安徽省2019年中考數(shù)學(xué)一輪復(fù)習(xí) 第二部分 熱點(diǎn)專題突破 專題4 利用圖形變換添加輔助線課件.ppt
《安徽省2019年中考數(shù)學(xué)一輪復(fù)習(xí) 第二部分 熱點(diǎn)專題突破 專題4 利用圖形變換添加輔助線課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《安徽省2019年中考數(shù)學(xué)一輪復(fù)習(xí) 第二部分 熱點(diǎn)專題突破 專題4 利用圖形變換添加輔助線課件.ppt(28頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
專題四利用圖形變換添加輔助線,解答平面幾何題有難度,多半是添加輔助線帶來的.我們平時(shí)添加的輔助線大多是作平行線、垂線、連接、延長(zhǎng)之類,其實(shí)這是表象,而本質(zhì)是利用圖形變換轉(zhuǎn)換解題思路所得.初中階段常見的圖形變換有:圖形的平移,圖形的對(duì)稱(軸對(duì)稱和中心對(duì)稱),圖形的旋轉(zhuǎn),圖形的相似(包括全等、位似)等.我們?cè)诮鉀Q平面幾何問題時(shí),如果已知條件不好直接使用,或結(jié)論難以直接達(dá)到,可以通過這些圖形變換進(jìn)行“圖”移“形”動(dòng),使得條件發(fā)生轉(zhuǎn)化,從而找到添加輔助線的思路并解答,但直接呈現(xiàn)在我們面前的并不是圖形變換,而是作平行線、垂線、連接、延長(zhǎng)等.這類試題幾乎每年都會(huì)多次遇到,如2015年安徽數(shù)學(xué)中考第14題、第23題,2017年第18題、第23題,2018年第23題等.,類型1,類型2,類型3,類型4,類型5,利用平移“添輔”典例1如圖,在四邊形ABCD中,對(duì)角線AC=BD,AC與BD的銳夾角為60.求證:AD+BC>AC.,【解析】題中的“對(duì)角線AC=BD,AC與BD的銳夾角為60”等已知條件難以直接運(yùn)用,可通過平移線段AD和AC,把這些已知條件集中到△BDE中去,再解答.,類型1,類型2,類型3,類型4,類型5,【答案】過點(diǎn)C作AD的平行線,過點(diǎn)D作AC的平行線,二者交于點(diǎn)E,連接BE.即四邊形ACED為平行四邊形,∴DE=AC=BD,∠BDE=∠BOC=60,即△BDE為等邊三角形.∴BD=DE=BE.在△BCE中,CE+BC>BE,即AD+BC>AC.,類型1,類型2,類型3,類型4,類型5,利用軸對(duì)稱“添輔”典例2(2017安徽第10題)如圖,在矩形ABCD中,AB=5,AD=3.動(dòng)點(diǎn)P滿足,則點(diǎn)P到A,B兩點(diǎn)距離之和PA+PB的最小值為(),類型1,類型2,類型3,類型4,類型5,【答案】D【名師點(diǎn)撥】像這種利用軸對(duì)稱性質(zhì)求兩條線段之和的最小值問題是一個(gè)固定的模型,有人形象地稱為“將軍飲馬”問題,注意體會(huì)并運(yùn)用這個(gè)模型.同時(shí),這樣添加輔助線,也是巧妙地解決了結(jié)論“求點(diǎn)P到A,B兩點(diǎn)距離之和PA+PB的最小值”的問題.就是說,我們進(jìn)行圖形變換,有時(shí)也是為了解決難以直接達(dá)到結(jié)論的問題.,類型1,類型2,類型3,類型4,類型5,利用中心對(duì)稱“添輔”典例3(2014安徽第14題)如圖,在?ABCD中,AD=2AB,F是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF,CF,則下列結(jié)論中一定成立的是.(把所有正確結(jié)論的序號(hào)都填在橫線上),①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.,類型1,類型2,類型3,類型4,類型5,【解析】充分利用“F是AD的中點(diǎn)”這個(gè)條件,作△AEF關(guān)于F點(diǎn)的中心對(duì)稱圖形△DFG,再過點(diǎn)F作AB的平行線,這樣即可利用中心對(duì)稱(或全等三角形)的性質(zhì)以及三角形中位線定理解答.