2019-2020年高考數(shù)學(xué) 常見題型解法歸納反饋訓(xùn)練 第11講 函數(shù)(三角函數(shù)、數(shù)列函數(shù))模型及其應(yīng)用.doc
《2019-2020年高考數(shù)學(xué) 常見題型解法歸納反饋訓(xùn)練 第11講 函數(shù)(三角函數(shù)、數(shù)列函數(shù))模型及其應(yīng)用.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué) 常見題型解法歸納反饋訓(xùn)練 第11講 函數(shù)(三角函數(shù)、數(shù)列函數(shù))模型及其應(yīng)用.doc(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué) 常見題型解法歸納反饋訓(xùn)練 第11講 函數(shù)(三角函數(shù)、數(shù)列函數(shù))模型及其應(yīng)用 【知識要點】 一、在現(xiàn)實生活中有許多問題,往往隱含著量與量之間的關(guān)系,可通過建立變量之間的函數(shù)關(guān)系和對所得函數(shù)的研究,使問題得到解決. 數(shù)學(xué)模型方法是把實際問題加以抽象概括,建立相應(yīng)的數(shù)學(xué)模型,利用這些模型來研究實際問題的一般數(shù)學(xué)方法;數(shù)學(xué)模型則是把實際問題用數(shù)學(xué)語言抽象概括,再從數(shù)學(xué)角度來反映或近似地反映實際問題時所得出的關(guān)于實際問題的數(shù)學(xué)描述. 數(shù)學(xué)模型來源于實際,它是對實際問題抽象概括加以數(shù)學(xué)描述后的產(chǎn)物,它又要回到實際中去檢驗,因此對實際問題有深刻的理解是運用數(shù)學(xué)模型方法的前提. 二、函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,不同的變化現(xiàn)象需要用不同的函數(shù)模型來描述,數(shù)學(xué)應(yīng)用題的建模過程就是信息的獲取、存儲、處理、綜合、輸出的過程,熟悉一些基本的數(shù)學(xué)模型,有助于提高我們解決實際問題的能力. 三、三角函數(shù)的應(yīng)用一般是先根據(jù)題意建立三角函數(shù)模型,再根據(jù)題意結(jié)合三角函數(shù)的圖像和性質(zhì)分析解答.一般根據(jù)函數(shù)的最值確定和,根據(jù)函數(shù)的最小正周期確定,根據(jù)函數(shù)的最值點確定. 四、數(shù)列的應(yīng)用主要是從實際生活中抽象出一個等差、等比的數(shù)列問題解答,如果不是等差等比數(shù)列的,要轉(zhuǎn)化成等差等比數(shù)列的問題來解決.注意數(shù)列的項數(shù). 五、解決實際問題的解題過程 (1)對實際問題進行抽象概括:研究實際問題中量與量之間的關(guān)系,確定變量之間的主、被動關(guān)系,并用、分別表示問題中的變量; (2)建立函數(shù)模型:將變量表示為的函數(shù),在中學(xué)數(shù)學(xué)內(nèi),我們建立的函數(shù)模型一般都是函數(shù)的解析式; (3)求解函數(shù)模型:根據(jù)實際問題所需要解決的目標及函數(shù)式的結(jié)構(gòu)特點正確選擇函數(shù)知識求得函數(shù)模型的解,并還原為實際問題的解. 這些步驟用框圖表示: 六、解應(yīng)用題的一般程序 (1)讀:閱讀理解文字表達的題意,分清條件和結(jié)論,理順數(shù)量關(guān)系,這一關(guān)是基礎(chǔ); (2)建:將文字語言轉(zhuǎn)化為數(shù)學(xué)語言,利用數(shù)學(xué)知識,建立相應(yīng)的數(shù)學(xué)模型.