影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

【創(chuàng)新方案】年高考數(shù)學(xué)一輪復(fù)習(xí) 第四篇 三角函數(shù)、解三角形 第6講 正弦定理和余弦定理教案 理 新人教版

上傳人:gfy****yf 文檔編號(hào):34483512 上傳時(shí)間:2021-10-21 格式:DOC 頁(yè)數(shù):9 大?。?16KB
收藏 版權(quán)申訴 舉報(bào) 下載
【創(chuàng)新方案】年高考數(shù)學(xué)一輪復(fù)習(xí) 第四篇 三角函數(shù)、解三角形 第6講 正弦定理和余弦定理教案 理 新人教版_第1頁(yè)
第1頁(yè) / 共9頁(yè)
【創(chuàng)新方案】年高考數(shù)學(xué)一輪復(fù)習(xí) 第四篇 三角函數(shù)、解三角形 第6講 正弦定理和余弦定理教案 理 新人教版_第2頁(yè)
第2頁(yè) / 共9頁(yè)
【創(chuàng)新方案】年高考數(shù)學(xué)一輪復(fù)習(xí) 第四篇 三角函數(shù)、解三角形 第6講 正弦定理和余弦定理教案 理 新人教版_第3頁(yè)
第3頁(yè) / 共9頁(yè)

下載文檔到電腦,查找使用更方便

12 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《【創(chuàng)新方案】年高考數(shù)學(xué)一輪復(fù)習(xí) 第四篇 三角函數(shù)、解三角形 第6講 正弦定理和余弦定理教案 理 新人教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《【創(chuàng)新方案】年高考數(shù)學(xué)一輪復(fù)習(xí) 第四篇 三角函數(shù)、解三角形 第6講 正弦定理和余弦定理教案 理 新人教版(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 第6講 正弦定理和余弦定理 【2013年高考會(huì)這樣考】 1.考查正、余弦定理的推導(dǎo)過(guò)程. 2.考查利用正、余弦定理判斷三角形的形狀. 3.考查利用正、余弦定理解任意三角形的方法. 【復(fù)習(xí)指導(dǎo)】 1.掌握正弦定理和余弦定理的推導(dǎo)方法. 2.通過(guò)正、余定理變形技巧實(shí)現(xiàn)三角形中的邊角轉(zhuǎn)換,解題過(guò)程中做到正余弦定理的優(yōu)化選擇.   基礎(chǔ)梳理 1.正弦定理:===2R,其中R是三角形外接圓的半徑.由正弦定理可以變形為: (1)a∶b∶c=sin A∶sin B∶sin C; (2)a=2Rsin_A,b=2Rsin_B,c=2Rsin_C; (3)sin A=,sin B

2、=,sin C=等形式,以解決不同的三角形問(wèn)題. 2.余弦定理:a2=b2+c2-2bccos_A,b2=a2+c2-2accos_B,c2=a2+b2-2abcos_C.余弦定理可以變形為:cos A=,cos B=,cos C=. 3.S△ABC=absin C=bcsin A=acsin B==(a+b+c)r(R是三角形外接圓半徑,r是三角形內(nèi)切圓的半徑),并可由此計(jì)算R,r. 4.已知兩邊和其中一邊的對(duì)角,解三角形時(shí),注意解的情況.如已知a,b,A,則 A為銳角 A為鈍角或直角 圖形 關(guān)系 式 a<bsin A a=bsin A

3、 bsin A<a<b a≥b a>b a≤b 解的 個(gè)數(shù) 無(wú)解 一解 兩解 一解 一解 無(wú)解 一條規(guī)律 在三角形中,大角對(duì)大邊,大邊對(duì)大角;大角的正弦值也較大,正弦值較大的角也較大,即在△ABC中,A>B?a>b?sin A>sin B. 兩類問(wèn)題 在解三角形時(shí),正弦定理可解決兩類問(wèn)題:(1)已知兩角及任一邊,求其它邊或角;(2)已知兩邊及一邊的對(duì)角,求其它邊或角.情況(2)中結(jié)果可能有一解、兩解、無(wú)解,應(yīng)注意區(qū)分.余弦定理可解決兩類問(wèn)題:(1)已知兩邊及夾角求第三邊和其他兩角;(2)已知三邊,求各角. 兩種途徑 根據(jù)所給條件確定三角形的形狀,主要有兩

4、種途徑: (1)化邊為角;(2)化角為邊,并常用正弦(余弦)定理實(shí)施邊、角轉(zhuǎn)換. 雙基自測(cè) 1.(人教A版教材習(xí)題改編)在△ABC中,A=60,B=75,a=10,則c等于(  ). A.5 B.10 C. D.5 解析 由A+B+C=180,知C=45, 由正弦定理得:=, 即=.∴c=. 答案 C 2.在△ABC中,若=,則B的值為(  ). A.30 B.45 C.60 D.90 解析 由正弦定理知: =,∴sin B=cos B,∴B=45. 答案 B 3.(2011鄭州聯(lián)考)在△ABC中,a=,b=1,c=2,