過點(diǎn)D作DG∥AB交EF的延長(zhǎng)線于點(diǎn)G,過點(diǎn)F作FH∥AB交BC于點(diǎn)H,交CE于點(diǎn)O.易得C,D,G在同一條直線上,△AEF≌△DGF.∵AD=2AB,F是AD的中點(diǎn),∴H是BC的中點(diǎn),∴DF=CH=CD.∵DF∥CH,∴四邊形CDFH是菱形,∴CF平分∠BCD,故①∠DCF=∠BCD成立;∵AB∥CG,∴∠ECG=90,在Rt△ECG中,CF是EG的中線,∴CF=EF=FG,故②EF=CF成立;∵S△CEF=S△CGF=S△CDF+S△DFG=S△CDF+S△AEF,∴2S△CEF=S△CDF+S△AEF+S△CEF=S梯形AECD,顯然S△BECCD),點(diǎn)E,F分別是AB,CD的中點(diǎn),若∠A+∠B=90,則下列結(jié)論成立的是()A.AB+CD=3EFB.AB+CD=4EFC.AB-CD=EFD.AB-CD=2EF【解析】過點(diǎn)F分別作FG∥AD交AB于點(diǎn)G,作FH∥BC交AB于點(diǎn)H,易得AB-CD=GH=2EF.,D,1,2,3,4,5,6,7,8,9,10,11,12,2.如圖,在四邊形ABCD中,AB=AD,BC=5,AE=4,∠BAD=∠BCD=90,AE⊥BC于點(diǎn)E,則BE的長(zhǎng)為(),C,【解析】將圖中的△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90,得到△ADE,易得△ABE≌△ADE,∴∠E=∠AEB=90,∠ADE=∠B,∠EAD=∠BAE,∵∠BAD=∠BCD=90,∴∠B+∠ADC=180,∴∠ADE+∠ADC=180,即C,D,E三點(diǎn)在同一條直線上,∵∠AEC=∠C=∠E=90,AE=AE,∴四邊形AECE為正方形,∴AE=EC=4,∴BE=1.,1,2,3,4,5,6,7,8,9,10,11,12,B,【解析】過點(diǎn)E作EG∥BC,交CA的延長(zhǎng)線于點(diǎn)G,∵ED=EC,∴∠EDC=∠ECD,即∠B+∠BED=∠ACB+∠ACE,∵AB=AC,∴∠B=∠ACB,∴∠BED=∠ACE,∵EG∥BC,∴∠G=∠ACB=∠B,在△BED和△GCE中,∠BED=∠ACE,∠G=∠B,EC=ED,∴△BED≌△GCE,∴EG=BD=CD,∴△GEF≌△CDF,,1,2,3,4,5,6,7,8,9,10,11,12,4.(2018天津)如圖,在正方形ABCD中,E,F分別為AD,BC的中點(diǎn),P為對(duì)角線BD上的一個(gè)動(dòng)點(diǎn),則下列線段的長(zhǎng)等于AP+EP最小值的是()A.ABB.DEC.BDD.AF【解析】過點(diǎn)E作關(guān)于BD的對(duì)稱點(diǎn)E,連接AE,交BD于點(diǎn)P,∴PA+PE的最小值為AE.∵E為AD的中點(diǎn),∴E為CD的中點(diǎn),∵四邊形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠ADE=90,∴DE=BF,∴△ABF≌△ADE,∴AE=AF=AP+EP.,D,1,2,3,4,5,6,7,8,9,10,11,12,D,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,6.如圖,在△ABC中,AB=5,AC=3,D為BC的中點(diǎn),則AD的取值范圍是.,1- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 安徽省2019年中考數(shù)學(xué)一輪復(fù)習(xí) 第二部分 熱點(diǎn)專題突破 專題4 利用圖形變換添加輔助線課件 安徽省 2019 年中 數(shù)學(xué) 一輪 復(fù)習(xí) 第二 部分 熱點(diǎn) 專題 突破 利用 圖形 變換 添加 輔助線 課件
鏈接地址:http://www.820124.com/p-3225216.html