齒輪油泵軸的失效分析及優(yōu)化設(shè)計(jì)
齒輪油泵軸的失效分析及優(yōu)化設(shè)計(jì),齒輪,油泵,失效,分析,優(yōu)化,設(shè)計(jì)
圖3-3 疲勞源區(qū)的擦傷條紋
圖3-4 疲勞源區(qū)的條紋形貌
圖3-5 疲勞擴(kuò)展后期的條紋形貌
圖3-6 鍵槽邊緣的金相組織:馬氏體+碳化物+參與奧氏體
圖3-7 1號(hào)斷軸心部組織:板條馬氏體+少量鐵素體
圖3-8 2號(hào)斷軸心部組織:板條馬氏體+粒狀貝氏體+羽毛狀貝氏體+少量碳素體
圖3-1平斷口
圖3-2 斜斷口
課題名稱(chēng) 齒輪油泵軸的失效分析及優(yōu)化設(shè)計(jì)
專(zhuān)業(yè)名稱(chēng) 機(jī)械制造及其自動(dòng)化
學(xué)生姓名
專(zhuān)業(yè)班級(jí)
學(xué)生學(xué)號(hào)
指導(dǎo)老師
設(shè)計(jì)時(shí)間:2006年2月1日--2006年5月31日
摘 要
隨著汽車(chē)工業(yè)的蓬勃發(fā)展,對(duì)汽車(chē)及其零部件的安全可靠性要求也就不斷發(fā)展提高,作為汽車(chē)發(fā)動(dòng)機(jī)的心臟部件油泵,一旦.出現(xiàn)故障,輕則造成汽車(chē)拋錨,重則造成車(chē)毀人亡,給人類(lèi)的生命財(cái)產(chǎn)帶來(lái)嚴(yán)重的危害。而齒輪油泵軸的斷裂又是油泵最容易失效的方式之一。近幾年來(lái),隨著油泵凸端噴射壓力不斷提高,軸斷裂現(xiàn)象更為頻繁發(fā)生,‘占不僅給油泵生產(chǎn)廠(chǎng)商帶來(lái)巨大的經(jīng)濟(jì)損失,還嚴(yán)重地?fù)p害了油泵生產(chǎn)廠(chǎng)商的社會(huì)信譽(yù)。因此盡快找出軸斷裂的原因并提出相應(yīng)的改進(jìn)措施迫在眉睫,具有重要的經(jīng)濟(jì)效益及社會(huì)效應(yīng)。本課題就是分析研究齒輪油泵軸斷裂失效的原因并提出了對(duì)策。本文運(yùn)用失效分析程序圖及失效分析魚(yú)骨圖的方法,從原材料、加工工藝過(guò)程和設(shè)計(jì)強(qiáng)度等角度出發(fā),對(duì)齒輪油泵軸的疲勞斷裂失效原因首次進(jìn)行了詳細(xì)地剖析并提出了一些相應(yīng)的改進(jìn)措施。通過(guò)宏觀和微觀斷口分析,確定凸輪軸的斷裂性質(zhì)為旋轉(zhuǎn)彎曲扭轉(zhuǎn)復(fù)合疲勞斷裂。冷加工過(guò)程中鍵槽部位的加工尖角和熱處理過(guò)程中在鍵槽表面滲層中產(chǎn)生的網(wǎng)狀碳化物直接導(dǎo)致了疲勞裂紋的萌生;由于錐體部位的加工精度太差致使凸輪軸與提前器兩錐面貼合面積小于技術(shù)要求,導(dǎo)致由錐面貼合產(chǎn)生的摩擦力不能滿(mǎn)足傳遞扭矩的要求,使兩錐面產(chǎn)生相對(duì)運(yùn)動(dòng),致使鍵槽受力,從而加劇了己在鍵槽尖角處萌生的微裂紋擴(kuò)展。應(yīng)力計(jì)算表明,軸錐體鍵槽上方處所受的應(yīng)力較大,再加上冷熱加工缺陷在鍵槽處引起的應(yīng)力集中,所以錐體鍵槽上方處最容易萌生疲勞裂紋并快速擴(kuò)展。這也就是疲勞斷裂主要發(fā)生于該部位的原因。熱處理淬火工藝不當(dāng),心部組織中出現(xiàn)大量的未溶鐵素體,羽毛狀上貝氏體和魏氏組織等異常組織,也會(huì)使凸輪軸的疲勞強(qiáng)度及心部韌性急劇下降,促使疲勞裂紋快速擴(kuò)展,最終導(dǎo)致凸輪軸兩種類(lèi)型的斷裂。針對(duì)上述失效原因,提出了以下改進(jìn)措施:(1)在結(jié)構(gòu)允許的條件下,盡可能加大鍵槽底部的圓角過(guò)渡(2)提高冷加工質(zhì)量,增加錐面貼合面積及表面光潔度(3)改進(jìn)熱處理工藝,提高熱處理質(zhì)量。通過(guò)理論分析及反復(fù)試驗(yàn)采用錐體表面涂防滲碳劑新工藝代替原有工藝即錐體高頻退火,取得了令人滿(mǎn)意的效果,軸采用新工藝熱處理半年多來(lái),至今未發(fā)現(xiàn)軸斷裂現(xiàn)象的發(fā)生。
關(guān)鍵詞:軸,表面涂防,斷裂分析,網(wǎng)狀碳化物,疲勞強(qiáng)度,
目 錄
第1章 緒論---------------------------------------------11
1.1油泵的發(fā)展歷史及國(guó)內(nèi)外現(xiàn)狀----------------------------12
1.2油泵系統(tǒng)----------------------------------------------12
1.2.1油泵的作用-----------------------------------------12
1.2.2油泵的組成及工作原理-------------------------------12
1.3機(jī)械失效模式及分析-----------------------------------14
1.3.1機(jī)械失效模式--------------------------------------14
1.3.2機(jī)械斷裂失效的危害性-------------------------------15
1.3.3失效分析的步驟及方法------------------------------16
1.4小結(jié)-------------------------------------------------17
第2章 軸-------------------------------------------------19
2.1軸的結(jié)構(gòu)及工況---------------------------------------19
2.1.1 凸輪軸的結(jié)構(gòu)-------------------------------------19
2.1.2 凸輪軸的工況-------------------------------------20
2.2軸的技術(shù)條件------------------------------------------20
2.2.1 冷加工主要技術(shù)要求-------------------------------21
2.2.2 熱處理技術(shù)要求-----------------------------------21
2.3軸的加工過(guò)程-------------------------------------------24
2.4小結(jié)--------------------------------------------------25
第3章 應(yīng)力分析-------------------------------------------25
3.1強(qiáng)度校核原始條件---------------------------------------25
3.2軸扭矩計(jì)算---------------------------------------------25
3.2.1 計(jì)算工況-------------------------------------------25
3.2.2 凸輪軸受力分析-------------------------------------26
3.2.3 外載荷與慣性力Pj計(jì)算-----------------------------27
3.3彎矩的計(jì)算-------------------------------------------28
3.3.1 側(cè)向力F2的計(jì)算-----------------------------------28
3.3.2 彎矩的計(jì)算----------------------------------------28
3.4危險(xiǎn)截面應(yīng)力的計(jì)算-----------------------------------28
3.4.1 最大切相力計(jì)算----------------------------------29
3.4.2 最大正應(yīng)力的計(jì)算--------------------------------31
3.4.3 主應(yīng)力計(jì)算--------------------------------------31
3.5安全系數(shù)校核-----------------------------------------32
3.5.1 錐柱面交接截面校核------------------------------33
3.5.2 鍵槽截面校核------------------------------------34
3.6小結(jié)-------------------------------------------------34
第4章 綜合分析------------------------------------------34
4.1斷裂性質(zhì)分析-----------------------------------------35
4.2斷裂原因綜合分析-------------------------------------36
4.2.1 疲勞源產(chǎn)生的因素--------------------------------36
4.2.2 疲勞裂紋擴(kuò)展原因分析----------------------------39
4.3小結(jié)-------------------------------------------------45
第5章 改進(jìn)措施-------------------------------------------46
5.1設(shè)計(jì)改進(jìn)---------------------------------------------46
5.1.1提高強(qiáng)度儲(chǔ)備--------------------------------------46
5.1.2優(yōu)化結(jié)構(gòu)設(shè)計(jì)--------------------------------------46
5.2提高冷加工質(zhì)量---------------------------------------48
5.2.1 提高表面光潔度-----------------------------------48
5.2.2 提高錐面的加工精度-------------------------------49
5.3材料選用改進(jìn)-----------------------------------------49
5.4改進(jìn)熱處理工藝---------------------------------------50
5.4.1 工藝改進(jìn)設(shè)想-------------------------------------50
5.4.2 試驗(yàn)方法-----------------------------------------50
5.4.3 試驗(yàn)結(jié)果-----------------------------------------52
5.4.4小結(jié)----------------------------------------------58
設(shè)計(jì)心得----------------------------------------------------58
結(jié)束語(yǔ)------------------------------------------------------59
參考文獻(xiàn)----------------------------------------------------59
第一章 緒論
1. 1.油泵的發(fā)展歷史及國(guó)內(nèi)外現(xiàn)狀
1892年狄賽爾發(fā)明了柴油機(jī),一個(gè)世紀(jì)以來(lái),經(jīng)過(guò)幾代人的努力,柴油機(jī)已經(jīng)發(fā)展成為一個(gè)龐大的家族。在今天的世界上,凡是有人類(lèi)活動(dòng)的地方都有柴油機(jī)在運(yùn)轉(zhuǎn)。柴油機(jī)的心臟就是燃油噴射裝置[1],即通常所說(shuō)的油泵油嘴。
柴油機(jī)用燃油裝置源于1893年魯?shù)婪?狄賽爾發(fā)明的煤粉噴射裝置。開(kāi)始時(shí)試用煤粉作燃料,其后改用石油燃料。1910年英國(guó)維克爾斯(Vickers)公司的佳姆斯.麥克辛(James Mckechnie)發(fā)明無(wú)氣噴射裝置.
