《2019-2020年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題25 審題技能訓(xùn)練(含解析).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題25 審題技能訓(xùn)練(含解析).doc(18頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題25 審題技能訓(xùn)練(含解析)
一、選擇題
1.已知向量a、b的夾角為60,且|a|=2,|b|=1,則向量a與向量a+2b的夾角等于( )
A.150 B.90
C.60 D.30
[答案] D
[審題要點(diǎn)] 弄清問題、熟悉問題和轉(zhuǎn)化問題
要求向量的夾角,可由cosθ=求解,這是求向量夾角的常用方法,
→由已知可求解a(a+2b)=a2+2ab的值.
→由已知可求|a+2b|2=a2+4ab+4b2的值,
進(jìn)而可求|a+2b|的值.
→由上述步驟可求得cosθ=的值.
[解析] |a+2b|2=4+4+4ab=8+8cos60=12,
∴|a+2b|=2,
記向量a與向量a+2b的夾角為θ,
則a(a+2b)=|a||a+2b|cosθ
=22cosθ=4cosθ,
又a(a+2b)=a2+2ab=4+4cos60=6,
∴4cosθ=6,cosθ=,
又θ∈[0,π],∴θ=,故選D.
2.(文)對(duì)于函數(shù)f(x)=asinx+bx+c(其中,a,b∈R,c∈Z),選取a,b,c的一組值計(jì)算f(1)和f(-1),所得出的正確結(jié)果一定不可能是( )
A.4和6 B.3和1
C.2和4 D.1和2
[答案] D
[審題要點(diǎn)] 仔細(xì)觀察會(huì)發(fā)現(xiàn)f(x)的表達(dá)式中“asinx+bx”有其特殊性,即g(x)=asinx+bx為奇函數(shù),這是本題審題第一關(guān)鍵要素,其實(shí)從f(1)與f(-1)的提示,也應(yīng)考慮是否具有奇偶性可用,由此可知f(1)+f(-1)=2c;再注意觀察細(xì)節(jié)可以發(fā)現(xiàn)c∈Z,從而2c為偶數(shù).
[解析] 令g(x)=asinx+bx,則g(x)為奇函數(shù),
∴g(-1)=-g(1),∴f(x)=g(x)+c.
∴f(1)+f(-1)=g(1)+c+g(-1)+c=2c,
∵c∈Z,∴2c為偶數(shù),
∵1+2=3不是偶數(shù),
∴1和2一定不是f(1)與f(-1)的一組值,故選D.
(理)已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增.若實(shí)數(shù)a滿足f(log2a)+f(loga)≤2f(1),則a的取值范圍是( )
A.[1,2] B.(0,]
C.[,2] D.(0,2]
[答案] C
[審題要點(diǎn)] 求a的取值范圍,需解給出的不等式,條件中的單調(diào)遞增為解不等式時(shí)脫去函數(shù)符號(hào)“f”所備,f(x)為偶函數(shù),為化不等式為f(x1)≤f(x2)型而準(zhǔn)備.解題思路步驟為:
[解析] 因?yàn)閘oga=-log2a且f(-x)=f(x),
則f(log2a)+f(loga)≤2f(1)?f(log2a)+f(-log2a)≤2f(1)?f(log2a)≤f(1).
又f(log2a)=f(|log2a|)且f(x)在[0,+∞)上單調(diào)遞增,∴|log2a|≤1?-1≤log2a≤1,解得≤a≤2,選C.
[方法點(diǎn)撥] 注意發(fā)掘隱含條件
有的題目條件不甚明顯,而寓于概念、存于性質(zhì)或含于圖中,審題時(shí),注意深入挖掘這些隱含條件和信息,就可避免因忽視隱含條件而出現(xiàn)的錯(cuò)誤.
