(福建專(zhuān)用)2019高考數(shù)學(xué)一輪復(fù)習(xí) 高考大題專(zhuān)項(xiàng)突破6 高考中的概率與統(tǒng)計(jì)課件 理 新人教A版.ppt
《(福建專(zhuān)用)2019高考數(shù)學(xué)一輪復(fù)習(xí) 高考大題專(zhuān)項(xiàng)突破6 高考中的概率與統(tǒng)計(jì)課件 理 新人教A版.ppt》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《(福建專(zhuān)用)2019高考數(shù)學(xué)一輪復(fù)習(xí) 高考大題專(zhuān)項(xiàng)突破6 高考中的概率與統(tǒng)計(jì)課件 理 新人教A版.ppt(49頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
高考大題專(zhuān)項(xiàng)突破六高考中的概率與統(tǒng)計(jì),一、考查范圍全面概率與統(tǒng)計(jì)解答題對(duì)知識(shí)點(diǎn)的考查較為全面,近五年的試題考點(diǎn)覆蓋了概率與統(tǒng)計(jì)必修與選修的各個(gè)章節(jié)內(nèi)容,考查了抽樣方法,統(tǒng)計(jì)圖表、數(shù)據(jù)的數(shù)字特征、用樣本估計(jì)總體、回歸分析、相關(guān)系數(shù)的計(jì)算、獨(dú)立性檢驗(yàn)、古典概型、條件概率、相互獨(dú)立事件的概率、獨(dú)立重復(fù)試驗(yàn)的概率、離散型隨機(jī)變量的分布列、數(shù)學(xué)期望與方差、超幾何分布、二項(xiàng)分布、正態(tài)分布等基礎(chǔ)知識(shí)和基本方法.,二、考查方向分散從近五年的高考試題來(lái)看,對(duì)概率與統(tǒng)計(jì)的考查主要有四個(gè)方面:一是統(tǒng)計(jì)與統(tǒng)計(jì)案例,其中回歸分析、相關(guān)系數(shù)的計(jì)算、獨(dú)立性檢驗(yàn)、用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征是考查重點(diǎn),常與抽樣方法、莖葉圖、頻率分布直方圖、概率等知識(shí)交匯考查;二是統(tǒng)計(jì)與概率分布的綜合,常與抽樣方法、莖葉圖、頻率分布直方圖、頻率、概率以及函數(shù)知識(shí)、概率分布列等知識(shí)交匯考查;三是期望與方差的綜合應(yīng)用,常與離散型隨機(jī)變量、概率、相互獨(dú)立事件、二項(xiàng)分布等知識(shí)交匯考查;四是以生活中的實(shí)際問(wèn)題為背景將正態(tài)分布與隨機(jī)變量的期望和方差相結(jié)合綜合考查.三、考查難度穩(wěn)定高考對(duì)概率與統(tǒng)計(jì)解答題的考查難度穩(wěn)定,多年來(lái)都控制在中等或中等偏上一點(diǎn)的程度,解答題一般位于試卷的第18題或第19題的位置.,題型一,題型二,題型三,題型四,題型一相關(guān)關(guān)系的判斷及回歸分析例1下圖是我國(guó)2008年至2014年生活垃圾無(wú)害化處理量(單位:億噸)的折線(xiàn)圖.注:年份代碼1-7分別對(duì)應(yīng)年份2008-2014.,題型一,題型二,題型三,題型四,(1)由折線(xiàn)圖看出,可用線(xiàn)性回歸模型擬合y與t的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;(2)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2018年我國(guó)生活垃圾無(wú)害化處理量.附注:,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,解題心得在求兩變量相關(guān)系數(shù)和兩變量的回歸方程時(shí),由于的公式組成比較復(fù)雜,求它們的值計(jì)算量比較大,為了計(jì)算準(zhǔn)確,可將其分成幾個(gè)部分分別計(jì)算,這樣等同于分散難點(diǎn),各個(gè)攻破,提高了計(jì)算的準(zhǔn)確度.,題型一,題型二,題型三,題型四,對(duì)點(diǎn)訓(xùn)練1(2017河北石家莊二中模擬,理18)下表是某校高三一次月考5個(gè)班級(jí)的數(shù)學(xué)、物理的平均成績(jī):(1)一般來(lái)說(shuō),學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線(xiàn)性相關(guān)關(guān)系,根據(jù)上表提供的數(shù)據(jù),求兩個(gè)變量x,y的線(xiàn)性回歸方程(2)從以上5個(gè)班級(jí)中任選兩個(gè)參加某項(xiàng)活動(dòng),設(shè)選出的兩個(gè)班級(jí)中數(shù)學(xué)平均分在115分以上的個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望.,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,題型二獨(dú)立性檢驗(yàn)的綜合問(