輪復習《高考調(diào)研》全套復習課件和練習.ppt
《輪復習《高考調(diào)研》全套復習課件和練習.ppt》由會員分享,可在線閱讀,更多相關《輪復習《高考調(diào)研》全套復習課件和練習.ppt(37頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第3課時合情推理與演繹推理,1.了解合情推理的含義,能利用歸納和類比等進行簡單的推理,了解合情推理在數(shù)學發(fā)現(xiàn)中的作用.2.了解演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單的推理.3.了解合情推理和演繹推理之間的聯(lián)系和差異.,,,2011考綱下載,1.以選擇、填空形式考查合情推理.2.以選擇題或解答題的形式考查演繹推理.,,,請注意!,課前自助餐課本導讀推理,教材回歸1.下面幾種推理是合情推理的是()①由圓的性質(zhì)類比出球的有關性質(zhì);②由直角三角形、等腰三角形、等邊三角形的內(nèi)角和是180,歸納出所有三角形的內(nèi)角和都是180;③張軍某次考試成績是100分,由此推出全班同學的成績都是100分;④三角形內(nèi)角和是180,四邊形內(nèi)角和是360,五邊形內(nèi)角和是540,由此得凸n邊形內(nèi)角和是(n-2)180.A.①②B.①③C.①②④D.①②④答案C,2.給出下列命題:(1)演繹推理是由一般到特殊的推理;(2)演繹推理得到的結論一定是正確的;(3)演繹推理的一般模式是“三段論”形式;(4)演繹推理的結論的正誤與大前提、小前提和推理形式有關.其中正確命題的個數(shù)為()A.1B.2C.3D.4答案B解析演繹推理是由一般到特殊的推理,但是如果前提是錯誤的,則結論一定錯誤,其結論的正誤與推理的形式無關,其一般模式是“三段論”形式,所以(1)(3)正確.,3.(2010山東卷,文)觀察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由歸納推理可得:若定義在R上的函數(shù)f(x)滿足f(-x)=f(x),記g(x)為f(x)的導函數(shù),則g(-x)=()A.f(x)B.-f(x)C.g(x)D.-g(x)答案D解析觀察可知,偶函數(shù)f(x)的導函數(shù)g(x)都是奇函數(shù),所以g(-x)=-g(x),故選D.,4.(2011鄭州一檢)將側棱相互垂直的三棱錐稱為“直角三棱錐”,它的側面和底面分別叫直角三棱錐的“直角面和斜面”,過三棱錐的頂點及斜面任兩邊上的中點的截面均稱為斜面的“中面”.直角三角形具有性質(zhì):“斜邊的中線長等斜邊邊長的一半”,仿照此性質(zhì)寫出直角三棱錐具有的性質(zhì):________.解析在直角三棱錐中,斜面的中面面積等于斜面面積的四分之一,授人以漁題型一歸納推理例1(1)(2011滄州七校聯(lián)考)如圖是2011年元宵節(jié)燈展中一款五角星燈連續(xù)旋轉(zhuǎn)閃爍所成的三個圖形,照此規(guī)律閃爍,下一呈現(xiàn)出來的圖形是()【解析】該五角星對角上的兩盞花燈依次按逆時針方向亮一盞,故下一個呈現(xiàn)出來的圖形是A.【答案】A,探究1(1)歸納推理的特點:①歸納是依據(jù)特殊現(xiàn)象推斷出一般現(xiàn)象,因而由歸納所得的結論超越了前提所包含的范圍.②歸納的前提是特殊的情況,所以歸納是立足于觀察、經(jīng)驗或試驗的基礎之上的.(2)歸納推理的一般步驟:①通過觀察個別情況發(fā)現(xiàn)某些相同本質(zhì).②從已知的相同性質(zhì)中推出一個明確表述的一般性命題.,思考題1(2010陜西卷,理)觀察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根據(jù)上述規(guī)律,第五個等式為________.【解析】觀察等式發(fā)現(xiàn)等式左邊各加數(shù)的底數(shù)之和等于右邊的底數(shù),右邊數(shù)的指數(shù)均為2,故猜想第五個等式應為13+23+33+43+53+63=(1+2+3+4+5+6)2=212.【答案】13+23+33+43+53+63=212,【答案】27,探究2(1)首先利用綜合法證明結論正確,然后依據(jù)直角三角形與四面體之間形狀的對比猜想結論.(2)熟記幾種常見類比:圖形類比(三角形與四面體,圓與球運算類比);加與積,乘與乘方,減與除,除與開方.,【答案】πab,【答案】C,探究3三段論推理的依據(jù)用集合論的觀點來講就是:若集合M的所有元素都具有性質(zhì)P,S是M的子集,那么S中所有元素都具有性質(zhì)P.三段論推理中包含三個判斷:第一個判斷稱為大前提,它提供了一個一般的原理;第二個判斷叫小前提,它指出了一個特殊情況;這兩個判斷聯(lián)合起來,揭示了一般原理和特殊情況的內(nèi)在聯(lián)系,從而產(chǎn)生了第三個判斷:結論.,思考題3(1)命題“有些有理數(shù)是無限循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無限循環(huán)小數(shù)”是假命題,推理錯誤的原因是()A.使用了歸納推理B.使用了類比推理C.使用了“三段論”,但大前提錯誤D.使用了“三段論”,但小前提錯誤【解析】大前提是特稱命題,而小前提是全稱命題,故選C.【答案】C,(2)①證明函數(shù)f(x)=-x2+2x在(-∞,1]上是增函數(shù);②當x∈[-5,-2]時,f(x)是增函數(shù)還是減函數(shù)?【解析】①方法一:任取x1,x2∈(-∞,1],x10,∴f′(x)>0在x∈(-∞,1]上恒成立.,故f(x)在(-∞,1]上是增函數(shù).②∵f(x)在(-∞,1]上是增函數(shù),而[-5,-2]是區(qū)間(-∞,1]的子區(qū)間.∴f(x)在[-5,-2]上是增函數(shù).,本課總結,1.歸納猜想是一種重要的思維方法,但結果的正確性還需進一步證明,一般地,考查的個體越多,歸納的結論可靠性越大.在歸納猜想數(shù)列的通項公式時,要認真觀察數(shù)列中各項數(shù)字間的規(guī)律,分析每一項與對應的項數(shù)之間的關系.2.類比的關鍵是能把兩個系統(tǒng)之間的某種一致性(相似性)確切地表述出來,也就是要把相關對象在某些方面一致性的含糊認識說清楚,平面幾何中的有關定義、定理、性質(zhì)、公式可以類比到空間,在學習中要注意通過類比去發(fā)現(xiàn)探索新題.,課時作業(yè)(56),- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 高考調(diào)研 復習 高考 調(diào)研 全套 課件 練習
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.820124.com/p-3271545.html