3.(文)(xx浙江理,3)某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的表面積是( )
A.90cm2 B.129cm2
C.132cm2 D.138cm2
[答案] D
[審題要點(diǎn)] 表面積
[解析] 由三視圖知該幾何體是一個(gè)直三棱柱與長(zhǎng)方體的組合體,長(zhǎng)方體長(zhǎng)、寬、高分別為4cm,6cm,3cm,直棱柱高為3cm,底面為直角三角形,兩直角邊長(zhǎng)為3cm、4cm,∴幾何體的表面積為S=246+234+36+33+34+35+234=138cm2,選D.
(理)若函數(shù) f(x)=(a、b、c、d∈R)的圖象如圖所示,則abcd=( )
A. 165 (-8) B. 1(-6)5 (-8)
C. 1(-6)58 D. 1658
[答案] B
[解析] ∵f(x)的圖象以x=1和x=5為漸近線,
∴1和5是方程ax2+bx+c=0的兩根,
∴∴c=5a,b=-6a;
∵圖象過點(diǎn)(3,2),∴=2,∴d=-8a,
∴abcd=a(-6a)(5a)(-8a)=1(-6)5(-8).
[方法點(diǎn)撥] 注重挖掘圖形信息:在一些高考數(shù)學(xué)試題中,問題的條件往往是以圖形的形式給出,或?qū)l件隱含在圖形之中,因此在審題時(shí),要善于觀察圖形,洞悉圖形所隱含的特殊的關(guān)系、數(shù)值的特點(diǎn)、變化的趨勢(shì),抓住圖形的特征,利用圖形所提供的信息來解決問題.題目中未給出圖形的,可畫出圖形,借助圖形分析探尋解題途徑.
4.(文)(xx福州市質(zhì)檢)函數(shù)f(x)的部分圖象如圖所示,則f(x)的解析式可以是( )
A.f(x)=x+sinx B.f(x)=
C.f(x)=xcosx D.f(x)=x(x-)(x-)
[答案] C
[解析] 注意到題中所給曲線關(guān)于原點(diǎn)對(duì)稱,因此相應(yīng)的函數(shù)是奇函數(shù),選項(xiàng)D不正確;對(duì)于A,f ′(x)=1+cosx≥0,因此函數(shù)f(x)=x+sinx是增函數(shù),選項(xiàng)A不正確;對(duì)于B,由于f(x)的圖象過原點(diǎn),因此選項(xiàng)B不正確.綜上所述知選C.
(理)已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,則CD與平面BDC1所成角的正弦值等于( )
A. B.
C. D.
[答案] A
[解析] 解法1:如圖,連接C1O,過C作CM⊥C1O.
∵BD⊥平面C1CO,∴BD⊥CM,∴CM⊥平面BC1D
∴∠CDM即為CD與平面BDC1所成的角
令A(yù)B=1,∴AA1=2,CO=,
C1O===,
CMC1O=CC1CO,
即CM=2,∴CM=,
∴sin∠CDM==.
解法2:以D為原點(diǎn)DA、DC、DD1分別為x軸、y軸、z軸建立空間直角坐標(biāo)系
設(shè)AA1=2AB=2,則D(0,0,0),C(0,1,0),B(1,1,0),C1(0,1,2),則=(0,1,0),=(1,1,0),=(0,1,2).
設(shè)平面BDC1的法向量為n=(x,y,z),
則n=0,n=0,
∴令y=-2,則x=2,z=1,
∴n=(2,-2,1),
設(shè)CD與平面BDC1所成的角為θ,
則sinθ=|cos〈n,〉|==.
5.(xx鄭州市質(zhì)檢)已知甲、乙兩組數(shù)據(jù)如莖葉圖所示,若它們的中位數(shù)相同,平均數(shù)也相同,則圖中的m、n的比值=( )
A.1 B.
C. D.
[答案] D
[解析] 由莖葉圖知乙的中位數(shù)為=33,故m=3,∴甲的平均數(shù)為(27+33+39)=33,∴(n+2+4+8+20+303)=33,解得n=8,∴=.