1922年德國(guó)Bosch公司開(kāi)始研制柴油噴射裝置,1927年開(kāi)始成批生產(chǎn),并不斷發(fā)展建立了完整的產(chǎn)品體系,成為世界上歷史最悠久,規(guī)模最大的油泵油嘴生產(chǎn)集團(tuán)。
隨后日本杰克賽爾公司和電裝公司,多次從德國(guó)Bosch公司購(gòu)買(mǎi)油泵油嘴制造技術(shù),消化吸收并不斷創(chuàng)新,逐步建立起自身的產(chǎn)品體系,成為世界上最大的油泵油嘴生產(chǎn)集團(tuán)之一。
近幾年來(lái)從柴油機(jī)的發(fā)展品種來(lái)說(shuō),大中型柴油機(jī)都轉(zhuǎn)向以經(jīng)濟(jì)性良好的直噴式為主流。與非直噴式柴油機(jī)相比,直噴式柴油機(jī)的燃燒室大,所以,噴射壓力要求高。另一方面,為了改善噴霧質(zhì)量,噴油壓力也有進(jìn)一步提高的趨勢(shì)。現(xiàn)在許多國(guó)外廠(chǎng)家正在致力于開(kāi)發(fā)能承受更高噴油壓力的噴油泵和高壓共軌燃油噴射裝置。
為了獲得更好的燃油經(jīng)濟(jì)性、操縱性和乘坐舒適性,柴油機(jī)對(duì)燃油噴射裝置提出了更高的要求。為此,人們正在研究引入電控噴油泵。80年代出現(xiàn)了電子控制噴油裝置的柴油機(jī)。
我國(guó)的內(nèi)燃機(jī)工業(yè)起步較世界上其他先進(jìn)國(guó)家晚得多。1908年廣州均和安機(jī)器廠(chǎng)制造出的8HP單臥式煤氣機(jī)為我國(guó)第一臺(tái)內(nèi)燃機(jī),1915年廣州協(xié)同和機(jī)器廠(chǎng)制造出我國(guó)第一臺(tái)柴油機(jī)[2]。在1949年以前我國(guó)的內(nèi)燃機(jī)發(fā)展緩慢,沒(méi)有形成一個(gè)完整的生產(chǎn)體系。經(jīng)過(guò)50多年的建設(shè),內(nèi)燃機(jī)行業(yè)迅速發(fā)展,柴油機(jī)制造廠(chǎng)遍布全國(guó),產(chǎn)品應(yīng)用到汽車(chē)、拖拉機(jī)、工程機(jī)械、船舶等各行各業(yè)。油泵油嘴相應(yīng)地得到了迅速的發(fā)展,主要的專(zhuān)業(yè)生產(chǎn)企業(yè)有100多家以上,組成了一個(gè)行業(yè)。其中威孚集團(tuán)公司就是國(guó)內(nèi)生產(chǎn)規(guī)模最大,生產(chǎn)品種最齊全的專(zhuān)業(yè)生產(chǎn)廠(chǎng)。
1. 2.油泵系統(tǒng)
油泵系統(tǒng)通常由油泵、噴油器和高壓油管組成。
1.2.1.油泵的作用
油泵的作用是根據(jù)柴油機(jī)的工況,將適量的燃油在適當(dāng)?shù)臅r(shí)間內(nèi)以適當(dāng)?shù)男问絿娙肴紵?,形成適合于燃燒的混合氣,滿(mǎn)足柴油機(jī)的性能要求。油泵的作用可以概括為:(1)調(diào)節(jié)噴油量:根據(jù)發(fā)動(dòng)機(jī)的輸出功率將適量的燃油穩(wěn)定地噴入各氣缸;(2)調(diào)節(jié)噴油始點(diǎn):根據(jù)轉(zhuǎn)速、負(fù)荷控制噴油始點(diǎn),保證得到完善的燃燒;(3)形成噴霧:使燃油霧化,且均勻分布到燃燒室空間。它們決定著柴油機(jī)的性能,對(duì)柴油機(jī)的動(dòng)力性、經(jīng)濟(jì)性、排放、噪聲及可靠性、耐久性等都有重要影響。
1.2.2.油泵的組成及工作原理
油泵的基本工作原理及過(guò)程為:首先輸油泵從油箱中吸取燃油,經(jīng)燃油濾清器送入噴油泵的進(jìn)油腔,進(jìn)入油腔后的油通過(guò)進(jìn)油孔被吸入杜塞腔,由齒輪軸推動(dòng)柱塞上升,壓縮柱塞腔中的燃油使出油閥開(kāi)啟,將燃油壓入高壓油管,柱塞的上升速度很快,所以油的壓力很快上升,壓力以音速?gòu)挠捅枚藗飨驀娪妥?。噴油嘴是個(gè)自動(dòng)閥針閥被調(diào)壓彈簧的預(yù)緊力壓緊在座面上,當(dāng)壓力上升到大于調(diào)壓彈簧的預(yù)緊力時(shí)針閥開(kāi)啟,開(kāi)始噴油[1]。油泵是油泵系統(tǒng)的重要組成部分,而凸輪軸是油泵的關(guān)鍵部件。
油泵系統(tǒng)除了為柴油機(jī)提供燃油之外,它還為保證汽車(chē)能正常運(yùn)行而進(jìn)行噴油量調(diào)節(jié)。噴油量的調(diào)節(jié)由調(diào)速器控制口安裝調(diào)速器則是由柴油機(jī)工作的穩(wěn)定性要求所決定的。
柴油機(jī)為了能穩(wěn)定地運(yùn)轉(zhuǎn),它的扭矩必須具有圖1-1所示的扭矩特性,隨著轉(zhuǎn)速上升扭矩減小,柴油機(jī)在外界負(fù)荷阻力扭矩特性和自身輸出扭矩特性相交的轉(zhuǎn)速點(diǎn)平衡,即兩者相等,柴油機(jī)處于穩(wěn)定平衡狀態(tài)。在平衡狀態(tài)下,如果受到某種干擾,則:
(1)若負(fù)荷減小,轉(zhuǎn)速上升,則柴油機(jī)的輸出扭矩減小,結(jié)果外界負(fù)荷的阻力扭矩大于柴油機(jī)的扭矩,柴油機(jī)就會(huì)降速,向穩(wěn)定轉(zhuǎn)速恢復(fù),回復(fù)到平衡位置。
(2)若負(fù)荷增加,轉(zhuǎn)速下降,則柴油機(jī)的輸出扭矩增大,柴油機(jī)的轉(zhuǎn)速就會(huì)上升,重新回復(fù)到平衡位置。
綜上所述,無(wú)論受到什么樣的干擾,總有一種回復(fù)到平衡位置的作用力存在,
這種力就是通過(guò)油泵改變每個(gè)循環(huán)的噴油量來(lái)實(shí)現(xiàn)的。其過(guò)程是:柴油機(jī)通過(guò)提前器等部件把扭矩傳遞給油泵凸輪軸,帶動(dòng)凸輪軸轉(zhuǎn)動(dòng),凸輪軸轉(zhuǎn)動(dòng)時(shí)通過(guò)挺柱體推動(dòng)柱塞上升,通過(guò)改變柱塞斜槽的位置調(diào)節(jié)噴油量。
圖1-1 發(fā)動(dòng)機(jī)的穩(wěn)定平衡狀態(tài)
