2019-2020年高考數(shù)學(xué)專題復(fù)習(xí) 直線與圓錐曲線測(cè)試題.doc
《2019-2020年高考數(shù)學(xué)專題復(fù)習(xí) 直線與圓錐曲線測(cè)試題.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)專題復(fù)習(xí) 直線與圓錐曲線測(cè)試題.doc(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)專題復(fù)習(xí) 直線與圓錐曲線測(cè)試題 1.直線l過拋物線y2=2px(p>0)的焦點(diǎn),且與拋物線交于A,B兩點(diǎn),若線段AB的長(zhǎng)是8,AB的中點(diǎn)到y(tǒng)軸的距離是2,則此拋物線方程是( ) A.y2=12x B.y2=8x C.y2=6x D.y2=4x 2.已知任意k∈R,直線y-kx-1=0與橢圓=1恒有公共點(diǎn),則實(shí)數(shù)m的取值范圍是( ) A.(0,1) B.(0,5) C.[1,5)∪(5,+∞) D.[1,5) 3.已知橢圓C的方程為=1(m>0),如果直線y=x與橢圓的一個(gè)交點(diǎn)M在x軸上的射影恰好是橢圓的右焦點(diǎn)F,則m的值為( ) A.2 B.2 C.8 D.2 4.已知A,B,P是雙曲線=1上不同的三點(diǎn),且A,B連線經(jīng)過坐標(biāo)原點(diǎn),若直線PA,PB的斜率乘積kPAkPB=,則該雙曲線的離心率為( ) A. B. C. D. 5.斜率為1的直線l與橢圓+y2=1交于不同兩點(diǎn)A,B,則|AB|的最大值為( ) A.2 B. C. D. 6已知橢圓E:=1(a>b>0)的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交E于A,B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為( ) A.=1 B.=1 C.=1 D.=1 7.已知橢圓=1(a>b>0)的右頂點(diǎn)為A(1,0),過其焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為1,則橢圓方程為 . 8.已知點(diǎn)F(c,0)是雙曲線C:=1(a>0,b>0)的右焦點(diǎn),若雙曲線C的漸近線與圓F:(x-c)2+y2=c2相切,則雙曲線C的離心率為 . 9.若直線y=kx+2與拋物線y2=4x僅有一個(gè)公共點(diǎn),則實(shí)數(shù)k= . 10.已知拋物線y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,經(jīng)過F且斜率為的直線與拋物線在x軸上方的部分相交于點(diǎn)A,AK⊥l,垂足為K,求△AKF的面積. 11.(xx屆福建南安一中高三期中檢測(cè))已知曲線c上任意一點(diǎn)P到兩個(gè)定點(diǎn)F1(-,0)和F2(,0)的距離之和為4. (1)求曲線c的方程; (2)設(shè)過(0,-2)的直線l與曲線c交于C,D兩點(diǎn),若以CD為直徑的圓過坐標(biāo)原點(diǎn),求直線l的方程. 12.設(shè)F1,F2分別是橢圓:=1(a>b>0)的左、右焦點(diǎn),過點(diǎn)F1且斜率為1的直線l與橢圓相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列. (1)求橢圓的離心率; (2)設(shè)點(diǎn)P(0,-1)滿足|PA|=|PB|,求橢圓的方程. 1.答案:B 解析:設(shè)A(x1,y1),B(x2,y2),由弦長(zhǎng)結(jié)合拋物線定義可得|AB|=x1+x2+p=8. 又由AB的中點(diǎn)到y(tǒng)軸的距離可得=2,代入上式可得p=4,故拋物線方程為y2=8x. 2.答案:C 解析:直線y=kx+1過定點(diǎn)(0,1),只要(0,1)在橢圓=1內(nèi)部即可. 從而m≥1.又因?yàn)闄E圓=1中m≠5, 所以m的取值范圍是[1,5)∪(5,+∞). 3.