[方法點(diǎn)撥] 注意讀圖識(shí)表,挖掘圖表數(shù)據(jù):在數(shù)據(jù)題目的圖表數(shù)據(jù)中包含著問題的基本信息,也往往暗示著解決問題的目標(biāo)和方向.審題時(shí)認(rèn)真觀察分析圖表、數(shù)據(jù)的特征和規(guī)律,可為問題解決提供有效的途徑.
6.已知函數(shù)y=f(x)的定義域?yàn)镈,若對(duì)于任意的x1、x2∈D(x1≠x2),都有f()<,則稱y=f(x)為D上的凹函數(shù).由此可得下列函數(shù)中的凹函數(shù)為( )
A.y=log2x B.y=
C.y=x2 D.y=x3
[答案] C
[解析] 觀察圖象可知選C.C的正確性證明如下:
欲證f()<,
即證()2<,
即證(x1+x2)2<2x+2x,
即證(x1-x2)2>0.
此式顯然成立.故原不等式得證.
[方法點(diǎn)撥] 注意對(duì)新定義的理解與轉(zhuǎn)化:
遇到新定義問題,要先弄清楚新定義的含義,將其用學(xué)過的熟知的數(shù)學(xué)知識(shí)加以轉(zhuǎn)化,然后在新背景下用相應(yīng)的數(shù)學(xué)知識(shí)方法解決.
7.(文)設(shè)P、Q分別為圓x2+(y-6)2=2和橢圓+y2=1上的點(diǎn),則P、Q兩點(diǎn)間的最大距離是( )
A.5 B.+
C.7+ D.6
[答案] D
[解析] 由圓的性質(zhì)可知P、Q兩點(diǎn)間的最大距離為圓心A(0,6)到橢圓上的點(diǎn)的最大距離與圓的半徑之和,設(shè)Q(x,y),則AQ2=x2+(y-6)2=10-10y2+y2-12y+36=46-9y2-12y=-9(y+)2+50,當(dāng)y=時(shí),|AQ|max=5,
∴|PQ|max=5+=6.
(理)(xx福建文,11)已知圓C:(x-a)2+(y-b)2=1,平面區(qū)域Ω:若圓心C∈Ω,且圓C與x軸相切,則a2+b2的最大值為( )
A.5 B.29
C.37 D.49
[答案] C
[解析] 可行域如圖:
圓心C(a,b),則|b|=1,由圖知b=1,而當(dāng)y=1時(shí),由y=7-x知x=6,所以a2+b2最大值為62+12=37.
8.(文)如果一條直線與一個(gè)平面垂直,那么稱此直線與平面構(gòu)成一個(gè)“正交線面對(duì)”,在一個(gè)正方體中,由兩個(gè)頂點(diǎn)確定的直線與含有4個(gè)頂點(diǎn)的平面構(gòu)成的“正交線面對(duì)”的個(gè)數(shù)是( )
A.24 B.36
C.48 D.12
[答案] B
[解析] 正方體的一條棱對(duì)應(yīng)著2個(gè)“正交線面對(duì)”,12條棱對(duì)應(yīng)著24個(gè)“正交線面對(duì)”;正方體的一條面對(duì)角線對(duì)應(yīng)著一個(gè)“正交線面對(duì)”,12條面對(duì)角線對(duì)應(yīng)著12個(gè)“正交線面對(duì)”,一條體對(duì)角線無(wú)滿足要求的平面∴共有36個(gè).
(理)定義“等和數(shù)列”:在一個(gè)數(shù)列中,如果每一項(xiàng)與它的后一項(xiàng)的和都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等和數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公和.
定義“等積數(shù)列”:在一個(gè)數(shù)列中,如果每一項(xiàng)與它的后一項(xiàng)的積都為同一常數(shù),那么這個(gè)數(shù)列叫做“等積數(shù)列”,這個(gè)常數(shù)叫做該數(shù)列的公積.