整個(gè)油泵的結(jié)構(gòu)如圖1-2所示。軸在油泵中位于泵體的下部,由兩個(gè)圓錐滾子軸承支承,其前端裝有一提前器,后端與調(diào)速器相連。軸上有若干個(gè)凸輪(與發(fā)動(dòng)機(jī)汽缸數(shù)相同,本課題研究的對(duì)象為6個(gè)凸輪),中部還有一個(gè)驅(qū)動(dòng)輸油泵的偏心輪。凸輪外形采用緩降切線(xiàn), 故軸不能反轉(zhuǎn)使用。柴油機(jī)工作時(shí)通過(guò)提前器等部件把動(dòng)力傳遞給凸輪軸的驅(qū)動(dòng)端,由驅(qū)動(dòng)端帶動(dòng)整個(gè)油泵工作,因此軸工作時(shí)驅(qū)動(dòng)端受力最大,軸斷裂基本上也都發(fā)生在驅(qū)動(dòng)端。軸的斷裂是機(jī)械失效模式的一種,因此有必要對(duì)失效分析的一些機(jī)理及方法作一介紹。
1. 3.機(jī)械失效模式及失效分析
1. 3. 1,機(jī)械失效模式
機(jī)械失效就是機(jī)械零件在服役過(guò)程中喪失其規(guī)定的功能不能繼續(xù)可靠地服役。一般有三種形式:C1)完全喪失功能,如零件的斷裂。(2)功能退化,如達(dá)不到原設(shè)計(jì)指標(biāo)(3)嚴(yán)重的損傷不能保證可靠性和安全性。根據(jù)失效的表現(xiàn)形式,通常可將實(shí)際中發(fā)生的各種失效現(xiàn)象分為三大類(lèi):斷裂、表面損傷和過(guò)量變形。
1. 3. 1. 1.斷裂失效
根據(jù)零件斷裂前的變形不同,可將斷裂分為塑性斷裂和脆性斷裂兩類(lèi)。脆性斷裂包括疲勞斷裂、應(yīng)力腐蝕斷裂、氫脆和靜載延遲斷裂等,但疲勞斷裂和靜載延遲斷裂與一般斷裂又不盡相同,因此可將疲勞斷裂和靜載延遲斷裂從脆性斷裂中獨(dú)立出來(lái)。這樣,斷裂失效可分為四種類(lèi)型:
1.塑性斷裂失效。塑性斷裂失效是指斷裂前宏觀上經(jīng)過(guò)明顯塑性變形的斷裂。
2.脆性斷裂失效。脆性斷裂失效是指斷裂前宏觀上沒(méi)有明顯變形的斷裂。
3.疲勞斷裂失效。疲勞斷裂失效是指零件在交變載荷作用下產(chǎn)生的斷裂。在斷裂失效中,疲勞斷裂占有很大的比重。根據(jù)載荷、變形的不同,勞斷裂可分為高周疲勞斷裂、低周疲勞斷裂、沖擊疲勞斷裂等類(lèi)型。凸輪軸的斷裂從宏觀斷口初步分析即屬于此類(lèi)斷裂。
4.靜載延遲斷裂失效靜載延遲斷裂失效是零件在靜載荷和環(huán)境(如腐蝕、溫度、幅照等)的聯(lián)合作用下而引起與時(shí)間有關(guān)的斷裂失效如應(yīng)力腐蝕、氫脆、蠕變斷裂等。
1. 3.1 2.表面損傷失效
零件的表面損傷失效可由腐蝕和磨損而引起。腐蝕是指零件表面在周?chē)橘|(zhì)作用下山于化學(xué)變化、電化學(xué)變化或物理溶解而引起的破壞。磨損、是指零件表面在互相接觸的狀態(tài)下運(yùn)動(dòng)因摩擦等因素引起的金屬小顆粒逐漸從表面脫落的一種破壞現(xiàn)象。軸凸輪表面的失效模式即為磨損失效,但不作為本課題研究的內(nèi)容。
1. 3. 1. 3.過(guò)量變形失效
過(guò)量變形失效是指零件在載荷作用下其尺寸和形狀的變化超過(guò)了所允許的范圍從而導(dǎo)致零件不能完成預(yù)定的功能或妨礙了其他零件的正常運(yùn)行。過(guò)量變形失效分為由于零件的剛度不足或因溫度升高而引起彈性模量降低而造成的彈性變形失效和由于外加應(yīng)力超過(guò)零件的屈服極限而造成的塑性變形失效兩種。
1. 3. 2.機(jī)械斷裂失效的危害性
斷裂是工程構(gòu)件最危險(xiǎn)的失效方式。斷裂不僅能造成重大經(jīng)濟(jì)損失而且往往導(dǎo)致機(jī)毀人亡的災(zāi)難性后果。特別是航空、航天、原子能、汽車(chē)和拖拉機(jī)、動(dòng)力機(jī)械和化工機(jī)械等,由斷裂造成的事故屢見(jiàn)不鮮。例如:1973年英國(guó)德貝夏馬坎山煤礦由于剎車(chē)桿疲勞斷裂造成豎井罐籠墜毀失事,死亡18人川。1967年美國(guó)西弗吉尼亞一橋梁由于一拉桿孔邊緣由于應(yīng)力腐蝕、疲勞或腐蝕疲勞形成裂紋造成的脆性斷裂失事,死亡46人["] 0 1982年美國(guó)標(biāo)準(zhǔn)局估計(jì),斷裂失效在美國(guó)每年能造成1190億美元的損失。其中很大一部分?jǐn)嗔芽梢酝ㄟ^(guò)現(xiàn)代防斷裂技術(shù)的應(yīng)用加以防止,從而可挽回超過(guò)600億美元的損失[[,]我國(guó)每年因斷裂造成的損失也十分巨大,僅就大型電站鍋爐的過(guò)熱器、省煤器、水冷壁和再熱器管的爆漏一項(xiàng)統(tǒng)計(jì),四管的爆漏導(dǎo)致大型火電機(jī)組的停用約占非計(jì)劃停用時(shí)間的40%,占鍋爐設(shè)備非計(jì)劃停用時(shí)間的70%。因此,對(duì)機(jī)械零件進(jìn)行失效分析,研究斷裂的規(guī)律和機(jī)理,減少和避免斷裂的發(fā)生,一直是工程技術(shù)人員努力的目標(biāo)。正因?yàn)槿绱耍菊n題對(duì)凸輪軸進(jìn)行斷裂失效分析,具有十分重要的經(jīng)濟(jì)效益和社會(huì)效益。
1. 3. 3.失效分析的步驟及方法
由于機(jī)器零件的失效嚴(yán)重危及人們的生命財(cái)產(chǎn)安全,迫使人們不得不開(kāi)展對(duì)各種失效過(guò)程進(jìn)行分析研究,以求弄清失效的本質(zhì)、產(chǎn)生的原因以及預(yù)防的措施。本課題對(duì)軸失效分析的核心是找出引起其失效的原因與對(duì)策。
1. 3. 3. 1失效分析的程序及步驟
任何失效分析原則上都可以分為現(xiàn)場(chǎng)調(diào)查、實(shí)驗(yàn)室分析研究和失效的事后處理三個(gè)階段[H]。失效分析的基本程序框圖如圖1-3所示。
1.調(diào)查階段
該階段的主要目的是了解失效的過(guò)程,收集斷口,通過(guò)宏觀分析或殘骸拼湊分析等,初步確定或判斷首先斷裂的主斷口、斷口的性質(zhì)和失效的類(lèi)型等。并收集與失效有關(guān)的背景資料:如有關(guān)的說(shuō)明書(shū)、圖紙、零件的加工工藝、服役歷史以及操作記錄等,以備綜合分析時(shí)參考。
2.實(shí)驗(yàn)室分析研究
實(shí)驗(yàn)室分析研究的目的是為確定斷裂的性質(zhì)、失效的類(lèi)型、引起失效的原因提供充分的證據(jù)。根據(jù)凸輪軸的斷裂情況,實(shí)驗(yàn)室研究主要包含以下內(nèi)容:
(1).宏觀斷口分析:用肉眼或借助放大倍數(shù)約10倍的放大鏡進(jìn)行。通過(guò)宏觀斷 口分析,進(jìn)一步確定主斷口,判斷斷口的性質(zhì),尋找裂紋源等,為其它分析作準(zhǔn)備。