答案:B 解析:根據(jù)已知條件c=, 則點(diǎn)在橢圓=1(m>0)上, ∴=1,可得m=2. 4.答案:D 解析:設(shè)A(x1,y1),P(x2,y2),根據(jù)對(duì)稱性,B(-x1,-y1), 因?yàn)锳,P在雙曲線上,所以 兩式相減,得kPAkPB=, 所以e2=. 故e=. 5.答案:C 解析:設(shè)直線l的方程為y=x+t,代入+y2=1,消去y,得x2+2tx+t2-1=0. 由題意得Δ=(2t)2-5(t2-1)>0,即t2<5.弦長(zhǎng)|AB|=. 6.答案:D 解析:設(shè)A(x1,y1),B(x2,y2),∵A,B在橢圓上, ∴ ①-②,得 =0, 即=-, ∵AB的中點(diǎn)為(1,-1),∴y1+y2=-2,x1+x2=2. 而=kAB=,∴. 又∵a2-b2=9,∴a2=18,b2=9. ∴橢圓E的方程為=1.故選D. 7.答案:+x2=1 解析:∵橢圓=1的右頂點(diǎn)為A(1,0), ∴b=1,焦點(diǎn)坐標(biāo)為(0,c),過焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為1, 即1=2|x|=2b,a=2, 則橢圓方程為+x2=1. 8.答案: 解析:依題意得,圓心F(c,0)到雙曲線C的漸近線的距離等于c,即有b=c,c2=2b2=2(c2-a2),c2=2a2,,即雙曲線C的離心率為. 9.答案:0或 解析:聯(lián)立得k2x2+(4k-4)x+4=0. 當(dāng)k=0時(shí),此方程有唯一的根,滿足題意; 當(dāng)k≠0時(shí),Δ=(4k-4)2-16k2=-32k+16=0,k=. 故k=0或k=均滿足題意. 10.解:由拋物線的定義知|AF|=|AK|, 又∵∠KAF=∠AFK=60, ∴△AFK是正三角形. 聯(lián)立方程組消去y,得3x2-10x+3=0, 解得x=3或x=.由題意得A(3,2), ∴△AKF的邊長(zhǎng)為4,面積為42=4. 11.解:(1)根據(jù)橢圓的定義,可知?jiǎng)狱c(diǎn)M的軌跡為橢圓, 其中a=2,c=,則b==1. ∴動(dòng)點(diǎn)M的軌跡方程為+y2=1. (2)當(dāng)直線l的斜率不存在時(shí),不滿足題意. 當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為y=kx-2, 由方程組 得(1+4k2)x2-16kx+12=0. 設(shè)C(x1,y1),D(x2,y2),則Δ=(16k)2-48(1+4k)2>0?k2>,且x1+x2=,x1x2=,① ∵以CD為直徑的圓過坐標(biāo)原點(diǎn),∴=0, ∴x1x2+y1y2=0.∵y1=kx1-2,y2=kx2-2, ∴y1y2=k2x1x2-2k(x1+x2)+4. ∴(1+k2)x1x2-2k(x1+x2)+4=0.② 將①代入②,得(1+k2)-2k+4=0. 即k2=4,解得k=2或k=-2,滿足k2>. ∴直線l的方程是2x-y-2=0或2x+y+2=0. 12.解:(1)由橢圓定義知|AF2|+|BF2|+|AB|=4a, 又2|AB|=|AF2|+|BF2|,得|AB|=a. l的方程為y=x+c,其中c=. 設(shè)A(x1,y1),B(x2,y2), 則A,B兩點(diǎn)坐標(biāo)滿足方程組 化簡(jiǎn)得(a2+b2)x2+2a2cx+a2(c2-b2)=0, 則x1+x2=,x1x2=. 因?yàn)橹本€AB斜率為1, 所以|AB|=|x2-x1|=, 得a=,故a2=2b2. 所以橢圓的離心率e=. (2)設(shè)AB的中點(diǎn)為N(x0,y0), 由(1)知x0==-c,y0=x0+c=. 由|PA|=|PB|得kPN=-1,即=-1, 得c=3,從而a=3,b=3.故橢圓的方程為=1.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)專題復(fù)習(xí) 直線與圓錐曲線測(cè)試題 2019 2020 年高 數(shù)學(xué) 專題 復(fù)習(xí) 直線 圓錐曲線 測(cè)試
鏈接地址:http://www.820124.com/p-3154804.html