如果數(shù)列{an}既是“等和數(shù)列”,又是“等積數(shù)列”,且公和與公積是同一個(gè)非零常數(shù)m,則( )
A.?dāng)?shù)列{an}不存在
B.?dāng)?shù)列{an}有且僅有一個(gè)
C.?dāng)?shù)列{an}有無(wú)數(shù)個(gè),m可取任意常數(shù)
D.當(dāng)m∈(-∞,0]∪[4,+∞)時(shí),這樣的數(shù)列{an}存在
[答案] D
[解析] 由題設(shè)an+an+1=m,anan+1=m,對(duì)任意正整數(shù)n都成立,則an與an+1是一元二次方程x2-mx+m=0的兩實(shí)數(shù)根,∴Δ=m2-4m≥0,∴m≥4或m≤0,故這樣的數(shù)列{an},當(dāng)m≥4或m≤0時(shí)存在,但當(dāng)0
1時(shí),f(-2b)=f(2b)≥4b2-2b-1>4b-2b-1>b,f(0)=11時(shí)曲線y=f(x)與直線y=b有且僅有兩個(gè)不同交點(diǎn).
綜上可知,如果曲線y=f(x)與直線y=b有兩個(gè)不同交點(diǎn),那么b的取值范圍是(1,+∞).
[方法點(diǎn)撥] 審視條件 了解和轉(zhuǎn)換解題信息
審題時(shí),一是對(duì)題目條件信息的挖掘整合;二是明確解題的目標(biāo)要求,解題思路的確定,解題方法的選擇,解題步驟的設(shè)計(jì);三是弄清題目中是否有圖表可用,是否需要畫圖幫助思考,列表整合數(shù)據(jù)?較復(fù)雜的問題如何進(jìn)行轉(zhuǎn)化.
12.(文)(xx北京文,17)如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分別為A1C1、BC的中點(diǎn).
(1)求證:平面ABE⊥平面B1BCC1;
(2)求證:C1F∥平面ABE;
(3)求三棱錐E-ABC的體積.
[審題要點(diǎn)] (1)要證平面ABE⊥平面B1BCC1,需在一個(gè)平面內(nèi)找一條直線與另一個(gè)平面垂直;已知三棱柱側(cè)棱垂直于底面,AB⊥BC,可知AB⊥平面B1BCC1.
(2)要證C1F∥平面ABE,需在平面ABE內(nèi)找一條與C1F平行的直線,為此過C1F作平面與平面ABE相交,考慮到C1E與平面ABE相交,則平面C1EF與平面ABE的交線EG為所求(G為AB與平面C1EF的交點(diǎn)).
考慮條件E、F分別為棱的中點(diǎn),猜想G應(yīng)為AB的中點(diǎn),由中位線GF綊AC綊C1E獲證.
(3)要求VE-ABC,高AA1已知,關(guān)鍵求S△ABC,由AC=2,BC=1,AB⊥BC易得.
[解析] (1)在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,
所以BB1⊥AB,
又因?yàn)锳B⊥BC,
所以AB⊥平面B1BCC1.
所以平面ABE⊥平面B1BCC1.
(2)取AB中點(diǎn)G,連接EG、FG.
因?yàn)镋、F分別是A1C1、BC的中點(diǎn).
所以FG∥AC,且FG=AC.
因?yàn)锳C∥A1C1,且AC=A1C1,
所以FG∥EC1,且FG=EC1.
所以四邊形FGEC1為平行四邊形.
所以C1F∥EG.
又因?yàn)镋G?平面ABE,C1F?平面ABE,
所以C1F∥平面ABE.
(3)因?yàn)锳A1=AC=2,BC=1,AB⊥BC,
所以AB==,
所以三棱錐E-ABC的體積
V=S△ABCAA1=12=.