5、則A等于(  ). A.30 B.45 C.60 D.75 解析 由余弦定理得:cos A===, ∵0<A<π,∴A=60. 答案 C 4.在△ABC中,a=3,b=2,cos C=,則△ABC的面積為(  ). A.3 B.2 C.4 D. 解析 ∵cos C=,0<C<π, ∴sin C=, ∴S△ABC=absin C =32=4. 答案 C 5.已知△ABC三邊滿足a2+b2=c2-ab,則此三角形的最大內(nèi)角為_(kāi)_______. 解析 ∵a2+b2-c2=-ab, ∴cos C==-, 故C=1

6、50為三角形的最大內(nèi)角. 答案 150    考向一 利用正弦定理解三角形 【例1】?在△ABC中,a=,b=,B=45.求角A,C和邊c. [審題視點(diǎn)] 已知兩邊及一邊對(duì)角或已知兩角及一邊,可利用正弦定理解這個(gè)三角形,但要注意解的判斷. 解 由正弦定理得=,=, ∴sin A=. ∵a>b,∴A=60或A=120. 當(dāng)A=60時(shí),C=180-45-60=75, c==; 當(dāng)A=120時(shí),C=180-45-120=15, c==. (1)已知兩角一邊可求第三角,解這樣的三角形只需直接用正弦定理代入求解即可. (2)已知兩邊和一邊對(duì)角,解三角形時(shí),利用正弦定理求另一

7、邊的對(duì)角時(shí)要注意討論該角,這是解題的難點(diǎn),應(yīng)引起注意. 【訓(xùn)練1】 (2011北京)在△ABC中,若b=5,∠B=,tan A=2,則sin A=________;a=________. 解析 因?yàn)椤鰽BC中,tan A=2,所以A是銳角, 且=2,sin2A+cos2A=1, 聯(lián)立解得sin A=, 再由正弦定理得=, 代入數(shù)據(jù)解得a=2. 答案  2 考向二 利用余弦定理解三角形 【例2】?在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,且=-. (1)求角B的大?。? (2)若b=,a+c=4,求△ABC的面積. [審題視點(diǎn)] 由=-,利用余弦定理轉(zhuǎn)化為邊的關(guān)系求

8、解. 解 (1)由余弦定理知:cos B=, cos C=. 將上式代入=-得: =-, 整理得:a2+c2-b2=-ac. ∴cos B===-. ∵B為三角形的內(nèi)角,∴B=π. (2)將b=,a+c=4, B=π代入b2=a2+c2-2accos B, 得b2=(a+c)2-2ac-2accos B, ∴13=16-2ac,∴ac=3. ∴S△ABC=acsin B=. (1)根據(jù)所給等式的結(jié)構(gòu)特點(diǎn)利用余弦定理將角化邊進(jìn)行變形是迅速解答本題的關(guān)鍵. (2)熟練運(yùn)用余弦定理及其推論,同時(shí)還要注意整體思想、方程思想在解題過(guò)程中的運(yùn)用. 【訓(xùn)練2】 (2011桂林

9、模擬)已知A,B,C為△ABC的三個(gè)內(nèi)角,其所對(duì)的邊分別為a,b,c,且2cos2 +cos A=0. (1)求角A的值; (2)若a=2,b+c=4,求△ABC的面積. 解 (1)由2cos2 +cos A=0, 得1+cos A+cos A=0, 即cos A=-, ∵0<A<π,∴A=. (2)由余弦定理得, a2=b2+c2-2bccos A,A=, 則a2=(b+c)2-bc, 又a=2,b+c=4, 有12=42-bc,則bc=4, 故S△ABC=bcsin A=. 考向三 利用正、余弦定理判斷三角形形狀 【例3】?在△ABC中,若(a2+b2)sin(

10、A-B)=(a2-b2)sin C,試判斷△ABC的形狀. [審題視點(diǎn)] 首先邊化角或角化邊,再整理化簡(jiǎn)即可判斷. 解 由已知(a2+b2)sin(A-B)=(a2-b2)sin C, 得b2[sin(A-B)+sin C]=a2[sin C-sin(A-B)], 即b2sin Acos B=a2cos Asin B, 即sin2Bsin Acos B=sin2Acos Bsin B,所以sin 2B=sin 2A, 由于A,B是三角形的內(nèi)角. 故0<2A<2π,0<2B<2π. 故只可能2A=2B或2A=π-2B, 即A=B或A+B=. 故△ABC為等腰三角形或直角三角形