wèn)題例2(2017全國(guó)Ⅱ,理18)海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,(1)設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨(dú)立,記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50kg,新養(yǎng)殖法的箱產(chǎn)量不低于50kg”,估計(jì)A的概率;(2)填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān);(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值(精確到0.01).,題型一,題型二,題型三,題型四,解:(1)記B表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50kg”,C表示事件“新養(yǎng)殖法的箱產(chǎn)量不低于50kg”.由題意知P(A)=P(BC)=P(B)P(C).舊養(yǎng)殖法的箱產(chǎn)量低于50kg的頻率為(0.012+0.014+0.024+0.034+0.040)5=0.62,故P(B)的估計(jì)值為0.62.新養(yǎng)殖法的箱產(chǎn)量不低于50kg的頻率為(0.068+0.046+0.010+0.008)5=0.66.故P(C)的估計(jì)值為0.66.因此,事件A的概率估計(jì)值為0.620.66=0.4092.,題型一,題型二,題型三,題型四,(2)根據(jù)箱產(chǎn)量的頻率分布直方圖得列聯(lián)表由于15.705>6.635,故有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān).(3)因?yàn)樾吗B(yǎng)殖法的箱產(chǎn)量頻率分布直方圖中,箱產(chǎn)量低于50kg的直方圖面積為(0.004+0.020+0.044)5=0.340.5,,題型一,題型二,題型三,題型四,解題心得有關(guān)獨(dú)立性檢驗(yàn)的問(wèn)題的解題步驟:(1)作出22列聯(lián)表;(2)計(jì)算隨機(jī)變量K2的值;(3)查臨界值,檢驗(yàn)作答.,題型一,題型二,題型三,題型四,對(duì)點(diǎn)訓(xùn)練2(2017遼寧沈陽(yáng)三模,理18改編)“共享單車(chē)”的出現(xiàn),為我們提供了一種新型的交通方式.某機(jī)構(gòu)為了調(diào)查人們對(duì)此種交通方式的滿(mǎn)意度,從交通擁堵不嚴(yán)重的A城市和交通擁堵嚴(yán)重的B城市分別隨機(jī)調(diào)查了20個(gè)用戶(hù),得到了一個(gè)用戶(hù)滿(mǎn)意度評(píng)分的樣本,并繪制出莖葉圖如圖:,題型一,題型二,題型三,題型四,(1)根據(jù)莖葉圖,比較兩城市滿(mǎn)意度評(píng)分的平均值的大小及方差的大小(不要求計(jì)算出具體值,給出結(jié)論即可);(2)若得分不低于80分,則認(rèn)為該用戶(hù)對(duì)此種交通方式“認(rèn)可”,否則認(rèn)為該用戶(hù)對(duì)此種交通方式“不認(rèn)可”,請(qǐng)根據(jù)此樣本完成此22列聯(lián)表,并據(jù)此樣本分析是否有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車(chē)有關(guān);(3)若從此樣本中的A城市和B城市各抽取1人,則在此2人中恰有一人認(rèn)可的條件下,此人來(lái)自B城市的概率是多少?,題型一,題型二,題型三,題型四,解:(1)A城市評(píng)分的平均值小于B城市評(píng)分的平均值;A城市評(píng)分的方差大于B城市評(píng)分的方差.(2)22列聯(lián)表如下:所以沒(méi)有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車(chē)有關(guān).,題型一,題型二,題型三,題型四,(3)設(shè)事件M:恰有一人認(rèn)可,事件N:來(lái)自B城市的人認(rèn)可,事件M包含的基本事件數(shù)為510+1510=200,事件M∩N包含的基本事件數(shù)為1510=150,,題型一,題型二,題型三,題型四,題型三離散型隨機(jī)變量的分布列(多維探究)類(lèi)型一互斥事件、獨(dú)立事件的概率及分布列例3(2017天津,理16)從甲地到乙地要經(jīng)過(guò)3個(gè)十字路口,設(shè)各路口信號(hào)燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為(1)記X表示一輛車(chē)從甲地到乙地遇到紅燈的個(gè)數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望;(2)若有2輛車(chē)獨(dú)立地從甲地到乙地,求這2輛車(chē)共遇到1個(gè)紅燈的概率.,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,解題心得使用簡(jiǎn)潔、準(zhǔn)確的數(shù)學(xué)語(yǔ)言描述解答過(guò)程是解答這類(lèi)問(wèn)題并得分的根本保證.