[方法點(diǎn)撥] 審題是解題的基礎(chǔ)和關(guān)鍵,一切解題的思路、方法、技巧都來源于認(rèn)真審題.審題就是對(duì)題目提供信息的發(fā)現(xiàn)、辨認(rèn)和轉(zhuǎn)譯,并對(duì)信息進(jìn)行提煉,明確題目的條件、問題和相互間的關(guān)系.能否迅速準(zhǔn)確地理解題意,是高考中能否取得最佳成績(jī)的關(guān)鍵.審題時(shí)弄清已知什么?隱含什么?數(shù)、式結(jié)構(gòu)有何特點(diǎn)?圖表有何特征?然后進(jìn)行恰當(dāng)?shù)霓D(zhuǎn)換,歸結(jié)為熟知的問題進(jìn)行解答.要注意架構(gòu)條件與結(jié)論之間的橋梁,要注意細(xì)節(jié)和特殊情況的審視,要注意答題的條理和語(yǔ)言的規(guī)范.
(理)如圖1,四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,M為側(cè)棱PD上一點(diǎn).該四棱錐的側(cè)視圖和俯(左)視圖如圖2所示.
(1)證明:BC⊥平面PBD;
(2)證明:AM∥平面PBC;
(3)線段CD上是否存在點(diǎn)N,使得AM與BN所成角的余弦值為?若存在,找到所有符合要求的點(diǎn)N,并求CN的長(zhǎng);若不存在,請(qǐng)說明理由.
[解析] 解法一:(1)證明:由俯視圖可得BD2+BC2=CD2,所以BC⊥BD.
又因?yàn)镻D⊥平面ABCD,
所以BC⊥PD,所以BC⊥平面PBD.
(2)證明:取PC上一點(diǎn)Q,使PQPC=14,連接MQ、BQ.由俯視圖知PMPD=14,
所以MQ∥CD,MQ=CD.
在△BCD中,易得∠CDB=60,所以∠ADB=30.
又BD=2,所以AB=1,AD=.
又因?yàn)锳B∥CD,AB=CD,所以AB∥MQ,AB=MQ,
所以四邊形ABQM為平行四邊形,所以AM∥BQ.
因?yàn)锳M?平面PBC,BQ?平面PBC,
所以直線AM∥平面PBC.
(3)線段CD上存在點(diǎn)N,使AM與BN所成角的余弦值為.
證明如下:
因?yàn)镻D⊥平面ABCD,DA⊥DC,
建立如圖所示的空間直角坐標(biāo)系D-xyz.
所以D(0,0,0),A(,0,0),B(,1,0),C(0,4,0),M(0,0,3).
設(shè)N(0,t,0),其中0≤t≤4,
所以=(-,0,3),=(-,t-1,0).
要使AM與BN所成角的余弦值為,
則有=,
所以=,
解得t=0或2,均適合0≤t≤4.
故點(diǎn)N位于D點(diǎn)處,此時(shí)CN=4;或點(diǎn)N位于CD的中點(diǎn)處,此時(shí)CN=2,有AM與BN所成角的余弦值為.
解法二:(1)證明:因?yàn)镻D⊥平面ABCD,DA⊥DC,
建立如圖所示的空間直角坐標(biāo)系D-xyz.
在△BCD中,易得∠CDB=60,所以∠ADB=30.
因?yàn)锽D=2,所以AB=1,AD=.
由俯視圖和側(cè)視圖可得D(0,0,0),A(,0,0),B(,1,0),C(0,4,0),M(0,0,3),P(0,0,4),
因?yàn)椋?-,3,0),=(,1,0).
因?yàn)椋剑?1+00=0,所以BC⊥BD.
又因?yàn)镻D⊥平面ABCD,所以BC⊥PD,
所以BC⊥平面PBD.
(2)證明:設(shè)平面PBC的法向量為n=(x,y,z),則有
因?yàn)椋?-,3,0),=(0,4,-4),
所以取y=1,得n=(,1,1).
因?yàn)椋?-,0,3),
所以n=(-)+10+13=0.
