《2019屆九年級數(shù)學(xué)下冊 第二章 2.2 圓心角、圓周角練習(xí) (新版)湘教版.doc》由會員分享,可在線閱讀,更多相關(guān)《2019屆九年級數(shù)學(xué)下冊 第二章 2.2 圓心角、圓周角練習(xí) (新版)湘教版.doc(18頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2.2 圓心角、圓周角
2.2.1 圓心角
基礎(chǔ)題
知識點1 認識圓心角
1.下面四個圖中的角,是圓心角的是(D)
A B C D
2.將一個圓分成四個扇形,它們的圓心角的度數(shù)比為4∶4∶5∶7,則這四個扇形中,圓心角最大的是(D)
A.54 B.72 C.90 D.126
知識點2 圓心角、弧、弦之間的關(guān)系
3.下列說法中,正確的是(B)
A.等弦所對的弧相等
B.等弧所對的弦相等
C.圓心角相等,所對的弦相等
D.弦相等所對的圓心角相等
4.如圖,在⊙O中,=,∠AOB=122,則∠AOC的度數(shù)為(A)
A.122 B.120 C.61 D.58
5.如圖,A,B,C,D是⊙O上的四點,且AD=BC,則AB與CD的大小關(guān)系為(B)
A.AB>CD B.AB=CD
C.AB
CE=AB,∴AB<2CD,故選B.
14.如圖,A,B,C是⊙O上的三點,且有==.
(1)求∠AOB,∠BOC,∠AOC的度數(shù);
(2)連接AB,BC,CA,試確定△ABC的形狀.
解:(1)∵==,
∴∠AOB=∠BOC=∠AOC.
又∵∠AOB+∠BOC+∠COA=360,
∴∠AOB=∠BOC=∠AOC=120.
(2)∵==,
∴AB=BC=CA.
∴△ABC是等邊三角形.
15.如圖,AB,CD是⊙O的兩條直徑,過點A作AE∥CD交⊙O于點E,連接BD,DE,求證:BD=DE.
證明:連接OE,
∵OA=OE,
∴∠A=∠OEA.
∵AE∥CD,
∴∠BOD=∠A,∠DOE=∠OEA.
∴∠BOD=∠DOE.
∴BD=DE.
16.如圖,已知AB是⊙O的直徑,M,N分別是AO,BO的中點,CM⊥AB,DN⊥AB.求證:=.
證明:連接OC,OD,
∵AB是⊙O的直徑,M,N分別是AO,BO的中點,
∴OM=ON.
∵CM⊥AB,DN⊥AB,
∴∠OMC=∠OND=90.
在Rt△OMC和Rt△OND中,
∴Rt△OMC≌Rt△OND(HL).
∴∠COM=∠DON.
∴=.
綜合題
17.如圖,在⊙O中,AB,CD是兩條弦,OE⊥AB,OF⊥CD,垂足分別為E,F(xiàn).
(1)如果∠AOB=∠COD,那么OE與OF的大小有什么關(guān)系?為什么?
(2)如果OE=OF,那么與的大小有什么關(guān)系?為什么?
解:(1)OE=OF.理由:
∵OE⊥AB,OF⊥CD,OA=OB,OC=OD,
∴∠OEB=∠OFD=90,∠EOB=∠AOB,∠FOD=∠COD.
∵∠AOB=∠COD,∴∠EOB=∠FOD.
在△EOB和△FOD中,
∴△EOB≌△FOD(AAS).
∴OE=OF.
(2)=.
理由:∵OE⊥AB,OF⊥CD,AO=BO,CO=DO,
∴∠OEB=∠OFD=90.
∴點E,F(xiàn)分別是AB,CD的中點.
在Rt△BEO和Rt△DFO中,
∴Rt△BEO≌Rt△DFO(HL).
∴BE=DF.
∵AB=2BE,CD=2DF,
∴AB=CD.
∴=.
2.2.2 圓周角
第1課時 圓周角定理及其推論1
基礎(chǔ)題
知識點1 認識圓周角
1.下列四個圖中,∠x是圓周角的是(C)
知識點2 圓周角定理
2.(xx衢州)如圖,點A,B,C在⊙O上,∠ACB=35,則∠AOB的度數(shù)是(B)
A.75 B.70 C.65 D.35
3.如圖,△ABC內(nèi)接于⊙O.若∠A=α,則∠OBC等于(D)
A.180-2α B.2α
C.90+α D.90-α
4.如圖,將直角三角板60角的頂點放在圓心O上,斜邊和一直角邊分別與⊙O相交于A,B兩點,P是優(yōu)弧AB上任意一點(與A,B不重合),則∠APB=30.
5.(xx廣東)在同圓中,已知弧AB所對的圓心角是100,則弧AB所對的圓周角是50.