熟悉基本數(shù)學(xué)模型,正確進行建“模”是關(guān)鍵的一關(guān); (3)解:求解數(shù)學(xué)模型,得到數(shù)學(xué)結(jié)論.一要充分注意數(shù)學(xué)模型中元素的實際意義,更要注意巧思妙作,優(yōu)化過程; (4)答:將數(shù)學(xué)結(jié)論還原給實際問題的結(jié)果. 【方法講評】 函數(shù)的模型一 三角函數(shù)模型 解題步驟 先建立對應(yīng)的三角函數(shù)模型,再解答. 【例1】已知某海濱浴場的海浪高度(單位:米)與時間 (單位:時)的函數(shù)關(guān)系記作,下表是某日各時的浪高數(shù)據(jù): (時) 0 3 6 9 12 15 18 21 24 (米) 1.5 1.0 0.5 1.0 1.5 1.0 0.5 1.0 1.5 經(jīng)長期觀測,的曲線可近似地看成是函數(shù). (1)根據(jù)以上數(shù)據(jù),求函數(shù)的最小正周期,振幅及函數(shù)表達式; (2)依據(jù)規(guī)定,當海浪高度高于1米時才對沖浪愛好者開放,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8∶00時至晚上20∶00時之間,有多少時間可供沖浪者進行運動? (2)由題知,當時才可對沖浪者開放,∴, 【點評】(1)首先要利用三角函數(shù)的圖像和性質(zhì)求出三角函數(shù)的表達式,是函數(shù)的振幅,是相位,是初相.一般通過函數(shù)的最值求,通過周期求,通過最值點求.(2)解簡單的三角函數(shù)不等式主要是利用三角函數(shù)的圖像和數(shù)形結(jié)合的思想解答.三角不等式的解集中一般含有“”,最后給賦值和實際范圍求交集. 【反饋檢測1】海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情況下,船在漲潮時駛進航道,靠近碼頭;卸貨后,在落潮時返回海洋.下面是某港口在某季節(jié)每天 從0時至24時的時間(單位:時)與水深(單位:米)的關(guān)系表: (1)請選用一個函數(shù)來近似描述這個港口的水深與時間的函數(shù)關(guān)系; (2)一條貨輪的吃水深度(船體最低點與水面的距離)為12米,安全條例規(guī)定船體最低點與洋底間隙至少要有1.5米,請問該船何時能進出港口?在港口最多能停留多長時間? 【例2】 某地有三家工廠,分別位于矩形的頂點,及的中點處,已知,,為了處理三家工廠的污水,現(xiàn)要在矩形的區(qū)域上(含邊界),且,與等距離的一點處建造一個污水處理廠,并鋪設(shè)排污管道,,,設(shè)排污管道的總長為. (Ⅰ)按下列要求寫出函數(shù)關(guān)系式: ①設(shè),將表示成的函數(shù)關(guān)系式; ②設(shè),將表示成的函數(shù)關(guān)系式. (Ⅱ)請你選用(Ⅰ)中的一個函數(shù)關(guān)系式,確定污水處理廠的位置,使三條排污管道總長度最短. (Ⅱ)選擇函數(shù)模型①, 則. 令得,因為,所以, 當時,,是的減函數(shù);當時,,是的增函數(shù),所以當=時,.這時點位于線段的中垂線上,且距離邊處. 【點評】(1)本題主要考查根據(jù)實際意義建立函數(shù)模型、三角函數(shù)性質(zhì)和解決最值問題的基本知識,考查了數(shù)形結(jié)合思想和分析問題、轉(zhuǎn)化求解的能力.(2)對于較復(fù)雜的三角函數(shù)的最值,一般利用導(dǎo)數(shù)來研究函數(shù)的單調(diào)性從而得到函數(shù)的最值.(3)一般以平面幾何為背景的應(yīng)用題,多以角為自變量建立三角函數(shù)模型,比以邊為自變量建立函數(shù)模型簡單. 【反饋檢測2】如圖所示,某園林單位準備綠化一塊直徑為的半圓形空地,外的地方種草,的內(nèi)接正方形為一水池,其余地方種花. 若,,設(shè)的面積為,正方形的面積為. (1)(2) 函數(shù)的模型八 數(shù)列模型 解題步驟 先建立數(shù)列模型,再解答. 