因?yàn)锳M?平面PBC,
所以直線AM∥平面PBC.
(3)同解法一.
[方法點(diǎn)撥] 注重建立條件之間、條件與結(jié)論之間的聯(lián)系:
審題過程中要注意由已知可知什么?條件之間有何關(guān)聯(lián),怎樣體現(xiàn)這種關(guān)聯(lián)?由待求(證)結(jié)論需知什么?條件和結(jié)論之間的銜接點(diǎn)是什么?解題的切入點(diǎn)是什么?
13.(文)某人在如圖所示的直角邊長(zhǎng)為4米的三角形地塊的每個(gè)格點(diǎn)(指縱、橫直線的交叉點(diǎn)以及三角形的頂點(diǎn))處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗(yàn),一株該種作物的年收獲量Y(單位:kg)與它的“相近”作物株數(shù)X之間的關(guān)系如下表所示:
X
1
2
3
4
Y
51
48
45
42
這里,兩株作物“相近”是指它們之間的直線距離不超過1米.
(1)完成下表,并求所種作物的平均年收獲量;
Y
51
48
45
42
頻數(shù)
4
(2)在所種作物中隨機(jī)選取一株,求它的年收獲量至少為48kg的概率.
[審題要點(diǎn)] (1)讀懂圖表:首先理解兩株作物“相近“的含義,其次明確X與Y的對(duì)應(yīng)關(guān)系(表),通過讀圖找出與其相近作物株數(shù)為1,2,3,4的作物分別有幾株.
(2)解題思路:
Y=51“相近”作物株數(shù)X為1頻數(shù)年平均收獲量.
年收獲量至少為48kgY=51或48可求相應(yīng)概率得出結(jié)果.
[解析] (1)所種作物的總株數(shù)為1+2+3+4+5=15,其中“相近”作物株數(shù)為1的作物有2株,“相近”作物株數(shù)為2的作物有4株,“相近”作物株數(shù)為3的作物有6株,“相近”作物株數(shù)為4的作物有3株,列表如下:
Y
51
48
45
42
頻數(shù)
2
4
6
3
所種作物的平均年收獲量為
==46.
(2)由(1)知,P(Y=51)=,P(Y=48)=.
故在所種作物中隨機(jī)選取一株,它的年收獲量至少為48 kg的概率為
P(Y≥48)=P(Y=51)+P(Y=48)=+=.
(理)(xx北京理,16)李明在10場(chǎng)籃球比賽中的投籃情況統(tǒng)計(jì)如下(假設(shè)各場(chǎng)比賽互相獨(dú)立):
場(chǎng)次
投籃次數(shù)
命中次數(shù)
場(chǎng)次
投籃次數(shù)
命中次數(shù)
主場(chǎng)1
22
12
客場(chǎng)1
18
8
主場(chǎng)2
15
12
客場(chǎng)2
13
12
主場(chǎng)3
12
8
客場(chǎng)3
21
7
主場(chǎng)4
23
8
客場(chǎng)4
18
15
主場(chǎng)5
24
20
客場(chǎng)5
25
12
(1)從上述比賽中隨機(jī)選擇一場(chǎng),求李明在該場(chǎng)比賽中投籃命中率超過0.6的概率;
(2)從上述比賽中選擇一個(gè)主場(chǎng)和一個(gè)客場(chǎng),求李明的投籃命中率一場(chǎng)超過0.6,一場(chǎng)不超過0.6的概率;
(3)記為表中10個(gè)命中次數(shù)的平均數(shù).從上述比賽中隨機(jī)選擇一場(chǎng),記X為李明在這場(chǎng)比賽中的命中次數(shù),比較E(X)與的大?。?只需寫出結(jié)論)
[解析] (1)根據(jù)投籃統(tǒng)計(jì)數(shù)據(jù),在10場(chǎng)比賽中,李明投籃命中率超過0.6的場(chǎng)次有5場(chǎng),分別是主場(chǎng)2,主場(chǎng)3,主場(chǎng)5,客場(chǎng)2,客場(chǎng)4.