引進(jìn)字母表示事件可使得事件的描述簡(jiǎn)單而準(zhǔn)確,使得問(wèn)題描述有條理,不會(huì)有遺漏,也不會(huì)重復(fù).,題型一,題型二,題型三,題型四,對(duì)點(diǎn)訓(xùn)練3在某娛樂(lè)節(jié)目的一期比賽中,有6名歌手(1至6號(hào))登臺(tái)演出,由現(xiàn)場(chǎng)的百家大眾媒體投票選出最受歡迎的歌手,各家媒體獨(dú)立地在投票器上選出3名出彩候選人,其中媒體甲是1號(hào)歌手的歌迷,他必選1號(hào),另在2號(hào)至6號(hào)中隨機(jī)選出2名;媒體乙不欣賞2號(hào)歌手,他必不選2號(hào);媒體丙對(duì)6名歌手的演唱沒(méi)有偏愛(ài),因此在1至6號(hào)歌手中隨機(jī)地選出3名.(1)求媒體甲選中3號(hào)且媒體乙未選中3號(hào)歌手的概率;(2)X表示3號(hào)歌手得到媒體甲、乙、丙的票數(shù)之和,求X的分布列及數(shù)學(xué)期望.,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,類(lèi)型二古典概型及分布列的綜合例4(2017山東,理18)在心理學(xué)研究中,常采用對(duì)比試驗(yàn)的方法評(píng)價(jià)不同心理暗示對(duì)人的影響,具體方法如下:將參加試驗(yàn)的志愿者隨機(jī)分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示.通過(guò)對(duì)比這兩組志愿者接受心理暗示后的結(jié)果來(lái)評(píng)價(jià)兩種心理暗示的作用,現(xiàn)有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,從中隨機(jī)抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.(1)求接受甲種心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學(xué)期望E(X).,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,對(duì)點(diǎn)訓(xùn)練4(2017北京,理17)為了研究一種新藥的療效,選100名患者隨機(jī)分成兩組,每組各50名,一組服藥,另一組不服藥.一段時(shí)間后,記錄了兩組患者的生理指標(biāo)x和y的數(shù)據(jù),并制成下圖,其中“??”表示服藥者,“+”表示未服藥者.,題型一,題型二,題型三,題型四,解:(1)由題圖知,在服藥的50名患者中,指標(biāo)y的值小于60的有15人,所以從服藥的50名患者中隨機(jī)選出一人,此人指標(biāo)y的值小于60的概率為,(1)從服藥的50名患者中隨機(jī)選出一人,求此人指標(biāo)y的值小于60的概率;(2)從圖中A,B,C,D四人中隨機(jī)選出兩人,記ξ為選出的兩人中指標(biāo)x的值大于1.7的人數(shù),求ξ的分布列和數(shù)學(xué)期望E(ξ);(3)試判斷這100名患者中服藥者指標(biāo)y數(shù)據(jù)的方差與未服藥者指標(biāo)y數(shù)據(jù)的方差的大小.(只需寫(xiě)出結(jié)論),題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,類(lèi)型三二項(xiàng)分布例5(2017遼寧鞍山一模,理19)上周某校高三年級(jí)學(xué)生參加了數(shù)學(xué)測(cè)試,年級(jí)部組織任課教師對(duì)這次考試進(jìn)行成績(jī)分析.現(xiàn)從中抽取80名學(xué)生的數(shù)學(xué)成績(jī)(均為整數(shù))的頻率分布直方圖如圖所示.,題型一,題型二,題型三,題型四,(1)估計(jì)這次月考數(shù)學(xué)成績(jī)的平均分和眾數(shù);(2)假設(shè)抽出學(xué)生的數(shù)學(xué)成績(jī)?cè)赱90,100]段各不相同,且都超過(guò)94分.若將頻率視為概率,現(xiàn)用簡(jiǎn)單隨機(jī)抽樣的方法,從95,96,97,98,99,100這6個(gè)數(shù)字中任意抽取2個(gè)數(shù),有放回地抽取3次,記這3次抽取中恰好有兩名學(xué)生的數(shù)學(xué)成績(jī)的次數(shù)為X,求X的分布列和數(shù)學(xué)期望.,解:(1)平均分為0.0545+0.1555+0.265+0.375+0.2585+0.0595=72(分).眾數(shù)的估計(jì)值是75分.,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,解題心得對(duì)于實(shí)際問(wèn)題中的隨機(jī)變量X,如果能夠斷定它服從二項(xiàng)分布B(n,p),則其概率、均值與方差可直接利用公式(k=0,1,2,…,n),E(X)=np,D(X)=np(1-p)求得,因此,熟記二項(xiàng)分布的相關(guān)公式,可以避免煩瑣的運(yùn)算過(guò)程,提高運(yùn)算速度和準(zhǔn)確度.,題型一,題型二,題型三,題型四,對(duì)點(diǎn)訓(xùn)練5某班將要舉行籃球投籃比賽,比賽規(guī)則是:每位選手可以選擇在A(yíng)區(qū)投籃2次或選擇在B區(qū)投籃3次,在A(yíng)區(qū)每進(jìn)一球得2分,不進(jìn)球得0分;在B區(qū)每進(jìn)一球得3分,不進(jìn)球得0分,得分高的選手勝出.