(2).金相檢驗(yàn):用以進(jìn)行裂紋分析和材料的組織分析,確定引起凸輪軸斷裂失效的內(nèi)部原因。
(3)化學(xué)分析:確定斷裂凸輪軸的實(shí)際化學(xué)成分是否合格。
(4)機(jī)械性能分析:用以測(cè)定斷裂齒輪軸的實(shí)際機(jī)械性能是否符合設(shè)計(jì)要求。
(5)掃描電鏡分析:用以確定斷口的微觀斷裂機(jī)制。
(6)應(yīng)力分析:采用理論計(jì)算確定齒輪軸所受應(yīng)力的大小,并進(jìn)行強(qiáng)度校核。
對(duì)實(shí)驗(yàn)得出的各種結(jié)果,進(jìn)行最后的綜合分析,將設(shè)計(jì)、材料與工藝相結(jié)合,
結(jié)構(gòu)強(qiáng)度與材料強(qiáng)度相結(jié)合,宏觀與微觀相結(jié)合,試驗(yàn)室規(guī)律性試驗(yàn)與生產(chǎn)實(shí)際相結(jié)合。對(duì)于重大的失效分析,還要進(jìn)行模擬試驗(yàn)或臺(tái)架試驗(yàn),以證實(shí)分析結(jié)果是否正確。本課題限于時(shí)間,不再進(jìn)行模擬試驗(yàn)。
3.失效事后處理
本階段主要是對(duì)失效分析的過(guò)程、失效原因和預(yù)防措施進(jìn)行總結(jié),提出失效分析報(bào)告。
1. 3. 3. 2.失效分析的方法
在失效分析中,零件失效與引起失效的原因之間可以用很多種方法聯(lián)系起來(lái),對(duì)于各種原因之間有一定的邏輯關(guān)系或各種原因之間需用定量關(guān)系進(jìn)行評(píng)價(jià)時(shí),可采用故障樹(shù)法;若各種原因之間沒(méi)有一定的邏輯關(guān)系則可采用故障樹(shù)的演變產(chǎn)物--魚(yú)骨圖法也稱(chēng)特征要因圖法進(jìn)行。
所謂“特征”,是指失效或異?,F(xiàn)象,“要因”是指引起失效或故障的因素及原因?!疤卣鳌庇弥鳁U箭頭表示,“要因”用分支箭頭表示,就構(gòu)成了特征要因圖或失效魚(yú)骨圖。特征要因圖與故障樹(shù)法相比,其優(yōu)點(diǎn)是不用考慮各因素之間的邏輯關(guān)系,因而繪制起來(lái)比較靈活。在國(guó)外,尤其是日本,特征要因圖廣泛應(yīng)用于產(chǎn)品質(zhì)量管理和失效分析中。近幾年來(lái),在我國(guó)也得到了廣泛的應(yīng)用。
本課題研究中采用失效分析魚(yú)骨圖即特征要因圖的方法。對(duì)凸輪軸的斷裂原因的分析主要從以下幾方面考慮:原材料、設(shè)計(jì)、冷熱加工工藝、裝配及使用等。具體的失效分析的魚(yú)骨圖如圖1-4所示。根據(jù)測(cè)試分析結(jié)果,消去不存在因素,留下來(lái)的因素即為凸輪軸斷裂失效的原因。
1.4小結(jié)
1.油泵中關(guān)鍵零件凸輪軸的早期斷裂導(dǎo)致油泵失效,使柴油機(jī)無(wú)法正常運(yùn)轉(zhuǎn),給生產(chǎn)帶來(lái)嚴(yán)重的經(jīng)濟(jì)損失。
2. 齒輪軸斷裂屬于機(jī)械失效。機(jī)械失效分析方法擬采用特征要因圖法。失效分析可通過(guò)調(diào)查研究、實(shí)驗(yàn)室分析和事后處理三個(gè)階段進(jìn)行。
圖1-3 失效分析基本程序圖
圖1-4 齒輪軸斷裂失效分析魚(yú)骨圖
第二章齒輪軸
本章著重介紹分析凸輪軸的原始條件、服役工況及加工過(guò)程。
2. 1. 齒輪軸的結(jié)構(gòu)及工況
圖2-1齒輪軸結(jié)構(gòu)示意圖
2. 1. 1. 齒輪軸的結(jié)構(gòu)
如第一章圖1-2所示,齒輪軸位于泵體的下部,由兩個(gè)圓錐滾子軸承支承,其前端與提前器相連,后端與調(diào)速器相連,齒輪軸兩端為帶半圓.鍵槽的錐體,其中與提前器的內(nèi)錐面貼合的通常稱(chēng)為驅(qū)動(dòng)端,驅(qū)動(dòng)端通過(guò)提前器與聯(lián)軸器等部件與柴油機(jī)連接。另一端通過(guò)錐面與調(diào)速器相聯(lián),稱(chēng)為調(diào)速端。齒輪軸的結(jié)構(gòu)及外形。
2. 1. 2. 齒輪軸的工況
齒輪軸通過(guò)提前器、聯(lián)軸器等部件與柴油機(jī)相連。由柴油機(jī)及油泵的結(jié)構(gòu)可知,柴油機(jī)的動(dòng)力是通過(guò)聯(lián)軸器、提前器等部件傳遞給油泵凸輪軸的,具體過(guò)程為:柴油機(jī)的動(dòng)力通過(guò)齒輪傳動(dòng)把動(dòng)力傳遞給聯(lián)軸器,聯(lián)軸器把動(dòng)力傳遞給提前器,由提前器再把動(dòng)力傳遞給凸輪軸的驅(qū)動(dòng)端,提前器與軸間的扭矩傳遞是靠凸輪軸與提前器的錐面貼合產(chǎn)生的摩擦力來(lái)完成的,摩擦正壓力靠凸輪軸頂端的螺帽擰緊產(chǎn)生。因此在軸的驅(qū)動(dòng)端要受到扭矩的作用,同時(shí)柴油機(jī)的扭矩是通過(guò)齒輪傳遞過(guò)來(lái)的,齒輪會(huì)產(chǎn)生側(cè)向力,所以凸輪軸還會(huì)受到由于側(cè)向力而產(chǎn)生的彎矩的作用。而凸輪軸的調(diào)速端則主要是帶動(dòng)調(diào)速器工作,因此受力很小。凸輪軸在兩個(gè)支承點(diǎn)之間除了受到驅(qū)動(dòng)力矩的作用之外,齒輪軸還不斷循環(huán)往復(fù)地受到泵端壓力、柱塞彈簧力和慣性力的作用,因此整根齒輪軸在兩個(gè)支承點(diǎn)之間除了受到扭轉(zhuǎn)力矩的作用外,還受到彎曲力矩的作用。
2. 2. 齒輪軸的技術(shù)條件
2. 2. 1冷加工主要技術(shù)要求
1.由于軸是靠?jī)慑F面貼合的摩擦力來(lái)傳遞扭矩,為了保證有足夠的接觸面積來(lái)傳遞扭矩,因此工藝要求磨削加工結(jié)束后,兩個(gè)錐面的貼合面積不得小于800
2.軸兩端的錐體上開(kāi)有半圓鍵槽,在鍵槽缺口處容易產(chǎn)生應(yīng)力集中,為了有效地降低應(yīng)力集中的敏感性及應(yīng)力集中系數(shù),提高錐體部位的強(qiáng)度,工藝要求半圓鍵槽的根部有r為0. 4士a. z二的圓角。
3.錐面與圓柱面交界處要求平滑過(guò)渡。
2. 2. 2。熱處理技術(shù)要求
2. 2. 2. 1.材料