知識點3 圓周角定理推論1
6.如圖,點A,B,C,D都在⊙O上,AC,BD相交于點E,則∠ABD=(A)
A.∠ACD B.∠ADB
C.∠AED D.∠ACB
7.如圖,已知AB,CD是⊙O的兩條直徑,∠ABC=28,那么∠BAD=(A)
A.28 B.42 C.56 D.84
8.(教材P52練習(xí)T3變式)如圖,在⊙O中,弦AB,CD相交于點P.若∠A=30,∠APD=70,則∠B等于(C)
A.30 B.35 C.40 D.50
9.如圖,BD是⊙O的直徑,點A,C在⊙O上,=,∠AOB=60,則∠BDC的度數(shù)是(D)
A.60 B.45 C.35 D.30
10.如圖所示,弦AB,CD相交于點O,連接AD,BC,在不添加輔助線的情況下,請在圖中找出一對相等的角,它們是答案不唯一,如:∠A=∠C,∠B=∠D,∠AOD=∠BOC,∠AOC=∠BOD.
11.如圖,已知A,B,C,D是⊙O上的四個點,AB=BC,BD交AC于點E,連接CD,AD.求證:DB平分∠ADC.
證明:∵AB=BC,
∴=.
∴∠BDC=∠ADB.
∴DB平分∠ADC.
易錯點 忽略弦所對的圓周角不唯一而致錯
12.已知某個圓的弦長等于它的半徑,則這條弦所對的圓周角的度數(shù)為30或150.
中檔題
13.如圖,P是⊙O外一點,PA,PB分別交⊙O于C,D兩點,已知和所對的圓心角分別為90和50,則∠P=(D)
A.45 B.40 C.25 D.20
14.(xx菏澤)如圖,在⊙O中,OC⊥AB,∠ADC=32,則∠OBA等于(D)
A.64 B.58 C.32 D.26
15.如圖,邊長為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點上,則∠AED的正弦值等于.
16.如圖所示,在⊙O中,已知∠BAC=∠CDA=20,則∠ABO的度數(shù)為50.
17.(教材P52練習(xí)T3變式)如圖,在⊙O中,A,B是圓上的兩點,已知∠AOB=40,直徑CD∥AB,連接AC,則∠BAC=35.
18.如圖,點A,B,C三點在⊙O上,過C作CD∥AB與⊙O相交于D點,E是上一點,且滿足AD=DE,連接BD與AE相交于點F.求證:△AFD∽△ABC.
證明:∵AB∥CD,
∴∠BAC=∠ACD.
∵AD=DE,∴=.
∴∠DAE=∠AED.
∴∠DAE=∠AED=∠ACD=∠BAC.
∵∠ADF=∠ACB,∠DAE=∠BAC,
∴△AFD∽△ABC.
綜合題
19.如圖,⊙O的半徑為1,A,P,B,C是⊙O上的四個點,∠APC=∠CPB=60.
(1)判斷△ABC的形狀,并證明你的結(jié)論;
(2)試探究線段PA,PB,PC之間的數(shù)量關(guān)系,并證明你的結(jié)論.
證明:(1)△ABC是等邊三角形.
在⊙O中,
∵∠BAC與∠CPB是所對的圓周角,
∠ABC與∠APC是所對的圓周角,
∴∠BAC=∠CPB,∠ABC=∠APC.
又∵∠APC=∠CPB=60,
∴∠ABC=∠BAC=60.
∴△ABC為等邊三角形.
(2)在PC上截取PD=AP,連接AD,
∵∠APC=60,
∴△APD是等邊三角形.
∴AD=AP=PD,∠ADP=60,
即∠ADC=120.
又∵∠APB=∠APC+∠BPC=120,
∴∠ADC=∠APB.
在△APB和△ADC中,
∴△APB≌△ADC(AAS).
∴BP=CD.
又∵PD=AP.
∴CP=CD+PD=BP+AP.
第2課時 圓周角定理推論2及圓內(nèi)接四邊形的性質(zhì)
基礎(chǔ)題
知識點1 圓周角定理推論2
1.(xx福建)如圖,AB是⊙O的直徑,C,D是⊙O上位于AB異側(cè)的兩點.則下列四個角中,一定與∠ACD互余的角是(D)
A.∠ADC B.∠ABD
C.∠BAC D.∠BAD
2.如圖,小華同學(xué)設(shè)計了一個量直徑的測量器,標(biāo)有刻度的尺子OA,OB在O點釘在一起,并使它們保持垂直,在測直徑時,把O點靠在圓周上,讀得刻度OE=8個單位長度,OF=6個單位長度,則圓的直徑為(B)
A.12個單位長度 B.10個單位長度
C.4個單位長度 D.15個單位長度
3.如圖,已知AB是⊙O的直徑,∠D=40,則∠CAB的度數(shù)為(C)
A.20 B.40 C.50 D.70
4.如圖,CD是⊙O的直徑,已知∠1=30,則∠2=(C)
A.30 B.45 C.60 D.70
5.如圖,把直角三角形的直角頂點O放在破損玻璃鏡的圓周上,兩直角邊與圓弧分別交于點M,N,量得OM=8 cm,ON=6 cm,則該圓玻璃鏡的半徑是(B)
A. cm
B.5 cm
C.6 cm
D.10 cm
6.如圖,AB是⊙O的直徑,點D在⊙O上,∠AOD=130,BC∥OD交⊙O于C,求∠A的度數(shù).
