《2019年高考數(shù)學(xué)二輪復(fù)習(xí) 第一篇 求準(zhǔn)提速 基礎(chǔ)小題不失分 第6練 函數(shù)的概念、圖象和性質(zhì)練習(xí) 文.doc》由會員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué)二輪復(fù)習(xí) 第一篇 求準(zhǔn)提速 基礎(chǔ)小題不失分 第6練 函數(shù)的概念、圖象和性質(zhì)練習(xí) 文.doc(13頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019年高考數(shù)學(xué)二輪復(fù)習(xí) 第一篇 求準(zhǔn)提速 基礎(chǔ)小題不失分 第6練 函數(shù)的概念、圖象和性質(zhì)練習(xí) 文
[明考情]
函數(shù)的概念、圖象和性質(zhì)是高考的高頻考點(diǎn),多以選擇題、填空題的形式出現(xiàn),難度中等偏上,一般位于選擇題的后半部.
[知考向]
1.函數(shù)的定義域與值域.
2.函數(shù)的性質(zhì).
3.函數(shù)的圖象.
4.函數(shù)與方程.
考點(diǎn)一 函數(shù)的定義域與值域
要點(diǎn)重組 (1)常見函數(shù)定義域的求法
y=(n∈N*,n是偶數(shù)):f(x)≥0;
y=:g(x)≠0;
y=[f(x)]0:f(x)≠0;
y=logaf(x):f(x)>0.
(2)求函數(shù)值域的常用方法:配方法、分離常數(shù)法、換元法、單調(diào)性法、數(shù)形結(jié)合法.
1.(xx山東)設(shè)函數(shù)y=的定義域?yàn)锳,函數(shù)y=ln(1-x)的定義域?yàn)锽,則A∩B等于( )
A.(1,2) B.(1,2]
C.(-2,1) D.[-2,1)
答案 D
解析 ∵4-x2≥0,∴-2≤x≤2,∴A=[-2,2],
∵1-x>0,∴x<1,∴B=(-∞,1).∴A∩B=[-2,1),故選D.
2.函數(shù)f(x)=的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍是( )
A.[0,1] B.(0,4)
C.[4,+∞) D.[0,4)
答案 D
解析 由題意知mx2+mx+1>0對一切實(shí)數(shù)恒成立,
當(dāng)m=0時,不等式為1>0,恒成立;
當(dāng)m≠0時,不等式恒成立的條件是
解得0<m<4.
綜上,實(shí)數(shù)m的取值范圍為[0,4).
3.已知函數(shù)f(x)=則f(x)的值域是( )
A.∪[1,+∞) B.
C. D.
答案 B
解析 當(dāng)0<x≤2時,|log2x|≥0,當(dāng)x>2時,0<<,故f(x)的值域是[0,+∞).
4.若函數(shù)y=f(x)的定義域是[0,2],則函數(shù)g(x)=的定義域是__________.
答案 [0,1)
解析 由得0≤x<1,
∴函數(shù)g(x)的定義域?yàn)閇0,1).
5.函數(shù)f(x)=(a>0且a≠1)的值域?yàn)開_____.
答案 (-2 017,2)
解析 f(x)===2-,
因?yàn)閍x>0,所以ax+1>1,
所以0<<2 019,所以-2 017<2-<2,
故函數(shù)f(x)的值域?yàn)?-2 017,2).
考點(diǎn)二 函數(shù)的性質(zhì)
方法技巧 (1)函數(shù)奇偶性判斷方法:定義法、圖象法、奇偶函數(shù)性質(zhì)法(如奇函數(shù)奇函數(shù)是偶函數(shù)).
(2)函數(shù)單調(diào)性判斷方法:定義法、圖象法、導(dǎo)數(shù)法.
(3)函數(shù)周期性的常用結(jié)論:若f(x+a)=-f(x)或f(x+a)=,則2a是函數(shù)f(x)的周期.