由前面齒輪軸的服役工況可知,軸的凸輪部位與錐體部位受力不同,因此熱處理后有不同的硬度要求。凸輪部位要求有很高耐磨性,所以該部位要求有很高的硬度,而在錐體部位則要承受循環(huán)扭矩和彎矩的作用,因此該部位要求有很好的強(qiáng)韌性結(jié)合,所以要求中硬度。為了滿(mǎn)足同一零件不同部位的多種硬度要求,在機(jī)械設(shè)計(jì)中,常選用低碳鋼通過(guò)表面處理來(lái)達(dá)到要求,凸輪軸即如此材料為20Cr鋼,具體的化學(xué)成分滿(mǎn)足GB3077-880凸輪軸用20Cr鋼能很好地滿(mǎn)足冷加工工藝性、熱處理工藝性、熱處理后要達(dá)的性能要求。這是因?yàn)?0Cr鋼是在20鋼的基礎(chǔ)上,為了提高其性能,加入0. 7-1. 00}的Cr而成。20Cr鋼工藝性能優(yōu)良,鍛造正火后具有良好的切削加工性,下火后的硬度為(156-207) HB。切削性能較好,表面光潔度高。由于鉻的加入,提高了鋼的淬透性,而且鉻又是強(qiáng)化鐵素體的元素,溶于鐵素體中亦可起強(qiáng)化作用,因此提高了凸輪軸滲碳后的心部強(qiáng)度。由于淬透性提高,在淬火時(shí)即可采用較緩和的冷卻劑冷卻(冷卻介質(zhì)為硝)),從而還可以減小齒輪軸的淬火變形。鉻與碳的親和力較大,又能促使?jié)B碳層表面含碳量趨于飽和,增加碳濃度梯度,使?jié)B碳速度增加,從而使齒輪軸在滲碳和淬火后具有較高的硬度和較好的耐磨性。正是由于碳和鉻的親和力較大,這種鋼在滲碳層中易在齒輪軸的表面形成網(wǎng)狀碳化物,故滲碳時(shí)應(yīng)嚴(yán)格控制
滲碳爐內(nèi)的氣氛碳勢(shì)。20Cr鋼雖然是本質(zhì)細(xì)晶粒鋼,但在滲碳溫度下長(zhǎng)期加熱滲碳,晶粒也會(huì)顯著長(zhǎng)大,故齒輪軸滲碳后不能直接淬火。為了克服滲碳帶來(lái)的各種缺陷,細(xì)化晶粒,進(jìn)一步提高心部的強(qiáng)度及韌性,為后續(xù)熱處理做組織準(zhǔn)備,因此在滲碳后要進(jìn)行正火。然后再重新加熱淬火。
2.2.2.2.熱處理工藝要求
齒輪軸的整個(gè)熱處理過(guò)程為: 齒輪軸先滲碳,滲碳后正火,正火后再淬火回火,然后再對(duì)軸的錐體進(jìn)行高頻退火。滲碳的目的是通過(guò)增加軸表面的碳含量,使齒輪軸在隨后的淬火處理后獲得很高的表面硬度及耐磨性,滿(mǎn)足齒輪表面的技術(shù)要求。而在軸的心部仍舊保持了20Cr鋼原始的低碳含量,使齒輪軸的心部在淬火處理后仍具有很高的韌性。滲碳后加一道正火工序是為了消除滲碳后形成的網(wǎng)狀碳化物等組織缺陷,細(xì)化晶粒,進(jìn)一步提高心部的強(qiáng)韌性,為淬火作組織儲(chǔ)備。軸淬火的目的是為了提高表面的硬度、強(qiáng)度、耐磨性,獲得合適的組織結(jié)構(gòu)。軸淬火后,雖然具有很高的硬度,但也帶來(lái)很大的淬火應(yīng)力,齒輪軸表面淬火后形成的高碳針狀馬氏體還具有很高的脆性,因此不能直接使用,所以必須通過(guò)回火來(lái)消除淬火應(yīng)力,適當(dāng)?shù)臏p低強(qiáng)度,減少脆性,提高韌性,同時(shí)還可提高尺寸穩(wěn)定性,這樣齒輪表面在滲碳淬火后就可以得到很高的硬度和很高的耐磨性來(lái)滿(mǎn)足齒輪部位的技術(shù)要求。而錐體部位在高頻退火后就可以把滲碳淬火后的高硬度降下來(lái),達(dá)到中硬度的要求。熱處理各工序的工藝參數(shù)分別如圖z-z所示。
2. 2. 2. 3.硬度及滲碳層深度
1.硬度
余屬的硬度反映了金屬抗侵入能力,它不僅與材料的靜強(qiáng)度、疲勞強(qiáng)度存在近似的經(jīng)驗(yàn)關(guān)系,還與冷成型性、切削性等工藝性能存在某些聯(lián)系,因此硬度對(duì)于控制材料的冷熱加工質(zhì)量有一定的參考意義[}y}。在熱處理生產(chǎn)過(guò)程中常把硬度作為檢驗(yàn)熱處理質(zhì)量的指標(biāo)之一,同時(shí)硬度檢測(cè)還具有快速直觀準(zhǔn)確的特點(diǎn),因此軸也可采用硬度法來(lái)檢驗(yàn)其熱處理質(zhì)量。
由軸的工作原理可知:軸的齒輪在工作時(shí)要不斷交替推動(dòng)滾輪仁升,因此齒輪表面在工作時(shí)就要不斷受到滾輪循環(huán)接觸應(yīng)力的作用。因滾輪是采用軸承鋼材料經(jīng)熱處理淬火制成的,具有很高的硬度,為了保證與滾輪接觸的齒輪表面有足夠的硬度和接觸疲勞強(qiáng)度,防止早期剝落和磨損而影響軸的正常工作,所以齒輪表面要求有很高的硬度和耐磨性,因此齒輪表面熱處理后的硬度要求大于601IRCo磨削加工后的成品凸輪表面要求大于58HRCo
從軸的工況分析,我們知道到軸兩端的錐體部位主要受到扭矩和彎矩的作用,但在汽車(chē)工況突變還會(huì)受到一定的沖擊載荷的作用,因此軸的錐體部位要求有很好的韌性,但是若過(guò)分強(qiáng)調(diào)塑韌性而忽略強(qiáng)度硬度要求,就有可能導(dǎo)致強(qiáng)度及多沖抗力不足,所以錐體部位熱處理后的硬度要求處于中硬度范圍,要求為30-45HRC。一般的工程結(jié)構(gòu)材料處于該硬度范圍時(shí)具有很好的強(qiáng)韌性。
2.滲碳層深度
對(duì)于進(jìn)行滲碳處理的零部件其滲碳層的深度會(huì)直接影響到它的使用性能,尤其是對(duì)于軸等受扭轉(zhuǎn)或彎曲載荷作用的零件,表面應(yīng)力最大,應(yīng)力沿半徑向心部逐漸減弱。為了使零件能持續(xù)工作,要求零件滲層深度能使傳遞到心部的應(yīng)力低于心部強(qiáng)度,若應(yīng)力大于材料的屈服極限,將會(huì)產(chǎn)生塑性變形。卸載后滲層彈性變形恢復(fù),而心部卻不能恢復(fù),在交變載荷的循環(huán)作用下,滲層與心部的交界處就會(huì)產(chǎn)生裂紋,并逐步擴(kuò)展,所以對(duì)于心部強(qiáng)度較低的鋼,采用增加滲層厚度的辦法可顯著提高疲勞強(qiáng)度。但滲層深度不可過(guò)深,因?yàn)闈B層深度的增加往往伴隨表面碳濃度的提高,致使大塊碳化物及殘余奧氏體量增加,導(dǎo)致疲勞強(qiáng)度和沖擊韌性反而降低。可見(jiàn)根據(jù)零件的使用要求,選擇合適的滲碳層深度是必要的。
日常設(shè)計(jì)零件的滲碳層深度時(shí),大都采用經(jīng)驗(yàn)或經(jīng)驗(yàn)公式計(jì)算方法。美國(guó)金屬學(xué)會(huì)(ASM)推薦可根據(jù)載荷的大小選擇滲碳層深度,其參考值如表3-2所示!