11、. 判斷三角形的形狀的基本思想是;利用正、余弦定理進(jìn)行邊角的統(tǒng)一.即將條件化為只含角的三角函數(shù)關(guān)系式,然后利用三角恒等變換得出內(nèi)角之間的關(guān)系式;或?qū)l件化為只含有邊的關(guān)系式,然后利用常見(jiàn)的化簡(jiǎn)變形得出三邊的關(guān)系. 【訓(xùn)練3】 在△ABC中,若==;則△ABC是(  ). A.直角三角形 B.等邊三角形 C.鈍角三角形 D.等腰直角三角形 解析 由正弦定理得a=2Rsin A,b=2Rsin B,c=2Rsin C(R為△ABC外接圓半徑). ∴==. 即tan A=tan B=tan C,∴A=B=C. 答案 B 考向三 正、余弦定理的綜合應(yīng)用 【例3】?在△AB

12、C中,內(nèi)角A,B,C對(duì)邊的邊長(zhǎng)分別是a,b,c,已知c=2,C=. (1)若△ABC的面積等于,求a,b; (2)若sin C+sin(B-A)=2sin 2A,求△ABC的面積. [審題視點(diǎn)] 第(1)問(wèn)根據(jù)三角形的面積公式和余弦定理列出關(guān)于a,b的方程,通過(guò)方程組求解;第(2)問(wèn)根據(jù)sin C+sin(B-A)=2sin 2A進(jìn)行三角恒等變換,將角的關(guān)系轉(zhuǎn)換為邊的關(guān)系,求出邊a,b的值即可解決問(wèn)題. 解 (1)由余弦定理及已知條件,得a2+b2-ab=4. 又因?yàn)椤鰽BC的面積等于,所以absin C=,得ab=4,聯(lián)立方程組解得 (2)由題意,得sin(B+A)+sin(B-

13、A)=4sin Acos A, 即sin Bcos A=2sin Acos A. 當(dāng)cos A=0,即A=時(shí),B=, a=,b=; 當(dāng)cos A≠0時(shí),得sin B=2sin A, 由正弦定理,得b=2a. 聯(lián)立方程組 解得 所以△ABC的面積S=a bsin C=. 正弦定理、余弦定理、三角形面積公式對(duì)任意三角形都成立,通過(guò)這些等式就可以把有限的條件納入到方程中,通過(guò)解方程組獲得更多的元素,再通過(guò)這些新的條件解決問(wèn)題. 【訓(xùn)練3】 (2011北京西城一模)設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且cos B=,b=2. (1)當(dāng)A=30時(shí),求a的值;

14、(2)當(dāng)△ABC的面積為3時(shí),求a+c的值. 解 (1)因?yàn)閏os B=,所以sin B=. 由正弦定理=,可得=, 所以a=. (2)因?yàn)椤鰽BC的面積S=acsin B,sin B=, 所以ac=3,ac=10. 由余弦定理得b2=a2+c2-2accos B, 得4=a2+c2-ac=a2+c2-16,即a2+c2=20. 所以(a+c)2-2ac=20,(a+c)2=40. 所以a+c=2.   閱卷報(bào)告4——忽視三角形中的邊角條件致錯(cuò) 【問(wèn)題診斷】 考查解三角形的題在高考中一般難度不大,但稍不注意,會(huì)出現(xiàn)“會(huì)而不對(duì),對(duì)而不全”的情況,其主要原因就是忽視三角形

15、中的邊角條件., 【防范措施】 解三角函數(shù)的求值問(wèn)題時(shí),估算是一個(gè)重要步驟,估算時(shí)應(yīng)考慮三角形中的邊角條件. 【示例】?(2011安徽)在△ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊長(zhǎng),a=,b=,1+2cos(B+C)=0,求邊BC上的高. 錯(cuò)因 忽視三角形中“大邊對(duì)大角”的定理,產(chǎn)生了增根. 實(shí)錄 由1+2cos(B+C)=0, 知cos A=,∴A=, 根據(jù)正弦定理=得: sin B==,∴B=或. 以下解答過(guò)程略. 正解 ∵在△ABC中,cos(B+C)=-cos A, ∴1+2cos(B+C)=1-2cos A=0,∴A=. 在△ABC中,根據(jù)正弦定理=,

16、 ∴sin B==. ∵a>b,∴B=,∴C=π-(A+B)=π. ∴sin C=sin(B+A)=sin Bcos A+cos Bsin A =+=. ∴BC邊上的高為bsin C==. 【試一試】 (2011遼寧)△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,asin Asin B+bcos2 A=a. (1)求; (2)若c2=b2+a2,求B. [嘗試解答] (1)由正弦定理得, sin2Asin B+sin Bcos2A=sin A,即 sin B(sin2A+cos2A)=sin A. 故sin B=sin A,所以=. (2)由余弦定理和c2=b2+a2,得cos B=. 由(1)知b2=2a2,故c2=(2+)a2. 可得cos2B=,又cos B>0,故cos B=,所以B=45.    9

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!