【例3 】 某城市xx年末汽車保有量為30萬輛,預(yù)計此后每年報廢上一年末汽車保有量的6%,并且每年新增汽車數(shù)量相同.為保護城市環(huán)境,要求該城市汽車保有量不超過60萬輛,那么每年新增汽車數(shù)量不應(yīng)超過多少輛? (1)顯然,若,則,即, 此時 要使對于任意正整數(shù),均有恒成立, 即 對于任意正整數(shù)恒成立,解這個關(guān)于x的一元一次不等式 , 得, 上式恒成立的條件為:,由于關(guān)于的函數(shù)單調(diào)遞 減,所以,. 【點評】(1)建立數(shù)列模型的關(guān)鍵是從已知中找到數(shù)列的遞推關(guān)系,,,再根據(jù)遞推關(guān)系求出數(shù)列的通項,再研究.(2)解答的關(guān)鍵是化歸為含參數(shù)的不等式恒成立問題,其分離變量后又轉(zhuǎn)化為函數(shù)的最值問題. 【例4】 廣州市某通訊設(shè)備廠為適應(yīng)市場需求,提高效益,特投入98萬元引進世界先進設(shè)備奔騰6號,并馬上投入生產(chǎn),第一年需要的各種費用是12萬元,從第二年開始,所需費用會比上一年增加4萬元,而每年因引進該設(shè)備可獲得的年利潤為50萬元. (1)引進該設(shè)備多少年后,開始盈利? (2)引進該設(shè)備若干年后,有兩種處理方案: 第一種:年平均盈利達到最大值時,以26萬元的價格賣出; 第二種:盈利總額達到最大值時,以8萬元的價格賣出.問哪種方案較為合算?并說明理由. 【解析】(1) 所以3年后開始盈利. 【點評】(1)建立數(shù)列模型的關(guān)鍵是理解數(shù)列函數(shù)的意義,再根據(jù)其意義求出表達式.(2)注意理解“年平均盈利”和“年盈利”的含義,年平均盈利= 年盈利= 【反饋檢測3】某企業(yè)xx年的純利潤為500萬元,因設(shè)備老化等原因,企業(yè)的生產(chǎn)能力將逐年下降.若不能進行技術(shù)改造,預(yù)測從xx年起每年比上一年純利潤減少20萬元,今年初該企業(yè)一次性投入資金600萬元進行技術(shù)改造,預(yù)測在未扣除技術(shù)改造資金的情況下,第年(今年為第一年)的利潤為萬元(為正整數(shù)).(Ⅰ)設(shè)從今年起的前年,若該企業(yè)不進行技術(shù)改造的累計純利潤為萬元,進行技術(shù)改造后的累計純利潤為萬元(須扣除技術(shù)改造資金),求、的表達式;(Ⅱ)依上述預(yù)測,從今年起該企業(yè)至少經(jīng)過多少年,進行技術(shù)改造后的累計純利潤超過不進行技術(shù)改造的累計純利潤? 高中數(shù)學(xué)常見題型解法歸納及反饋檢測第11講: 函數(shù)(三角函數(shù)、數(shù)列函數(shù))模型及其應(yīng)用參考答案 【反饋訓(xùn)練1答案】(1);(2)貨船在1點至5點可以進出港;或13點至17點可以進出港.每次可以在港口最多能停留4小時. 【反饋檢測2答案】(1);(2) 【反饋檢測2詳細解析】(1), (2) 【反饋檢測3答案】(1)=,=500--10;(2)至少經(jīng)過4年,該企業(yè)進行技術(shù)改造后的累計純利潤超過不進行技術(shù)改造的累計純利潤. 答:至少經(jīng)過4年,該企業(yè)進行技術(shù)改造后的累計純利潤超過不進行技術(shù)改造的累計純利潤.- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué) 常見題型解法歸納反饋訓(xùn)練 第11講 函數(shù)三角函數(shù)、數(shù)列函數(shù)模型及其應(yīng)用 2019 2020 年高 數(shù)學(xué) 常見 題型 解法 歸納 反饋 訓(xùn)練 11 函數(shù) 三角函數(shù) 數(shù)列
鏈接地址:http://www.820124.com/p-2753138.html