6.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=3x+m(m為常數(shù)),則f(-log35)的值為( )
A.4 B.-4 C.6 D.-6
答案 B
解析 由f(x)是定義在R上的奇函數(shù),得f(0)=1+m=0?m=-1,f(-log35)=-f(log35)=-(-1)=-4,故選B.
7.(xx安慶二模)定義在R上的奇函數(shù)f(x)滿足:f(x+1)=f(x-1),且當(dāng)-1
8-2.82>0,排除A;f(2)=8-e2<8-2.72<1,排除B;當(dāng)x>0時,f(x)=2x2-ex,f′(x)=4x-ex,當(dāng)x∈時,f′(x)<4-e0=0,因此f(x)在上單調(diào)遞減,排除C,故選D.
4.已知函數(shù)f(x)=若a,b,c互不相等,且f(a)=f(b)=f(c),則a+b+c的取值范圍是( )
A.(1,2 016) B.[1,2 016]
C.(2,2 017) D.[2,2 017]
答案 C
解析 在平面直角坐標(biāo)系中畫出f(x)的圖象,如圖所示.設(shè)a<b<c,要使得存在互不相等的a,b,c,滿足f(a)=f(b)=f(c),則a,b關(guān)于直線x=對稱,可得a+b=1,1<c<2 016,故a+b+c的取值范圍是(2,2 017).
解題秘籍 (1)從映射的觀點(diǎn)理解抽象函數(shù)的定義域,如函數(shù)y=f(g(x))中,若函數(shù)y=f(x)的定義域?yàn)锳,則有g(shù)(x)∈A.
(2)利用函數(shù)的性質(zhì)求函數(shù)值時,要靈活應(yīng)用性質(zhì)對函數(shù)值進(jìn)行轉(zhuǎn)換.
(3)解題中要有數(shù)形結(jié)合的思想,將函數(shù)圖象、性質(zhì)有機(jī)結(jié)合.
1.函數(shù)f(x)=的定義域?yàn)? )
A.(0,2) B.(0,2]
C.(2,+∞) D.[2,+∞)
答案 C
解析 由題意可知x滿足log2x-1>0,即log2x>log22,根據(jù)對數(shù)函數(shù)的性質(zhì),得x>2,即函數(shù)f(x)的定義域?yàn)?2,+∞).
2.若函數(shù)f(x)=是奇函數(shù),則使f(x)>3成立的x的取值范圍為( )
A.(-∞,-1) B.(-1,0) C.(0,1) D.(1,+∞)
答案 C
解析 ∵函數(shù)y=f(x)為奇函數(shù),
∴f(-x)=-f(x),即=-,化簡可得a=1,
則>3,即-3>0,即>0,故不等式可化為<0,即1<2x<2,解得0<x<1,故選C.
3.設(shè)函數(shù)g(x)=x2-2(x∈R),f(x)=則f(x)的值域是( )
A.∪(1,+∞)
B.
C.
D.∪(2,+∞)
答案 D
解析 由x<g(x),得x<x2-2,
∴x<-1或x>2;
由x≥g(x),得x≥x2-2,∴-1≤x≤2.
∴f(x)=
即f(x)=
當(dāng)x<-1時,f(x)>2;當(dāng)x>2時,f(x)>8.
∴當(dāng)x∈(-∞,-1)∪(2,+∞)時,
函數(shù)的值域?yàn)?2,+∞);
當(dāng)-1≤x≤2時,-≤f(x)≤0.
∴當(dāng)x∈[-1,2]時,函數(shù)的值域?yàn)?
綜上可知,f(x)的值域?yàn)椤?2,+∞).
4.(xx全國Ⅰ)已知函數(shù)f(x)在(-∞,+∞)上單調(diào)遞減,且為奇函數(shù).若f(1)=-1,則滿足-1≤f(x-2)≤1的x的取值范圍是( )
A.[-2,2] B.[-1,1] C.[0,4] D.[1,3]
答案 D
解析 ∵f(x)為奇函數(shù),∴f(-x)=-f(x).
∵f(1)=-1,∴f(-1)=-f(1)=1.
故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).