齒輪軸滲碳層深度的選擇既考慮了載荷因素,又兼顧了多年的生產(chǎn)實(shí)際經(jīng)驗(yàn)。由于齒輪軸受交變負(fù)荷的作用,所受的力是交變彎扭復(fù)合應(yīng)力,所以要求齒輪軸具有很高的疲勞強(qiáng)度和沖擊韌性。齒輪軸的材料是20Cr鋼,熱處理淬火時(shí)以硝鹽作為冷卻介質(zhì),淬火后心部強(qiáng)度不高,為了獲得高的疲勞強(qiáng)度及沖擊韌性,就要求有足夠的滲碳層深度。凸輪軸表面滲碳后滲碳層的深度要求為1. 2-2. Ommo磨削加工后要求滲碳層大于0. 9mmo
表2-2 按照載荷的大小選擇滲碳硬化層深度
2.2.2.4金相組織
齒輪軸是滲碳淬火件,為了保持齒輪表面滲碳后較高的疲勞強(qiáng)度和耐磨性,同時(shí)心部能保持足夠的強(qiáng)度和韌性,對(duì)滲層中的碳化物的形態(tài)、分布和大小,殘余奧氏體含量及心部的組織都有嚴(yán)格的要求。技術(shù)條件要求表面不允許出現(xiàn)網(wǎng)狀碳化物及大量的殘余奧氏體,心部不能出現(xiàn)大量的未溶鐵素體、上貝氏體及魏氏組織等異常組織。
2.3齒輪軸的加工過(guò)程
由于齒輪軸的形狀復(fù)雜,為了提高材料的利用率,采用棒料鍛造成型或熱擠成型,成型后正火,熱處理正火的目的是為了消除由于鍛造造成的各種缺陷,均勻和細(xì)化鍛造組織,消除鍛造應(yīng)力,保持一定的硬度范圍,得到良好的切削加工性能和高的表面光潔度。正火后進(jìn)行粗加工,粗加工結(jié)束后再進(jìn)行熱處理滲碳。由于長(zhǎng)時(shí)間的滲碳常在零件表面產(chǎn)生各種缺陷如表面網(wǎng)狀碳化物和較大的變形,所以滲碳后還須進(jìn)行一次正火和校直,正火后重新加熱淬火。又由于齒輪軸是細(xì)長(zhǎng)零件淬火后也會(huì)產(chǎn)生較大的變形,因此還需要進(jìn)行校直,校直后再進(jìn)行回火,回火結(jié)束后再對(duì)兩端錐體部位進(jìn)行高頻退火,至此熱處理工序全部結(jié)束,然后轉(zhuǎn)入磨削加工,直到磨成成品。整個(gè)加工流程如圖2-3所示。
圖2-3 齒輪軸的加工流程圖
2.4小結(jié)
1.齒輪軸是油泵的關(guān)鍵部件,它位于泵體的下端,由兩個(gè)軸承支承,軸上有1個(gè)凸輪和1個(gè)偏心輪,兩端為帶有鍵槽的錐體(錐度為1: 5),其驅(qū)動(dòng)端與提前器相連,調(diào)速端與調(diào)速器相連。
2.齒輪軸的驅(qū)動(dòng)端受到彎扭復(fù)合力的作用,受力最大:調(diào)速端受力很小,而在兩支承點(diǎn)之間除了受到扭矩的作用外,還要受到泵端壓力、柱塞彈簧力和慣性力的作用。
3.齒輪軸采用20Cr材料模鍛成型,熱處理工藝采用滲碳淬火處理。
第三章應(yīng)力分析
應(yīng)力分析是根據(jù)零件的大小、形狀以及載荷等因素,采用理論應(yīng)力計(jì)算或?qū)嶒?yàn)驗(yàn)證的方法確定條件中的應(yīng)力大小,從強(qiáng)度方面分析失效的原因及提出預(yù)防措施.本課題中對(duì)齒輪軸通過(guò)理論應(yīng)力分析進(jìn)行強(qiáng)度校核。
由于齒輪軸斷裂的部位都位于錐柱面交界的錐體處,因此本課題主要對(duì)錐體部位進(jìn)行強(qiáng)度校核。
3.1強(qiáng)度校核原始條件
由齒輪軸的結(jié)構(gòu)及工況可知: 齒輪軸工作時(shí),要不斷推動(dòng)滾輪上升,滾輪再推動(dòng)柱塞上升,齒輪軸所受的載荷由泵端壓力通過(guò)柱塞產(chǎn)生的作用力PP,慣性力PJ,柱塞彈簧力Pz組成,合力為P。合力P通過(guò)滾輪作用在凸輪上。
如前所述,錐體部分除了受到柴油機(jī)傳遞過(guò)來(lái)的驅(qū)動(dòng)扭矩M,的作用之外,還要受到柴油機(jī)齒輪的側(cè)向分力而產(chǎn)生的彎矩的作用。設(shè)側(cè)向力為F1彎矩為M,o齒輪軸工作時(shí)驅(qū)動(dòng)端要傳遞動(dòng)力,受力最大,也是斷裂部位所在端。所以,下面只對(duì)驅(qū)動(dòng)端進(jìn)行強(qiáng)度計(jì)算。
從前面的敘述可知,驅(qū)動(dòng)扭矩的循環(huán)特征值R>0;最小應(yīng)力很小,可忽略不計(jì)。本文按R=0計(jì)算,即把驅(qū)動(dòng)扭矩變化按脈動(dòng)循環(huán)處理。
3.2 齒輪軸扭矩計(jì)算
3.2.1 計(jì)算工況
取滾輪與齒輪在切線(xiàn)終點(diǎn)處的接觸點(diǎn)為計(jì)算位置,因?yàn)檫@一位置接近于最大泵端壓力出現(xiàn)的位置,并且這一位置角。為最大,因此齒輪軸此時(shí)受力最大。
本課題所計(jì)算得齒輪軸:齒輪升程為11mm。
則a+b=60,b=25 所以a=35
3.2.2齒輪軸受力分析
齒輪軸的受力簡(jiǎn)圖如圖3-1
圖3-1 齒輪軸受力簡(jiǎn)圖
如圖所示,可得:
F1=P/cosa
由平衡條件:
ΣY=0,得:
P=Ra+Rb
ΣZ=0,得:
F1=Ra-Rb+Ptana
ΣMx=0,得:
Mr=F1*S
Σmy=0
F2*L1=Rb*L
式中:
P—垂直外力總和
Ra、Rb---兩端軸承對(duì)齒輪軸支座垂直反力
Ra’,Rb’----兩端軸承對(duì)齒輪軸支坐水平反力
F1-----------滾輪對(duì)齒輪的作用力
Mr----------驅(qū)動(dòng)扭矩
S------------F1到齒輪中心的距離
S=(R+r+h)*sina
R------------齒輪基圓半徑
r-------------滾輪半徑
h------------計(jì)算位置的齒輪升程
h=5.2986mm
L------------兩軸承支坐之間的距離
L1----------計(jì)算截面到軸承支坐的距離
3.2.3.外載荷與慣性力PJ計(jì)算
PPG+AP,十PJ
式中:P--泵端壓力通過(guò)柱塞產(chǎn)生的作用力
P--柱塞彈簧的作用力
P--運(yùn)動(dòng)部件的慣性力
3.2.3.1柱塞作用力Pp
泵端壓力p。作用在直徑為d的柱塞上,泵端壓力p}=600bar,柱塞直徑
d=9. 5mm,
故 PN=pm·} d2/4=4249. 07N
lbar=1.02 X 9. 8 X 10-ZN/mm}
3.4 3.2柱塞彈簧作用力PZ
設(shè)彈簧剛度為K} K =3. 67 X 9. 8 N/mm,在計(jì)算位置處彈簧的壓縮量為7. 3mma
故 Px -K·} -262. 5N
3.2.3.3慣性力Pf
取油泵轉(zhuǎn)速,1500rpm時(shí)的加速度進(jìn)行計(jì)算
p=W·a/g
式中: g--重力加速度
a--運(yùn)動(dòng)部件加速度
W--運(yùn)動(dòng)部件重量
計(jì)算可得:
PJ=310. 3N
則 P= Pp+Pz+Pj=4821.9N
代入式(4-1)得:
F1=P/cosa=5886.4N
代入式(4-4):得
Mk= F1.S=F1·(R+r+h)·sin a =98. 9N·m
3.3彎矩的計(jì)算
由受力簡(jiǎn)圖可知,山于側(cè)向力F,凸輪軸的驅(qū)動(dòng)端還受到彎矩的作用。
3.3.1側(cè)向力FZ的計(jì)算
柴油機(jī)齒輪傳遞給油泵凸輪軸的扭矩就是凸輪軸的驅(qū)動(dòng)扭矩MH,所以齒輪的側(cè)向嚙合力F2為:
F2= Mr /a
式中a為齒輪的半徑,a=105mm
計(jì)算可得
F2=941. 9N
3.3.2彎矩的計(jì)算
齒輪嚙合力F2移至齒輪軸軸線(xiàn)上的側(cè)向力,使凸輪軸產(chǎn)生彎曲,驅(qū)動(dòng)端截面上的彎矩為:
M=FZ. x
式中:、一為齒輪中心到所計(jì)算截面的距離,從上式可以看出,當(dāng)F:不變時(shí),彎矩M,隨著x而增加。齒輪軸的錐體部位在圓