已知某參賽選手在A(yíng)區(qū)和B區(qū)每次投籃進(jìn)球的概率分別是(1)如果該選手以在A(yíng),B區(qū)投籃得分的期望高者為選擇投籃區(qū)的標(biāo)準(zhǔn),問(wèn)該選手應(yīng)該選擇哪個(gè)區(qū)投籃?請(qǐng)說(shuō)明理由;(2)求該選手在A(yíng)區(qū)投籃得分高于在B區(qū)投籃得分的概率.,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,題型四樣本的均值、方差與正態(tài)分布的綜合例6(2017全國(guó)Ⅰ,理19改編)為了監(jiān)控某種零件的一條生產(chǎn)線(xiàn)的生產(chǎn)過(guò)程,檢驗(yàn)員每天從該生產(chǎn)線(xiàn)上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:cm).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線(xiàn)正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在(μ-3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學(xué)期望;(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ-3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線(xiàn)在這一天的生產(chǎn)過(guò)程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查.,題型一,題型二,題型三,題型四,(ⅰ)試說(shuō)明上述監(jiān)控生產(chǎn)過(guò)程方法的合理性;(ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,解:(1)抽取的一個(gè)零件的尺寸在(μ-3σ,μ+3σ)之內(nèi)的概率為0.9973,從而零件的尺寸在(μ-3σ,μ+3σ)之外的概率為0.0027,故X~B(16,0.0027).因此P(X≥1)=1-P(X=0)=1-0.997316≈0.0423.X的數(shù)學(xué)期望為E(X)=160.0027=0.0432.(2)(ⅰ)如果生產(chǎn)狀態(tài)正常,一個(gè)零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.0027,一天內(nèi)抽取的16個(gè)零件中,出現(xiàn)尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.0423,發(fā)生的概率很小.因此一旦發(fā)生這種情況,就有理由認(rèn)為這條生產(chǎn)線(xiàn)在這一天的生產(chǎn)過(guò)程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查,可見(jiàn)上述監(jiān)控生產(chǎn)過(guò)程的方法是合理的.,題型一,題型二,題型三,題型四,題型一,題型二,題型三,題型四,解題心得解決正態(tài)分布有關(guān)的問(wèn)題,在理解μ,σ2意義的情況下,記清正態(tài)分布的密度曲線(xiàn)是一條關(guān)于x=μ對(duì)稱(chēng)的鐘形曲線(xiàn),很多問(wèn)題都是利用圖象的對(duì)稱(chēng)性解決的.,題型一,題型二,題型三,題型四,對(duì)點(diǎn)訓(xùn)練6從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻率分布直方圖:,題型一,題型二,題型三,題型四,(1)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(2)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2.①利用該正態(tài)分布,求P(187.8- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 福建專(zhuān)用2019高考數(shù)學(xué)一輪復(fù)習(xí) 高考大題專(zhuān)項(xiàng)突破6 高考中的概率與統(tǒng)計(jì)課件 新人教A版 福建 專(zhuān)用 2019 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 專(zhuān)項(xiàng) 突破 中的 概率 統(tǒng)計(jì) 課件 新人
鏈接地址:http://www.820124.com/p-3318265.html