所以在隨機(jī)選擇的一場(chǎng)比賽中,李明的投籃命中率超過0.6的概率是0.5.
(2)設(shè)事件A為“在隨機(jī)選擇的一場(chǎng)主場(chǎng)比賽中李明的投籃命中率超過0.6”,事件B為“在隨機(jī)選擇的一場(chǎng)客場(chǎng)比賽中李明的投籃命中率超過0.6”,事件C為“在隨機(jī)選擇的一個(gè)主場(chǎng)和一個(gè)客場(chǎng)中,李明的投籃命中率一場(chǎng)超過0.6,一場(chǎng)不超過0.6”.
則C=(A)∪(B),A,B獨(dú)立.
根據(jù)投籃統(tǒng)計(jì)數(shù)據(jù),P(A)=,P(B)=,
P(C)=P(A)+P(B)
=+
=.
所以,在隨機(jī)選擇的一個(gè)主場(chǎng)和一個(gè)客場(chǎng)中,李明的投籃命中率一場(chǎng)超過0.6,一場(chǎng)不超過0.6的概率為.
(3)E(X)=.
14.(文)已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,A、B是拋物線C上異于坐標(biāo)原點(diǎn)O的不同兩點(diǎn),拋物線C在點(diǎn)A,B處的切線分別為l1,l2,且l1⊥l2,l1與l2相交于點(diǎn)D.
(1)求點(diǎn)D的縱坐標(biāo);
(2)證明:直線AB過定點(diǎn).
[審題要點(diǎn)] (1)求點(diǎn)D縱坐標(biāo)l1、l2的方程設(shè)A、B,由導(dǎo)數(shù)得斜率,由A、B在C上得坐標(biāo)關(guān)系.
(2)AB過定點(diǎn)定點(diǎn)可能為焦點(diǎn)F證A、B、F三點(diǎn)共線―→用向量或斜率證
[解析] (1)如圖,設(shè)點(diǎn)A、B的坐標(biāo)分別為(x1,y1),(x2,y2).
∵l1、l2分別是拋物線C在點(diǎn)A,B處的切線,
∴直線l1的斜率k1=y(tǒng)′|x=x1=,
直線l2的斜率k2=y(tǒng)′|x=x2=.
∵l1⊥l2,∴k1k2=-1,得x1x2=-p2.①
∵A、B是拋物線C上的點(diǎn),
∴y1=,y2=.
∴直線l1的方程為y-=(x-x1),
直線l2的方程為y-=(x-x2).
由解得
∴點(diǎn)D的縱坐標(biāo)為-.
(2)證明:∵F為拋物線C的焦點(diǎn),
∴F(0,).
∴=(-x1,-)=(-x1,),
=(-x2,-)=(-x2,).
∵===,
∴∥,即直線AB過定點(diǎn)F.
(理)(xx沈陽(yáng)市質(zhì)檢)已知函數(shù)f(x)=mx-sinx,g(x)=axcosx-2sinx(a>0).
(1)若過曲線y=f(x)上任意相異兩點(diǎn)的直線的斜率都大于0,求實(shí)數(shù)m的最小值;
(2)若m=1,且對(duì)于任意x∈[0,],都有不等式f(x)≥g(x)成立,求實(shí)數(shù)a的取值范圍.