錐面與圓柱面交界處x最大,在該截面上受到的彎矩最大。計(jì)算中心截面離齒輪中
心的距離x=280mm,因此,計(jì)算可得,該截面所受的彎矩
Mw,ax=263.7 N·m
3.4危險(xiǎn)截面應(yīng)力的計(jì)算
3.4.1最大切應(yīng)力計(jì)算
在計(jì)算過(guò)程中假設(shè)齒輪軸工作時(shí)提前器內(nèi)錐面與齒輪軸錐面處于全面貼合壓緊狀態(tài),即齒輪軸承受的力矩是在整個(gè)錐面范圍內(nèi)通過(guò)摩擦力f逐漸加上的。
為了計(jì)算方便,如圖3-2把錐體置于直角坐標(biāo)系中,坐標(biāo)系原點(diǎn)在錐角頂點(diǎn),錐臺(tái)小端半徑即齒輪軸錐體小端半徑為R1=6. 6rnm,其橫坐標(biāo)為x,,錐臺(tái)大端半徑即齒輪軸錐體大端為R2= 10. 0mm,橫坐標(biāo)為X2o鍵槽半徑為8mm,鍵槽垂直于母線(xiàn)方向的最大深度為9. 9mm,鍵槽的寬度b為5mmo
圖3-2 錐臺(tái)坐標(biāo)系
首先計(jì)算錐體段截面上驅(qū)動(dòng)端的扭矩。
設(shè)單位面積上的摩擦力為f,則摩擦力矩元dm。為:fds·R, dm,對(duì)整個(gè)錐面的積
分即為,急摩擦力矩Mf
由式((4-6)可得:在理想貼合狀態(tài)下,錐體截曲上最大應(yīng)力T。。、隨半徑R增大而增大,即在錐柱面交界受到的應(yīng)力最大。
由此可計(jì)算:
1.半徑為R=10. 0二時(shí),即在凸輪軸錐柱面交界處,此處的抗扭截面模量為:
2.考慮鍵槽的影響,鍵槽部位的抗扭截面模量應(yīng)為:
在鍵槽最深處,錐體截面的承載面積最小度t=4. 9mm代入式(4-7)計(jì)算得:
T max2=49. 9/mm2
從以上兩個(gè)不同位置的應(yīng)力計(jì)算可以看出,凸輪軸在錐體上端錐柱面交接處所受的切應(yīng)力最大。
3.4.2最大正應(yīng)力的計(jì)算
1.錐柱面交界處最大正應(yīng)力
2.考慮鍵槽的影響,鍵槽部位的抗彎截面模量應(yīng)為:
從上面的計(jì)算可以看出,凸輪軸錐體上在錐柱面交界處受到的應(yīng)力最大,即危險(xiǎn)截面在錐柱面交界處,這也就說(shuō)明了斷裂為什么主要都發(fā)生在錐柱面交界附近。
3.4.3主應(yīng)力計(jì)算
計(jì)算危險(xiǎn)截面即錐柱面交界處的主應(yīng)力,由上己知
上面計(jì)算表明主應(yīng)力沿彎曲正應(yīng)力方向偏轉(zhuǎn)一X0.30,這說(shuō)明斷口為什么沿橫斷面偏轉(zhuǎn)了個(gè)小角度。
3.5安全系數(shù)校核
通過(guò)應(yīng)力分析計(jì)算,己找出了危險(xiǎn)截面在齒輪軸驅(qū)動(dòng)端錐柱面交界處。以下校核它的設(shè)計(jì)安全系數(shù)。通過(guò)上述對(duì)齒輪軸工況的簡(jiǎn)化,即假設(shè)齒輪軸所受的扭矩為脈動(dòng)循環(huán),根據(jù)材料力學(xué)疲勞強(qiáng)度計(jì)算理論及凸輪軸本身受力情況、結(jié)構(gòu)特點(diǎn)和加工水平等因素,安全系數(shù)校核公式為[14]:
3.5.1錐柱面交界截面校核
通過(guò)查閱有關(guān)手冊(cè)可得:對(duì)于齒輪軸經(jīng)滲碳淬火回火狀態(tài)下的各項(xiàng)參數(shù)為
3.5.2 鍵槽截面校核
對(duì)于齒輪軸在設(shè)計(jì)時(shí)一般取安全系數(shù)為[n]=1. 4-1. 8。從計(jì)算結(jié)果來(lái)看,計(jì)算所得的安全系數(shù)均大于許用安全系數(shù),這說(shuō)明在理想情況下齒輪軸的疲勞強(qiáng)度是足夠的。
討論:k:和k。為零件的有效應(yīng)力集中系數(shù),它與軸上的截面變化,鍵槽及圓角過(guò)渡等因素有密切關(guān)系,若鍵槽存在加工尖角,則會(huì)產(chǎn)生應(yīng)力集中,局部應(yīng)力增大,從而萌生早期裂紋,最終導(dǎo)致齒輪軸斷裂。本凸輪軸鍵槽圓角設(shè)計(jì)要求r=0. 4mm,查得應(yīng)力集中系數(shù)k . =2. 9。實(shí)際測(cè)量圓角為:r=0. 2mm,查得k , =3. 6。而B(niǎo)osch公司齒輪軸鍵槽r=0. 6mm, k} <2. 6??梢?jiàn),斷軸應(yīng)力集中系數(shù)比設(shè)計(jì)要求的高24%,比Bosch公司產(chǎn)品高38%。因此應(yīng)力集中是導(dǎo)致齒輪軸早期斷裂的主要因素之一。
3.6小結(jié)
1. 齒輪軸受力比較復(fù)雜,發(fā)生早期斷裂的驅(qū)動(dòng)端受扭轉(zhuǎn)、彎曲組合作用。
2. 齒輪軸驅(qū)動(dòng)端危險(xiǎn)截面為錐柱面交界處。
3. 齒輪軸危險(xiǎn)截面疲勞強(qiáng)度滿(mǎn)足要求,疲勞安全裕度足夠。
4.應(yīng)力集中是齒輪軸早期斷裂的主要因素之一。
第四章 綜合分析
本章主要利用實(shí)驗(yàn)室分析及應(yīng)力分析所得的結(jié)果進(jìn)行綜合分析討論,明確斷裂的性質(zhì)及引起斷裂的原因。
4.1 斷裂性質(zhì)分析
如緒論中所述,一般構(gòu)件的斷裂性質(zhì)通常分為塑性斷裂、脆性斷裂及疲勞斷裂等等。塑性斷裂是指斷裂前產(chǎn)生較大的塑性變形,因此塑性斷裂一般容易被人們所察覺(jué)而立即采取措施,因此危害性較小。而脆性斷裂則在斷裂前無(wú)明顯的征兆,不易被人們察覺(jué)而突然發(fā)生,因此往往造成很大的危害口疲勞斷裂在很多方面與脆性斷裂相似,在斷裂前無(wú)明顯的宏觀塑性變形,也表現(xiàn)為突然斷裂,疲勞斷裂是受到交變載荷的作用而產(chǎn)生的斷裂,疲勞斷口有其自身的特點(diǎn):(1)疲勞斷口上常常會(huì)出現(xiàn)弧形條紋線(xiàn)(2)斷口常常顯示出明顯的疲勞裂紋萌生,擴(kuò)展和最后斷裂三個(gè)階段。這兩個(gè)特征也是疲勞斷裂區(qū)別于其它斷裂最明顯的特征。
1號(hào)試樣和2號(hào)試樣的宏觀斷口上都可見(jiàn)明顯的弧形條紋線(xiàn),斷口上還存在明顯的裂紋擴(kuò)展的三個(gè)不同階段所留下的痕跡:裂紋源區(qū)、裂紋擴(kuò)展區(qū)及最后快速斷裂區(qū)。根據(jù)這些典型特征可判斷齒輪軸的斷裂性質(zhì)為疲勞斷裂。
1號(hào)試樣和2號(hào)試樣的斷裂性質(zhì)雖然都為疲勞斷裂,但由于引起斷裂的應(yīng)力不同,疲勞斷裂的斷口形貌也不相同,因此可根據(jù)斷口的形貌特征來(lái)進(jìn)一步判斷疲勞斷裂的性質(zhì)。1號(hào)試樣斷口表面比較平整光滑,整個(gè)斷面基本上與軸線(xiàn)呈垂直。斷面上有明顯的疲勞條紋,在裂紋源附近的條紋線(xiàn)形態(tài)比較扁平,條紋間距比較密集,隨著裂紋的不斷擴(kuò)展,疲勞條紋的間距越來(lái)越寬,這是因?yàn)殡S著裂紋深度不斷增加,相應(yīng)地齒輪軸的有效承載面積的不斷減小,導(dǎo)致應(yīng)力不斷增加,裂紋的擴(kuò)展速度也就不斷提高,所以裂紋擴(kuò)展后期留下的條紋間距越來(lái)越寬,最后因剩余面積太小無(wú)法承受載荷時(shí)突然斷裂,形成瞬斷區(qū),所以瞬斷區(qū)的斷裂形貌比較粗糙,且最后瞬斷區(qū)相對(duì)于軸的旋轉(zhuǎn)方向產(chǎn)生逆向偏轉(zhuǎn)一個(gè)角度。這是由于疲勞裂紋在擴(kuò)展過(guò)程中,齒輪軸在不停地轉(zhuǎn)動(dòng),疲勞裂紋前沿順載荷方向擴(kuò)展快,逆載荷方向擴(kuò)展慢,所以隨著疲勞裂紋不斷擴(kuò)展,最后瞬斷區(qū)偏轉(zhuǎn)了一個(gè)角度。