又f(x)在(-∞,+∞)單調(diào)遞減,∴-1≤x-2≤1,
∴1≤x≤3,故選D.
5.已知f(x)=的值域?yàn)镽,那么a的取值范圍是( )
A.(-∞,-1] B.
C. D.
答案 C
解析 要使函數(shù)f(x)的值域?yàn)镽,
需使
∴
∴-1≤a<.
故選C.
6.如果函數(shù)f(x)=ax2+2x-3在區(qū)間(-∞,4)上是單調(diào)遞增的,則實(shí)數(shù)a的取值范圍是( )
A.a>-
B.a≥-
C.-≤a<0
D.-≤a≤0
答案 D
解析 當(dāng)a=0時,f(x)=2x-3,在定義域R上是單調(diào)遞增的,故在(-∞,4)上單調(diào)遞增;
當(dāng)a≠0時,二次函數(shù)f(x)的對稱軸為x=-.
因?yàn)閒(x)在(-∞,4)上單調(diào)遞增,
所以a<0,且-≥4,解得-≤a<0.
綜上所述得-≤a≤0.
7.設(shè)函數(shù)f(x)=的圖象過點(diǎn)(1,1),函數(shù)g(x)是二次函數(shù),若函數(shù)f(g(x))的值域是[0,+∞),則函數(shù)g(x)的值域是( )
A.(-∞,-1]∪[1,+∞)
B.(-∞,-1]∪[0,+∞)
C.[0,+∞)
D.[1,+∞)
答案 C
解析 因?yàn)楹瘮?shù)f(x)=的圖象過點(diǎn)(1,1),所以m+1=1,解得m=0,
所以f(x)=畫出函數(shù)y=f(x)的圖象(如圖所示),由于函數(shù)g(x)是二次函數(shù),值域不會是選項(xiàng)A,B,易知當(dāng)g(x)的值域是[0,+∞)時,f(g(x))的值域是[0,+∞).故選C.
8.已知函數(shù)f(x)=若函數(shù)g(x)=f(x)-2x恰有三個不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.[-1,1) B.[0,2]
C.[-2,2) D.[-1,2)
答案 D
解析 g(x)=f(x)-2x=要使函數(shù)g(x)恰有三個不同的零點(diǎn),只需g(x)=0恰有三個不同的實(shí)數(shù)根,所以或所以g(x)=0的三個不同的實(shí)數(shù)根為x=2(x>a),x=-1(x≤a),x=-2(x≤a).再借助數(shù)軸,可得-1≤a<2.所以實(shí)數(shù)a的取值范圍是[-1,2),故選D.
9.若函數(shù)f(x)=為奇函數(shù),則k=________.
答案?。?
解析 ∵f(x)為奇函數(shù),
∴f(-x)=-f(x),
∴=-,
∴(x+2)(x+k)=(2-x)(k-x),
即x2+2x+kx+2k=2k-kx-2x+x2,
∴k=-2.
10.(xx天津)已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(-∞,0)上單調(diào)遞增.若實(shí)數(shù)a滿足f(2|a-1|)>f(-),則a的取值范圍是________.
答案
解析 ∵f(x)是偶函數(shù),且在(-∞,0)上單調(diào)遞增,
∴在(0,+∞)上單調(diào)遞減,f(-)=f(),
∴f(2|a-1|)>f(),∴2|a-1|<=,
∴|a-1|<,即-
下載提示(請認(rèn)真閱讀)
- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
文檔包含非法信息?點(diǎn)此舉報(bào)后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
2019年高考數(shù)學(xué)二輪復(fù)習(xí)
第一篇
求準(zhǔn)提速
基礎(chǔ)小題不失分
第6練
函數(shù)的概念、圖象和性質(zhì)練習(xí)
2019
年高
數(shù)學(xué)
二輪
復(fù)習(xí)
一篇
提速
基礎(chǔ)
小題不失分
函數(shù)
概念
圖象
性質(zhì)
練習(xí)
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://www.820124.com/p-2735513.html