[解析] (1)∵過曲線y=f(x)上任意相異兩點(diǎn)的直線的斜率都大于0
∴任取x1,x2∈R,且x10,得f(x1)0
∴H(x)在[0,]上為單調(diào)增函數(shù)
∴H(x)≥H(0)=0
符合題意,∴01時(shí),令h(x)=1+(1-a)cosx+axsinx
于是h′(x)=(2a-1)sinx+axcosx
∵a>1,∴2a-1>0,∴h′(x)≥0
∴h(x)在[0,]上為單調(diào)增函數(shù)
∴h(0)≤h(x)≤h(),即2-a≤h(x)≤a+1
∴2-a≤H′(x)≤a+1
(ⅰ)當(dāng)2-a≥0,即12時(shí),存在x0∈(0,),使得當(dāng)x∈(0,x0)時(shí),有H′(x)<0
此時(shí)H(x)在(0,x0)上為單調(diào)減函數(shù)
從而H(x)0恒成立
綜上所述,實(shí)數(shù)a的取值范圍為00)的焦點(diǎn)F作斜率分別為k1、k2的兩條不同直線l1、l2,且k1+k2=2,l1與E相交于點(diǎn)A、B,l2與E相交于點(diǎn)C、D,以AB、CD為直徑的圓M、圓N(M、N為圓心)的公共弦所在直線記為l.
若k1>0,k2>0,證明:<2p2.
[審題要點(diǎn)] 由已知求出l1的方程關(guān)于x的一元二次方程x1+x1=2pk1,y1+y2=2pk+p―→坐標(biāo)的坐標(biāo)=p2(k1k2+kk);要證<2p2k1k2+kk<2-20,k2>0,k1≠k2,
所以0b>0)的離心率為,F(xiàn)是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過點(diǎn)A的動(dòng)直線l與E相交于P、Q兩點(diǎn),當(dāng)△OPQ的面積最大時(shí),求l的方程.
[審題要點(diǎn)] (1)欲求E的方程,需求a、b,需由條件建立a、b的方程組:審條件可以發(fā)現(xiàn)由離心率和kAF可建立方程組獲解;
(2)l與E相交于P、Q,則S△OPQ=|PQ|d(d是O到l的距離),故解題步驟為:設(shè)l的方程→l與E的方程聯(lián)立消元化為一元二次方程→由判別式確定k的取值范圍→求|PQ|(用k表示)→求S△OPQ(用k表示)→根據(jù)f(k)=S△OPQ的表達(dá)式結(jié)構(gòu)選取討論最值方法→求l的方程.
[解析] (1)設(shè)F(c,0),由條件知,=,得c=.
又=,所以a=2,b2=a2-c2=1.
故E的方程為+y2=1.
(2)當(dāng)l⊥x軸時(shí)不合題意,故設(shè)l:y=kx-2,P(x1,y1),Q(x2,y2).
將y=kx-2代入+y2=1中消去y得,
(1+4k2)x2-16kx+12=0.
當(dāng)Δ=16(4k2-3)>0,
即k2>時(shí),x1,2=
從而|PQ|=|x1-x2|
=.
又點(diǎn)O到直線PQ的距離d=,
所以△OPQ的面積S△OPQ=d|PQ|=.
設(shè)=t,則t>0,S△OPQ==.
因?yàn)閠+≥4,當(dāng)且僅當(dāng)t=2,即k=時(shí)等號(hào)成立,且滿足Δ>0.
所以,當(dāng)△OPQ的面積最大時(shí),l的方程為
y=x-2或y=-x-2.
[方法點(diǎn)撥] 本題常見錯(cuò)誤是:①誤以為O點(diǎn)到直線l的距離最大時(shí),S△OPQ最大;
②找不到求f(k)=S△OPQ的最值的切入點(diǎn);
③計(jì)算失誤.
為避免上述錯(cuò)誤請(qǐng)注意:①慢工出細(xì)活,計(jì)算時(shí)慢一點(diǎn)、細(xì)致一點(diǎn),關(guān)鍵步驟及時(shí)檢查,莫等完成解答后檢查,浪費(fèi)大量時(shí)間;②在直線運(yùn)動(dòng)變化過程中,觀察△OPQ面積的變化與什么相關(guān);觀察f(k)的結(jié)構(gòu)特征與學(xué)過的常見函數(shù)作對(duì)比,進(jìn)行化歸.
鏈接地址:http://www.820124.com/p-2723685.html