從這些特征可判斷1號(hào)試樣的斷裂性質(zhì)為切斷型的旋轉(zhuǎn)彎曲扭轉(zhuǎn)復(fù)合疲勞斷裂。2#試樣斷面比較粗糙,整個(gè)斷面大致與軸線(xiàn)呈450,其余形貌特征與1號(hào)試樣大致相同,所以可判斷2號(hào)試樣的斷裂性質(zhì)是正斷型的旋轉(zhuǎn)彎曲扭轉(zhuǎn)復(fù)合疲勞斷裂。從圖3-1還可以看出,1號(hào)碼試樣的斷口上疲勞擴(kuò)展區(qū)占了整個(gè)斷口面積的90%以上,瞬斷區(qū)大約只占整個(gè)斷口面積的5%左右,因此從兩個(gè)區(qū)各自所占的面積大小可知,齒輪軸在最后斷裂前裂紋經(jīng)過(guò)了很長(zhǎng)時(shí)間的擴(kuò)展,再結(jié)合瞬斷區(qū)比較靠近表面的現(xiàn)象來(lái)分析,說(shuō)明該軸所受的應(yīng)力不大,大約就在疲勞極限附近,而且齒輪軸的塑韌性較好。2號(hào)試樣斷口上擴(kuò)展區(qū)及瞬斷區(qū)的情況基本上與1號(hào)試樣相同,說(shuō)明2號(hào)試樣受力也不大,但2號(hào)試樣斷面粗糙且條紋間距比1號(hào)試樣寬,在條紋線(xiàn)前面為具有快速撕裂特征的放射狀條紋,還有明顯的疲勞裂紋擴(kuò)展所留下的臺(tái)階,這表明2號(hào)試樣的裂紋擴(kuò)展速度比1#試樣快,因此可判斷2#試樣的脆性比1號(hào)稱(chēng)試樣大。對(duì)兩個(gè)試樣的金相組織檢查發(fā)現(xiàn),2號(hào)試樣的心部組織中含有明顯脆性的上貝氏體組織,而1號(hào)試樣的心部組織為具有很好強(qiáng)韌性配合的板條馬氏體和少量的鐵素體,因?yàn)辇X輪軸的塑韌性是由其心部組織結(jié)構(gòu)決定的,所以從金相組織分析證實(shí)2號(hào)試樣的脆性比1號(hào)試樣大,它抗拉斷的性能比1#試樣差,因此2號(hào)試樣的斷裂為正斷型的,而1號(hào)試樣則由于它的塑韌性較好,所以他抗剪切的能力較差,因此1號(hào)試樣的斷裂為切斷型的。
4.2.斷裂原因綜合分析
任何構(gòu)件的斷裂過(guò)程都有裂紋的萌生、擴(kuò)展及最后斷裂等過(guò)程,因此分析斷裂原因首先要找出引起裂紋源的原因。
4.2.1 疲勞源產(chǎn)生的因素
1. 疲勞源是疲勞核心最初形成的地方,源區(qū)一般很小,因此對(duì)源區(qū)的分析主要是找出引起疲勞源的缺陷及其對(duì)疲勞成核的作用。疲勞破壞總是從局部最薄弱的地方1l-始,從宏觀看它一般起源于零件表面應(yīng)力集中或存在表面缺陷的位置,如鍵槽,過(guò)渡圓角,刀槽等。但從微觀來(lái)看,疲勞裂紋在表面成核可能有三種位置:①表面滑移帶,②晶界及孿晶界處,③表面夾雜或第二相與基體的界面。若原材料內(nèi)部有缺陷,如夾雜,白點(diǎn),氣孔等,則也會(huì)在皮下或內(nèi)部形成疲勞源
由齒輪軸結(jié)構(gòu)可知,錐體上開(kāi)有導(dǎo)向半圓鍵槽,所以整根齒輪軸就變成了具有截面變化的缺口體,存在缺口不僅零件的實(shí)際承載面積減小了,同時(shí)缺口還很容易引起應(yīng)力集中。由第四章的計(jì)算可得,缺口越尖銳,應(yīng)力集中系數(shù)越大,造成的應(yīng)力集中程度就越高,在缺口處的應(yīng)力就越大,就會(huì)在應(yīng)力集中點(diǎn)處產(chǎn)生微裂紋。從1號(hào)試樣和2號(hào)試樣的宏觀斷口上看,疲勞源都位于鍵槽的圓角過(guò)渡處。通過(guò)檢測(cè)該過(guò)渡圓角的圓角半徑發(fā)現(xiàn),該圓角的半徑為0. 2mm,而技術(shù)要求該圓角半徑應(yīng)為0. 4士0.2mm,所以實(shí)測(cè)圓角半徑為技術(shù)要求的下限。正是由于該圓角過(guò)渡處的圓角半徑太小,應(yīng)力集中點(diǎn)的三向應(yīng)力狀態(tài)導(dǎo)致產(chǎn)生微裂紋。再?gòu)钠跅l紋線(xiàn)形態(tài)比較扁平且略帶凹向分布,也可推知鍵槽缺口處確實(shí)存在很大的應(yīng)力集中。這是因?yàn)橥馆嗇S表面應(yīng)力較大,裂紋在表面的擴(kuò)展速度較快,而心部的應(yīng)力小擴(kuò)展速度較慢,所以形成凹向分布的條紋線(xiàn)。
2.金相組織
從微觀的金相組織分析可知,1號(hào)試樣和2號(hào)試樣在鍵槽附近的表面滲層中都存在網(wǎng)狀碳化物。這是因?yàn)闊崽幚頋B碳時(shí),鍵槽部位雖然有保護(hù)套保護(hù),但在鍵槽上端由于保護(hù)套的密封性較差,鍵槽長(zhǎng)時(shí)間處在滲碳?xì)夥罩校荚訒?huì)同時(shí)從軸的外表面和鍵槽側(cè)壁向內(nèi)滲入,在鍵槽的尖角處實(shí)際上處于三向滲碳,因此鍵槽處的相對(duì)滲碳速度比其它位置快,所以很容易會(huì)造成表面碳原子來(lái)不及向內(nèi)擴(kuò)散,最終堆積而形成碳化物。由于齒輪軸的滲碳時(shí)間很長(zhǎng),一般強(qiáng)滲時(shí)間就需要6h左右,因此表面的碳化物就會(huì)不斷聚集長(zhǎng)大連接成網(wǎng);雖然滲碳后需正火消除表面形成的網(wǎng)狀碳化物,但有時(shí)會(huì)出現(xiàn)網(wǎng)狀碳化物不能全部消除而殘留下來(lái),而且該網(wǎng)狀碳化物在后面的淬火過(guò)程也無(wú)法再去除而最終保留下來(lái)。疲勞裂紋萌生機(jī)理研究證實(shí),當(dāng)應(yīng)力水平較低時(shí),疲勞裂紋通常萌生于第二相或夾雜物處[13],但低合金強(qiáng)度鋼的研究結(jié)果表明,夾雜物和第二相的斷裂不是疲勞裂紋萌生的決定性因素,夾雜物和第二相的主要作用是促進(jìn)滑移帶裂紋的萌生[14],其影響大小取決于夾雜物和第二相的性質(zhì)和尺寸。滲層組織中Fe3C碳化物由于其彈性模量低,呈顆粒狀分散分布于基體中時(shí),未發(fā)現(xiàn)其對(duì)疲勞裂紋萌生有明顯的影響。但當(dāng)碳化物沿晶界呈網(wǎng)狀分布時(shí),就會(huì)引起嚴(yán)重的應(yīng)力集中,對(duì)疲勞裂紋的萌生就有明顯的影響。同時(shí)網(wǎng)狀碳化物的存在還不僅割裂了基體的連續(xù)性,而且網(wǎng)狀碳化物本身又非常脆,裂紋就很容易在該位置萌生,形成裂紋源口所以鍵槽附近的表面滲層中存在的網(wǎng)狀碳化物也是引起疲勞源的主要原因。
3.表面滲碳層
表面碳化物的組織形態(tài)、大小及數(shù)量在一定程度上還反映了熱處理滲碳時(shí)表面碳濃度的情況。有研究表明,滲碳件表面碳濃度的高低嚴(yán)重影響到它的疲勞強(qiáng)度及使用壽命。表4-3[15]列出了滲碳零件表面碳濃度對(duì)某低碳合金鋼滲碳淬火后疲勞強(qiáng)度的影響。從表中的數(shù)據(jù)可以看出,在表面碳濃度為0. 93%時(shí),疲勞強(qiáng)度最高,表面碳濃度大于1%時(shí)
收藏
編號(hào):2680323
類(lèi)型:共享資源
大?。?span id="ievbyqtbdd" class="font-tahoma">3.34MB
格式:RAR
上傳時(shí)間:2019-11-28
15
積分
- 關(guān) 鍵 詞:
-
齒輪
油泵
失效
分析
優(yōu)化
設(shè)計(jì)
- 資源描述:
-
齒輪油泵軸的失效分析及優(yōu)化設(shè)計(jì),齒輪,油泵,失效,分析,優(yōu)化,設(shè)計(jì)
展開(kāi)閱讀全文
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶(hù)自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶(hù)書(shū)面授權(quán),請(qǐng)勿作他用。