解:∵∠AOD=130,
∴∠BOD=50.
∵BC∥OD,∴∠B=∠BOD=50.
∵AB是⊙O的直徑,
∴∠ACB=90.
∴∠A=90-∠B=40.
知識點2 圓內(nèi)接四邊形對角互補
7.如圖,四邊形ABCD是圓內(nèi)接四邊形,E是BC延長線上一點.若∠BAD=105,則∠DCE的大小是(B)
A.115 B.105 C.100 D.95
8.(教材P55例4變式)(xx邵陽)如圖所示,四邊形ABCD為⊙O的內(nèi)接四邊形,∠BCD=120,則∠BOD的大小是(B)
A.80 B.120 C.100 D.90
9.如圖,四邊形ABCD為⊙O的內(nèi)接四邊形,已知∠BCD=110,則∠BAD=70.
10.如圖,已知∠EAD是圓內(nèi)接四邊形ABCD的一個外角,并且BD=DC.求證:AD平分∠EAC.
證明:∵∠EAD+∠BAD=180,∠DCB+∠BAD=180,
∴∠EAD=∠DCB.
∵BD=DC,∴∠DBC=∠DCB.
又∵∠DBC=∠DAC,
∴∠EAD=∠DAC,即AD平分∠EAC.
易錯點 對圓內(nèi)接四邊形的概念理解不清導(dǎo)致錯誤
11.如圖,在⊙O中,點A,B,C在⊙O上,且∠ACB=110,則∠α=140.
中檔題
12.在圓內(nèi)接四邊形ABCD中,若∠A∶∠B∶∠C=1∶2∶5,則∠D等于(B)
A.60 B.120 C.140 D.150
13.如圖,AB為⊙O的直徑,關(guān)于角p,q,r,s之間的關(guān)系:①p=2q;②q=r;③p+s=180中,正確的是(A)
A.只有①和② B.只有①和③
C.只有②和③ D.①②③
14.(xx白銀)如圖,⊙A過點O(0,0),C(,0),D(0,1),點B是x軸下方⊙A上的一點,連接BO,BD,則∠OBD的度數(shù)是(B)
A.15 B.30 C.45 D.60
15.(xx北京)如圖,點A,B,C,D在⊙O上,=,∠CAD=30,∠ACD=50,則∠ADB=70.
16.如圖,已知點A,B,C,D均在⊙O上,CD為∠ACE的平分線.
(1)求證:△ABD為等腰三角形;
(2)若∠DCE=45,BD=6,求⊙O的半徑.
解:(1)證明:
∵CD平分∠ECA,
∴∠ECD=∠DCA.
∵∠ECD+∠DCB=180,∠DCB+∠BAD=180,
∴∠ECD=∠DAB.
又∵∠DCA=∠DBA,
∴∠DBA=∠DAB.
∴DB=DA.
∴△ABD是等腰三角形.
(2)∵∠DCE=∠DCA=45,
∴∠ECA=∠ACB=90.
∴∠BDA=90.∴AB是直徑.
∵BD=AD=6,
∴AB===6.
∴⊙O的半徑為3.
17.(xx宜昌)如圖,在△ABC中,AB=AC.以AB為直徑的半圓交AC于點D,交BC于點E.延長AE至點F,使EF=AE,連接FB,F(xiàn)C.
(1)求證:四邊形ABFC是菱形;
(2)若AD=7,BE=2,求半圓和菱形ABFC的面積.
解:(1)證明:∵AB為半圓的直徑,
∴∠AEB=90,
∵AB=AC,
∴CE=BE.
又∵EF=AE,
∴四邊形ABFC是平行四邊形.
又∵AB=AC,(或∠AEB=90)
∴平行四邊形ABFC是菱形.
(2)連接BD.
∵AD=7,BE=CE=2,
設(shè)CD=x,則AB=AC=7+x.
∵AB為半圓的直徑,
∴∠ADB=90.
∴AB2-AD2=CB2-CD2.
∴(7+x)2-72=42-x2.
∴x1=1或x2=-8(舍去).
∴S半圓=π42=8π.
∴BD=.
∴S菱形ABFC=8.
綜合題
18.如圖,在⊙O中,直徑AB的兩側(cè)有定點C和動點P,點P在上運動(不與A,B重合),過點C作CP的垂線,與PB的延長線交于點Q.
(1)試猜想:△PCQ與△ACB具有何種關(guān)系?(不要求證明)
(2)當(dāng)點P運動到什么位置時,△ABC≌△PCB?并給出證明.
解:(1)△PCQ∽△ACB.
(2)當(dāng)為半圓時,
△ABC≌△PCB.
證明:∵AB是直徑,
∴∠ACB=90.
∵為半圓,
∴CP是直徑.
∴∠PBC=90,AB=CP.
∵CB是公共邊,∴Rt△ABC≌Rt△PCB(HL).
鏈接地址:http://www.820124.com/p-3698775.html