配方式有A=CCC=90(種). 閱卷報告16——實際問題意義不清,計算重復、遺漏致誤 【問題診斷】 排列組合問題由于其思想方法獨特計算量龐大,對結果的檢驗困難,所以在解決這類問題時就要遵循一定的解題原則,如特殊元素、位置優(yōu)先原則、先取后排原則、先分組后分配原則、正難則反原則等,只有這樣我們才能有明確的解題方向.同時解答組合問題時必須心思細膩,考慮周全,這樣才能做到不重不漏,正確解題. 【防范措施】 “至少、至多型”問題不能利用分步計數原理求解,多采用分類求解或轉化為它的對立事件求解 【示例】? 有20個零件,其中16個一等品,4個二等品,若從20個零件中任意取3個,那么至少有1個一等品的不同取法有多少種? 錯因 第二步若取出一等品則與第一步取出的一等品有了先后順序,從而使取法重復. 實錄 按分步原理,第一步確保1個一等品,有C種取法;第二步從余下的19個零件中任意取2個,有C種不同的取法,故共有CC=2 736種取法. 正解 法一 將“至少有1個是一等品的不同取法”分三類:“恰有1個一等品”,“恰有2個一等品”,“恰有3個一等品”,由分類計數原理有:CC+CC+C=1 136(種). 法二 考慮其對立事件“3個都是二等品”,用間接法:C-C=1 136(種). 【試一試】 在10名演員中,5人能歌,8人善舞,從中選出5人,使這5人能演出一個由1人獨唱4人伴舞的節(jié)目,共有幾種選法? [嘗試解答] 本題中的“雙面手”有3個,僅能歌的2人,僅善舞的5人.把問題分為:(1)獨唱演員從雙面手中選,剩下的2個雙面手和只能善舞的5個演員一起參加伴舞人員的選拔;(2)獨唱演員不從雙面手中選拔,即從只能唱歌的2人中選拔,這樣3個雙面手就可以和只能善舞的5個演員一起參加伴舞人員的選拔.故選法種數是CC+CC=245.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高考數學一輪復習 第十一篇 計數原理 第2講排列與組合教案 新人教版 2019 2020 年高 數學 一輪 復習 第十 一篇 計數 原理 排列 組合 教案 新人
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.820124.com/p-2635335.html